The present invention relates to a granular biomass burning heating system. Any type of granular biomass can be used as fuel. Grains, such as corn and wheat, have become popular fuel sources for furnaces and stoves. Various stoves and furnaces of a type to burn such materials are known.
In any type of solid fuel burning system, regardless of the type of fuel being used, it is desired to increase the efficiency of the system so that the amount of heat produced and utilized by the system is relatively high. It is further desired to decrease the lag time between unit start up and when heat is evident to the user. Further, some known biomass fuel furnaces have problems with incomplete burning of the fuel. Therefore it is desirable to provide a biomass furnace which provides for complete burning of the fuel.
One of the problems associated with some grain burning heating systems is back burning. Many granular biomass burning heating systems include an auger-type fuel feed. Back burning occurs when fuel located in this auger begins to burn before it is introduced to the burn pot. It is desirable to provide a granular biomass burning heating system with a fuel feed designed to prevent back burning.
Some known biomass furnaces have problems associated with the controls. For example, the heat of the furnace can be difficult to control. It is therefore desirable to provide a user friendly furnace, which utilizes a computer control unit to function on its own with very little human intervention. It is further desirable to provide a system which utilizes a smart logic thermal controller to reduce the human intervention necessary to keep the output of the furnace at a consistent or desirable temperature.
Additional problems included fly ash build up in previous furnaces. Fly ash can decrease the efficiency of the system, so it is desirable to include a way to remove the build up of ash from a biomass furnace. Additionally, incomplete combustion can clog the system by creating clinkers, or hardened lumps of unburned material, and can also decrease efficiency. Therefore it is desirable provide a biomass furnace which removes clinkers and also promotes complete combustion.
Although many designs for granular biomass burning heating systems have been considered, improved designs are continually being sought to improve the technology. It is an object to the present invention to provide a novel granular biomass burning heating system.
The present invention provides an improved granular biomass burning heating system. The apparatus includes a three stage heat exchanger, wherein the heat exchanger stages are connected in parallel relation to each other.
The apparatus may further include a linear fuel infeed system including a self closing door to minimize back burning. The apparatus may also include a venturi design to direct smoke and fire away from the self closing door when the unit is in operation.
The apparatus may further include an air inducement system by which air is supplied to the burn pot from the side, center, and bottom of the burn pot.
The apparatus may further include a wash down system which includes a water supply pump, a water filter, a baffled water sediment tank, and a rotatable shaft with a plurality of holes formed there to remove ash and other debris from the furnace. The apparatus may recycle water and cleaning solution within the process.
The invention may include a computer controller which automatically controls features of the furnace to automatically operate the system.
The invention may include a smart thermostat and a variable speed air inducer fan. The unit may utilize the smart thermostat to determine when and how long to use the high burn status before selecting the intermediate burn, low burn, burnout, or wash down status. This allows the unit to adjust itself to use the minimum amount of fuel to achieve maximum heating results. The computer chooses the heat status required for to further increase efficiency of the unit. The computer also decreases the lag time between the call for heat and actual heat. This units starts at high burn to generate maximum heat initially and through the process the unit turns down heat output when necessary to limit wasted heat.
The invention may further include a plurality of sensors connected to the computer controller such that the system is controlled based on input from the plurality of sensors.
Additional objects and advantages of the invention will be set forth in the following description, or may be learned through practice of the invention.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
The furnace 2 is preferably cylindrical in shape. Attached to the furnace 2 is a computer controller 16, an air infeed 20, a fuel infeed 22, a water infeed 62, a water outlet 28, a water pump 30, fuel and ash rotator 32, a washdown pipeshaft motor 34, a wash down and ash removal caseway 36, and a baffled sediment tank 38.
