This application is a submission under 35 U.S.C. ยง 371 for U.S. National Stage Patent Application of, and claims priority to, International Application Number PCT/CN2020/000146 entitled GRAPHENE HEATING THERMAL PRESERVATION SLEEVE FOR WELLHEAD OF OIL-GAS WELL filed Jul. 6, 2020, which is related to and claims priority to China Application No. 201910622266.2, filed Jul. 10, 2019, the entirety of all of which are incorporated herein by reference.
The present disclosure relates to a heating thermal preservation device for a wellhead of an oil-gas well, in particular to a graphene heating thermal preservation sleeve for a wellhead of an oil-gas well, which saves energy consumption, is convenient to mount and dismount and can effectively prevent an oil-gas well wellhead apparatus from being frozen.
At present, in well-known methods for preventing an oil-gas well wellhead apparatus from being frozen, an electric heating belt is wound on the oil-gas well wellhead apparatus for heating, and because the electric heating belt adopts a resistance heating principle for heating, the heating efficiency is low, high energy consumption and waste can be caused, and high production cost is generated; the electric heating belt is difficult to uniformly wind around each part of the wellhead equipment, so that the heating effect is very unbalanced; and the electric heating belt is frequently and repeatedly disassembled due to production, and the electric heating belt is easy to damage and lose after being disassembled, so that great waste is caused.
Related data at home and abroad are found out, most of all relevant heating equipment and technologies for preventing the oil-gas well wellhead apparatus in an oil field use the resistance heating principle for heating, such as electric heating belt heating equipment which is used in a large scale, and energy waste caused by the heating equipment is surprising; and in addition, a small part of methods for providing heat energy for heating by utilizing fossil fuel combustion are rarely adopted due to complex schemes and low heating efficiency.
In order to overcome the defect that heating equipment adopting a resistance heating principle solves the problem that energy consumption is seriously wasted due to low heating efficiency when an oil-gas well wellhead apparatus in an oil field is frozen, the present disclosure provides a graphene heating thermal preservation sleeve for a wellhead of an oil-gas well in an oil field taking graphene as a heating source. The problem that the oil-gas well wellhead apparatus in an oil field is frozen is solved by utilizing the principle that graphene generates far infrared radiation under the action of an electric field.
Through the technical scheme, graphene heating thermal preservation sleeve for a wellhead of an oil-gas well provided by the present disclosure comprises a high-temperature-resistant thermal preservation layer approaching the outer wall of the oil-gas well wellhead apparatus in an oil field, a graphene layer, electrode layers, a high-temperature-resistant ceramic layer, a waterproof anti-static thermal preservation layer and a housing which are attached together in sequence. The graphene heating thermal preservation sleeve for a wellhead of an oil-gas well in an oil field is composed of two parts, after the two parts of the heating thermal preservation sleeve for a wellhead of an oil-gas well in an oil field are buckled together, wellhead equipment needing to be heated of an oil-gas well can be wrapped in the heating thermal preservation sleeve for a wellhead of an oil-gas well. When the electrode layers at the two ends of the graphene layer are electrified, under the action of the electric field, heat energy generated by violent friction and impact between carbon atoms of graphene is uniformly radiated through far infrared rays with the wave length of 5-14 micrometers in a planar manner, heat can be provided in a balanced manner, the temperature can be controlled by a temperature controller, the effective total conversion rate of electric heat energy reaches 99% or above, the heating thermal preservation requirement of the wellhead of the oil-gas well in an oil field are effectively met, and the effect of saving energy consumption is achieved.
The graphene heating thermal preservation sleeve has the advantages that a heating mode of taking graphene as a heating source is adopted, the heating thermal preservation requirement of the wellhead of the oil-gas well in an oil field is effectively met, energy consumption is reduced, mounting and dismounting are convenient, and the maintenance cost is low.
Reference signs: 1, high-temperature-resistant thermal preservation layer; 2, graphene layer; 3, electrode layer; 4, high-temperature-resistant ceramic layer; 5, waterproof anti-static thermal preservation layer; 6, housing; 7, sealing cover; 8, hasp; 9, way cock and gasket; 10, sealing ring; 11, sliding block; 12, sliding groove; 13, sliding block sealing groove; 14, sliding block hasp; 15, oil-gas well wellhead apparatus; 16, electric wire; 17, explosion-proof temperature controller; 18, temperature sensing probe; 19, power supply; and 20, valve handle.
The present invention is further described in conjunction with the following attached figures and embodiment of the present disclosure.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
When the electrode layers (3) at the two ends of the graphene layer (2) are connected with a power supply (19), under the action of an electric field, heat energy continuously generated by violent friction and impact between carbon atoms of the graphene layer (2) is uniformly radiated in a planar manner through far infrared rays with the wavelength of 5-14 microns, and the heat energy is directly transmitted to the outer surface of the oil-gas well wellhead apparatus (15), so that the temperature of the oil-gas well wellhead apparatus (15) is continuously increased from outside to inside, and heat lost due to outward dissipation can be reduced due to the heat insulation effect of the waterproof anti-static thermal preservation layer (5) and the housing (6) wrapping the outer side of the high-temperature-resistant ceramic layer (4). The temperature sensing probe (18) continuously transmits temperature data of the outer surface of the oil-gas well wellhead apparatus (15) to an explosion-proof temperature controller (17), and when the temperature of the outer surface of the oil-gas well wellhead apparatus (15) reaches the temperature preset for the explosion-proof temperature controller (17), the explosion-proof temperature controller (17) automatically disconnects a circuit connected with the electrode layers (3). At the moment, the graphene layer (2) stops radiating far infrared rays, the temperature of the outer surface of the oil-gas well wellhead apparatus (15) begins to drop, and when the explosion-proof temperature controller (17) detects that the temperature of the outer surface of the oil-gas well wellhead apparatus (15) is lower than the temperature preset for the explosion-proof temperature controller (17) through the temperature sensing probe (18), the explosion-proof temperature controller (17) automatically connects the circuit connected with the electrode layers (3); and the graphene layer (2) starts to radiate far infrared rays to heat the oil-gas well wellhead apparatus (15) under the action of the electric field. The processes are repeated and work uninterruptedly, so that the heating thermal preservation requirement of the oil-gas well wellhead apparatus is effectively met, and the effect of saving energy consumption is achieved.
Number | Date | Country | Kind |
---|---|---|---|
201910622266.2 | Jul 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/000146 | 7/6/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/004044 | 1/14/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20140041851 | Wagner | Feb 2014 | A1 |
20180338352 | Torita | Nov 2018 | A1 |
20230184060 | Malki | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
101086310 | Dec 2007 | CN |
103202096 | Jul 2013 | CN |
203504776 | Mar 2014 | CN |
105889707 | Aug 2016 | CN |
206657682 | Nov 2017 | CN |
207527145 | Jun 2018 | CN |
208479963 | Feb 2019 | CN |
109714837 | May 2019 | CN |
109882683 | Jun 2019 | CN |
110242251 | Sep 2019 | CN |
209909407 | Jan 2020 | CN |
211115919 | Jul 2020 | CN |
Entry |
---|
International Search Report and Written Opinion dated Oct. 12, 2020 for corresponding International Application No. PCT/CN2020/000146; consisting of 13-pages. |
Number | Date | Country | |
---|---|---|---|
20220243559 A1 | Aug 2022 | US |