The preferred embodiment of the present invention includes three stages of heat exchangers which can best be seen in
The furnace 2 preferably also includes condensation collectors. One bushel of corn at 10 percent moisture produces 5.6 pounds of water. This water can douse the flames if it is not removed from the system. The condensation collectors carry water away from the center of the burn pot 6. The first and third ash funnels 44 can additionally suffice as a condensation collector. The condensation travels along the funnel 44 to the ash caseway 36. In the preferred embodiment, an ash/condensate trough 50 located at the point where the lower portion 54 and upper portion 52 of the furnace 2 connect collects condensation as it travels towards and down the ash caseway 36. An ash wiper 56 associated with the trough 50 pushes the condensation towards the ash caseway 36. A third condensation tray 58 which is cupped upward can be located underneath the fine finned heat exchanger 48 so that water hits the tray 58 and is removed from the system by a pipe 60 which deposits the condensation in the baffled sediment tank 38. It is desirable to remove the condensation from the furnace 2 to increase the efficiency of the furnace 2.
Each stage of heat exchanger is supplied with water. The water inlet system is shown in
This inlet configuration puts the stages of the heat exchanger in parallel rather than in series. Because each stage of the heat exchanger is getting fresh heating system water, rather than water which has been utilized in a previous stage heat exchanger, the efficiency of heat exchange in the system is increased. As discussed above, condensation problems are overcome by condensation collection system. This is because the efficiency of a heat exchanger depends in part on the temperature differential between the two fluids in the system. Water which has been used in a previous stage of the heat exchanger would be warmer than fresh heating system water entering the system, and therefore is able to accept less heat from the air in the furnace 2, resulting less efficient heat exchange. The water flowing through some of the heli-coils 42 may be temperature regulated. In this case, a device would be present which would allow water to heat up in the heli-coils 42 before being allowed to flow out of the heli-coils 42. This improves the efficiency of the system because water which is too cold can cause condensation, which if not properly removed, can douse the fire in the burn pot 6.
The first stage heat exchanger is a spiral water jacket 40. The water jacket 40 is formed on the inner wall of the burn pot 6 and extends around the lower portion 54 of the furnace 2. The water jacket 40 forms a spiral path for the water flowing through the system. A water jacket pressure relief valve 41 is located at the top of the water jacket 40, near the area where the lower portion 54 and the upper portion 52 of the furnace mate.
As seen in
Each of the heli-coils 42 in the lower portion 54 of the furnace 2 are strapped to the bottom side of an ash funnel 44. The ash funnels 44 are attached to the internal wall of the furnace 2. The ash funnels 44 are removable for maintenance of the furnace 2. Each heli-coil 42 is fed from the inlet manifold 68. After the water flows through a heli-coil 42, the water flows to the outlet manifold 80. The lower portion 54 of the furnace 2 also includes heat deflectors 72 attached to the second and fourth sets of ash funnels 44. The heat deflectors 72 have a shape similar to a funnel, and force the air from the furnace 2 to take a less direct path, thus exposing the air to more of the heat exchanger heli-coils 42, which will increase the efficiency of the furnace 2.
The upper portion 52 of the furnace 2 includes several upper heli-coils 42; in the preferred embodiment seven heli-coils 42 are utilized. The upper portion 52 heli-coils 42 are strapped to three tripod legs 46 which rest into recessed notches formed in the furnace 2 inner wall. The tripod legs 46 rise upward toward the washdown rotator shaft sleeve 74. The tripod legs 46 are also attached to washdown rotator sleeve 74. The tripod legs 46 are hingedly attached to the rotator sleeve 74. Each heli-coil 42 is fed from the inlet manifold 68. After the water flows through a heli-coil 42, the water flows to the outlet manifold 80.
A plurality of heat deflecting baffles 76 are also located in the upper portion 52 of the furnace 2. In the preferred embodiment of this invention, seven baffles 76 are disclosed. The baffles 76 are aligned such that each baffle 76 is located just below a heli-coil 42. The configuration of the baffles 76 and heli-coils 42 is such that the air in the furnace 2 does not have a straight path up the height of the furnace 2. Rather, the air will be deflected by the baffle 76 and forced to flow around the baffles 76. In this manner, the hot air from the furnace 2 will have more contact with the heat exchanger heli-coils 42, which will result in more efficient heat transfer.
In the preferred embodiment of the invention, the third stage of the heat exchanger system is a fine finned heat exchanger 48. However, it is contemplated that any other suitable type of heat exchanger could be utilized as a third stage heat exchanger. The fine finned heat exchanger 48 is formed of a pipe which has a diameter which is smaller than the diameter of the heli-coils 42. This pipe is bent to create banks of finned tubes. The fine finned heat exchanger 48 is surrounded around its circumference by a removable shroud 78. This shroud 78 forces the air from the furnace 2 to flow through the fine finned heat exchanger 48, rather than flow around it. Water enters the fine finned heat exchanger 48 from the inlet manifold 68. After the water has flowed through the heat exchanger it flows into the outlet manifold 80. After the air from the furnace 2 flows through the fine finned heat exchanger 48, the air exits the system through a pitched down exhaust 82.
The air which is supplied to the ash tray 92 below the burn pot 6 is induced to the burn pot 6 in two manners. First, a central air inducer pipe 94 extends through the ignition plate 96 into the base of the burn pot 6. This air inducer pipe 94 is preferably 1½ inches in diameter and has a pattern of small air holes thereon. The air holes are preferably ¼ inch holes which introduces air to the center of the burn pot 6. Second, the ignition plate 96 is formed with a plurality of slots 98. The air can travel up from the ash tray 92 through the slots 98 to enter the burn pot 6. The ignition plate 96 stands off ⅛ inch from the water jacket 40. This gap also allows air to enter the burn pot 6. By this configuration, air is introduced from the sides, bottom, and center of the burn pot 6. This configuration provides air nearest to the combustion, which increases efficiency. The speed of the blower 84 rotation is determined by desired heat output set forth by smart thermostat or by the manual setting.
A safety door 100 stops air flow in event of system malfunction. The safety door 100 is controlled by a normally closed solenoid 102 which opens the safety door 100 for operation. An electromagnet 104 holds the safety door 100 open during operation. By utilizing an electromagnet, rather than the solenoid to hold the safety door 100 open for extended periods of time, the amount of noise created by the unit is reduced. If power is cut, the electromagnet 104 will release the safety door 100 and the safety door 100 is returned to its normally closed position which will prevent air infeed.
The preferred embodiment of the fuel inlet system is shown in detail in
In use, a dose of fuel is delivered to the fuel channel 112 from the furnace hopper 108. The fuel channel 112 is pitched upward toward the burn pot 6 to prevent fire from entering the fuel channel 112. In the preferred embodiment, the angle of the fuel channel 112 is 22 degrees. The motor 122 rotates the lead screw 120 to advance the plunger 118. As the plunger 118 advances the fuel dose is advanced within the fuel channel 112. The fuel channel door 116 is pushed open by the force from the advancing dose and plunger 118. The dose of fuel is pushed into the furnace 2 and lands on the ignition plate 96 at the bottom of the burn pot 6. When the plunger 118 reaches the plunger advancement stop sensor 124, the motor 122 reverses its direction and rotates the lead screw 120 in the opposite direction to retract the plunger 118. As the plunger 118 retracts the fuel channel door 116 returns to its sealed closed position by the force of the compression spring 130 pulling on the door closure rod 126. As a measure of safety the door 116 has a weight 129 attached thereon, such that if the closure rod linkage 128 were to break, the weight of the door 116 will force it to close. The plunger 118 continues to retract into the until the plunger 118 reaches the plunger retraction stop sensor 125 at which point the plunger 118 is at its original position and the fuel channel 112 is ready to again receive a dose of fuel.
Safety sensors on the lead screw 120 and dose motor 122 provide elements of safety and will shut down the motor 122 if the unit is malfunctioning. Specifically, a strike 132 is associated with the motor end of the dosing channel 112. The strike 132 engages a normally closed limit switch 134. A mechanical malfunction will move the strike 132 and open the limit switch 134 will causes the motor 122 to stop. There are three mechanical failures which will cause the limit switch 134 to be opened. First, if the door closure rod linkage 128 breaks, the compression spring 130 will force the door closure rod 126 into the strike 132 to open the limit switch 134. Second, if the dose plunger 118 retracts too far a tab 119 on the plunger 118 will push against the strike 132 and open the limit switch 34. Third, a holddown bearing 136 is located on the lead screw 120 of the dose plunger 118. If the dose plunger 118 exceeds the shearing force for the holddown bearing bolts and the lead screw 120 will move towards the strike 132, and the limit switch 134 will be opened. As an additional measure of safety, the lead screw 120 includes a lobe 121 near the end of the screw 120 which is associated with a rotation limit switch counter 138. This rotation limit switch counter 138 will measure the number of times the lead screw 120 has been rotated anticipate the number of rotations in a cycle so that if there is a mechanical problem and the lead screw 120 is rotating too many times, the motor 122 will be shut down.
The hinged self closing fuel channel door 116 minimizes back burning in the fuel channel 112. The deflecting shroud 114 also aids in minimizing back burning in the fuel channel 112 by causing a vacuum effect which prevents air from the furnace 2 from being pushed into the fuel channel 112. The channel 112 is pitched up towards the burn pot 6, further preventing fire from entering the fuel channel 112. It should be noted that although the preferred fuel for this unit is grain, it is also contemplated that this invention could utilized with any biomass fuel.
Additionally, the furnace hopper 108 attached to the furnace 2 could also be automatically filled by a larger maxi-bin 140. The furnace hopper 108 includes a sensors which would actuate an auger 144 affixed to the furnace hopper 108. The furnace hopper 108 includes a funnel 146 which is attached to a pivoting arm 148 and a limit switch 150 located above the pivoting arm 148. That pivoting arm 148 is attached to a pull spring 152. When the furnace hopper 108 is full of fuel, the funnel 146 is depressed and which pushes the end of the pivoting arm 148 up against the limit switch 150. When the fuel in the furnace hopper 108 reaches a low level, the funnel 146 is lifted up and the end of the pivoting arm 148 is pulled down by the spring 152, removing the pivoting arm 148 from contact with the limit switch 150 which activates an auger 144 in an associated maxi-bin (not shown) to provide fuel to the furnace hopper 108. The top of the furnace hopper 108 has a plastic covering 154 and a limit switch 156 held above the furnace 108 hopper by an arm 155. As the furnace hopper 108 is filled with fuel, the plastic cover 154 rises. When the plastic cover 154 engages the limit switch 156, the auger 144 supplying fuel from the maxi-bin is turned off. The furnace hopper 108 may also include a sliding door 157 near the fuel channel 112, in order to easily remove the fuel from the furnace hopper 108 if maintenance to the furnace 2 is required.
As described above, the ignition plate 96 is located at the bottom of the burn pot 6. The ignition plate 96 is shown in
The ash removal system can be best seen in
Inside the ash tray 92, an ash arm 176 is attached to the shaft 162 just above the bottom surface of the ash tray 92. When the shaft 162 is rotated the ash arm 176 rotates and pushes any ashes which have accumulated into the removable ash slide 178. The removable ash slide 178 may include a mechanism such as an auger 180 to remove the ashes from the furnace 2. In the preferred embodiment, the ash auger 180 would run for approximately 30 seconds after 60 minutes of cumulative furnace 2 operation. The auger is located near the baffled sediment tank 38 and the base of the auger 180 is constantly immersed in water. This water acts as a dam to prevent unwanted air to flow to or from the furnace 2. The auger 180 runs relatively slowly, so that the debris is dried by the time it reached the end of the auger 180. However, it is also contemplated that the ash slide 178 may simply deposit ashes into an appropriate disposal container.
The furnace 2 includes a wash down system which can best be seen in
In the preferred embodiment, the water solution is stored in a baffled sediment tank 38 of approximately 18 gallons, shown in
As described above, the furnace 2 is formed with a number of ash funnels 44 and tripod legs 46 to which the heat exchanger heli-coils 42 are attached. In the preferred embodiment four sets of ash funnels 44 are provided in the lower portion 54 of the furnace 2 and seven sets of tripod legs 46 are provided in the upper portion 52 of the furnace 2. The ash funnels 44 and tripod legs 46 are attached to the inner wall of the furnace 2.
Each set of ash funnels 44 in the lower portion 54 of the furnace 2 has an ash wiper 56 located in close proximity thereto. In the preferred embodiment the ash wipers 56 are magnetic; however it is also contemplated that the ash wipers 56 could have a different configuration, such as having metal bristles attached to the wiping surface. The ash wipers 56 are attached to the pipeshaft 182, such that when the pipeshaft 182 rotates, the ash wiper 56 rotates. The ash caseway 36 is a tube positioned just inside the water jacket 40 surrounding the furnace 2. The caseway 36 includes magnetic doors 196 located just above the point where the first and third ash funnels 44 are attached to the caseway 36. An additional magnetic door 196 is provided at the top of the caseway 36 in the area where the lower portion 54 and the upper portion 52 of the furnace 2 are mated. This door 196 is an exit point for condensate during operation of the furnace 2. Additionally, the debris and fluid from the washdown cycle are discharged through this door 196.
In use, the pipeshaft motor 34 is operated to rotate the pipeshaft 182. Water is supplied to the pipeshaft 182 through the water supply pipe 184. When water is supplied to the pipeshaft 182 and the pipeshaft 182 is rotated water is flung from the pipeshaft holes to clean the furnace 2. As the pipeshaft 182 is rotated, the ash wipers 56 which are hingedly attached to the pipeshaft 182 also rotate. The rotation of the ash wipers 56 causes any debris on the ash funnel 44 to be pushed away. The second and fourth lower funnels 44 are attached to tripod legs 46 which protrude from the funnel 44 to mate with notches formed in the inner wall of the furnace 2. The configuration of the ash funnels 44 is such that as the water and debris from the second and fourth set of ash funnels 44 will fall onto the first and third set of ash funnels 44. The debris and water on the first and third ash funnels 44 are pushed towards the ash caseway 36. The trough 50 at the connection area of the lower portion 54 and upper portion 52 of the furnace 2 also collects water and debris and, as described above, contains a additional magnetic door 196. The magnetic doors 196 of the ash caseway 36 are pushed open as the wipers 56 from the rotating shaft come in close proximity with the door. Each door 196 includes a protrusion. As the wiper 56 rotates, the wiper 56 engages the protrusion and opens the door 196 and allows the water and debris to fall down the ash caseway 36 and into the ash tray 92. The magnetic door 196 is biased such that when the force of the water and debris recedes, the door 196 returns to its closed position. Sensors show door 196 position. An open door during burn status can be closed manually or by automatic means. A small electric solenoid is connected to each magnetic door 196 to push the door 196 shut if necessary. The steps of operation of the wash down system will be described in more detail below.
As is seen in
There are six main sequences: a start up sequence, an ignition sequence, a high burn sequence, a selection sequence which selects between low burn, intermediate burn, burnout, and washdown, a low burn sequence, and an intermediate burn sequence. Each of the sequences combines activities including, but not limited to rotating the fuel stirrer, activating the air blower 84, activating the igniter 159, administering doses of fuel, ash dispensing, washdown, and selection of burn status. The computer 16 and program utilize the sensor data to determine which step of the program is to be completed. The unit also includes a smart logic thermal controller.
As illustrated in
As illustrated in
As illustrated in
The burnout sequence can be initiated either manually or by the smart logic thermal controller. The burnout cycle is also shown in
If the smart logic controller determines that it is not an appropriate time to run the washdown cycle, the computer 16 tests whether there is a call for heat. If there is a call for heat the computer 16 runs the first sequence, the safety protocol. If there is no call for heat the unit is put to standby. The wash down cycle is also shown in
The low burn protocol is shown in
If at any time during a call for heat, whether high, intermediate, or low burn sequence, if the burn pot 6 tem falls to 300 degrees F. or less, the igniter 159 will activate and the fan speed 84 will increase to 100 percent. Both will activate for approximately 10 minutes. At this point one dose of fuel will also be administered. If the burn pot 6 temp rises to 410 degrees F. and rising within the 10 minutes the igniter 159 will be deenergized and the fan 84 speed will resume its speed based on the burn status which was its related burn status. The burn status will then continue as previously described. If combustion does not occur, an appropriate alarm will be indicated.
It should be noted that the entire furnace 2 can be taken apart for maintenance purposes. The top of the furnace 2 has a removable cover 200. All of the heat exchangers can be disconnected and removed from the system. The heli-coil tripod legs 46 are hinged to allow the legs 46 to be pulled out of the furnace 2.
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
Number | Name | Date | Kind |
---|---|---|---|
316673 | Stuart | Apr 1885 | A |
770786 | Strouse | Sep 1904 | A |
1786150 | Cutler | Dec 1930 | A |
1952227 | Adams | Mar 1934 | A |
2276659 | Kreisinger | Mar 1942 | A |
2364698 | Davin | Dec 1944 | A |
2978999 | Smith | Apr 1961 | A |
3508506 | Bishop | Apr 1970 | A |
3618299 | Vincent | Nov 1971 | A |
3620509 | Roman | Nov 1971 | A |
3693326 | Deane | Sep 1972 | A |
3760567 | Stalker | Sep 1973 | A |
4017254 | Jones | Apr 1977 | A |
4168958 | Hartman | Sep 1979 | A |
4184455 | Talmud et al. | Jan 1980 | A |
4240377 | Johnson | Dec 1980 | A |
4278034 | Reale | Jul 1981 | A |
4286527 | Robinson | Sep 1981 | A |
4334485 | Guida | Jun 1982 | A |
4341232 | Maton | Jul 1982 | A |
4419965 | Garcia-Mallol | Dec 1983 | A |
4426937 | Sietmann et al. | Jan 1984 | A |
4454827 | Smith et al. | Jun 1984 | A |
4545309 | Comtois | Oct 1985 | A |
4548194 | Schafer et al. | Oct 1985 | A |
4549490 | Wetzel et al. | Oct 1985 | A |
4565184 | Collins et al. | Jan 1986 | A |
4583495 | Hill et al. | Apr 1986 | A |
4593629 | Pederson et al. | Jun 1986 | A |
4619209 | Traeger et al. | Oct 1986 | A |
4646637 | Cloots | Mar 1987 | A |
4646662 | McGee et al. | Mar 1987 | A |
4655146 | Lemelson | Apr 1987 | A |
4738205 | Beirle et al. | Apr 1988 | A |
4782765 | Miller et al. | Nov 1988 | A |
4782767 | Stoner | Nov 1988 | A |
4785744 | Fontaine | Nov 1988 | A |
4896508 | Reinke, Jr. | Jan 1990 | A |
4922889 | Nuesmeyer | May 1990 | A |
4947769 | Whitfield | Aug 1990 | A |
4989521 | Traeger et al. | Feb 1991 | A |
5000100 | Mendive et al. | Mar 1991 | A |
5001993 | Gramlow | Mar 1991 | A |
5105797 | Gulutzen et al. | Apr 1992 | A |
5133266 | Cullen | Jul 1992 | A |
5151000 | Geraghty et al. | Sep 1992 | A |
5243963 | Riener | Sep 1993 | A |
5259123 | Garcia-Mallol | Nov 1993 | A |
5285738 | Cullen | Feb 1994 | A |
5308385 | Winn | May 1994 | A |
5331943 | Ko | Jul 1994 | A |
5343819 | Charest | Sep 1994 | A |
5375540 | Verrecchia et al. | Dec 1994 | A |
5429110 | Burke et al. | Jul 1995 | A |
5617841 | Whitfield et al. | Apr 1997 | A |
5678494 | Ulrich | Oct 1997 | A |
5873356 | Vossler et al. | Feb 1999 | A |
5893358 | Whitfield | Apr 1999 | A |
6024032 | Sharpe | Feb 2000 | A |
6223737 | Buckner | May 2001 | B1 |
6336449 | Drisdelle et al. | Jan 2002 | B1 |
7318431 | Holtan et al. | Jan 2008 | B1 |
20040200394 | Krumrei | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070137538 A1 | Jun 2007 | US |