The present invention relates to a macroscale sheet laminate comprising individual graphene oxide sheets layered one on another in a manner to form a paper-like product.
Free standing paper materials or foil-like materials are an integral part of our technological society. They are used as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and for molecular storage, among others. Inorganic “paper-like” materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high temperature binders, dielectric barriers, and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite, have long been used in packing and gasketing applications due to their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications, among others.
Graphite oxide (GO) is a layered material consisting of hydrophilic oxygenated graphene sheets (graphene oxide sheets) bearing oxygen functional groups on their basal planes and edges. GO-based thin films had been fabricated via solvent-casting methods as described by Titelman et al., “Characteristics and microstructures of aqueous colloidal dispersions of graphite oxide”, Carbon 43, 641-649 (2005).
An embodiment of the present invention provides a macroscale laminate sheet comprising individual graphene oxide sheets layered one on another in a manner to form a paper-like laminated product.
An illustrative method embodiment of the present invention involves making a suspension of individual graphene oxide sheets and assembling the graphene oxide sheets as a sheet laminate on a fluid-permeable support by flow-directed assembly. In a particular embodiment, the suspension is subjected to continuous vacuum-assisted filtration through a membrane filter so that the graphene oxide sheets are assembled as a laminate on the membrane filter by directional flow through the membrane filter. The laminate is dried and released from the membrane filter as a self-supporting laminate.
A macroscale sheet laminate pursuant to the present invention is advantageous in significantly outperforming many of the paper-like materials described above in stiffness and strength and in exhibiting a combination of excellent macroscopic flexibility and stiffness.
Other features and advantages of the present invention will become more readily apparent from the following detailed description taken with the following drawings.
a, 1b, and 1c are respective low, middle and high resolution SEM side-view images of an approximately 10 μm thick sample of a macroscale sheet laminate according to an embodiment of the invention.
a is a stress-strain curve for a 5.2 μm thick laminate sample (5-1) and reloaded fragment-sample (5-1-R), the samples being described in Table SI-2-1. The deformation can be divided into three regimes: (I) straightening where loading is started, (II) “elastic” having a modulus E (31 GPa at the first load and 35 GPa at the secomd load) in a linear region, and (III) plastic nonlinear deformation up to failure.
b is stress-strain curve for a 5.5 μm thick laminate sample (6-3) and reloaded fragment-sample (6-3-R), the samples being described in Table SI-2-1.
c is a stress-strain curve for a cyclically loaded 11 μm thick laminate sample (12-3). The solid lines indicate the loading and the dashed lines the release part of the cycle. The B and R lines are fittings of the linear stress-strain dependence with a modulus of elasticity of 27 and 32 GPa, respectively.
d shows the derivatives of the stress-strain curves for four different laminate samples revealing the “wash-board” pattern in the tensile loading behavior.
e is a stress-strain curve for a 5.5 μm thick laminate sample (6-4) and a reloaded fragment (6-4-R) showing slip-stick behavior, the samples being described in Table SI-2-1.
f through 2h are stress-strain cyclic measurements for an 11 μm thick laminate sample (12-4) at 40° C., 90° C., and 120° C., respectively. The R curve in the
i shows the linear thermal contraction of the same 11 μm thick laminate sample recorded between tensile tests (coefficient for linear negative thermal expansion approximately 50×10−6 l/K.
An embodiment of the present invention envisions a macroscale sheet laminate comprising individual graphene oxide sheets layered one on another in a manner to form a paper-like laminated product, which is self-supporting. The paper-like product can have a thickness in the range of 1 to 50 μm for purposes of illustration and not limitation. By self-supporting is meant that the dried paper-like product can support itself as a membrane in use. A macroscale paper-like sheet laminate pursuant to the present invention is advantageous in significantly outperforming many of the paper-like materials described above (e.g. vermiculite or mica platelet paper-like products, graphite foil, bucky paper) in stiffness and strength and in exhibiting a combination of excellent macroscopic flexibility and stiffness as a result of interlocking-tiling arrangement of the nanoscale graphene oxide sheets, although do not wish or intend to be bound by any theory in this regard.
The macroscale sheet laminate can be fabricated in an illustrative method embodiment of the present invention starting with a suspension of individual graphene oxide sheets followed by assembling the graphene oxide sheets of the suspension as a laminate on a fluid-permeable support by flow-directed assembly.
A particular illustrative method of fabricating a sheet laminate involves making an aqueous suspension of individual graphene oxide sheets by exfoliating graphite oxide in water using an ultrasonic treatment to produce a stable suspension of the individual graphene oxide sheets with a mean lateral dimension of approximately 1 μm and sheet thickness of approximately 1 nm. The suspension is subjected to continuous vacuum-assisted filtration through a membrane filter so that the graphene oxide sheets are assembled as a laminate on the membrane filter by directional flow of the fluid (water) of the suspension through the membrane filter. The laminate is then dried (e.g. air dried) and mechanically released (e.g. peeled) from the membrane filter as a thin, self-supporting laminate or film comprising individual graphene oxide sheets layered one on another in a manner to form a self-supporting paper-like laminated product. Further details of this fabricating method are set forth in the EXAMPLE below.
The following EXAMPLE is offered to further illustrate the present invention but not limit the present invention.
Graphite oxide (GO) was prepared using the well-known Hummers method described by Hummers, W. S.; Offeman, R. E. in J. Am. Chem. Soc. 1958, 80, 1339-1339, the disclosure of which is incorporated herein by reference. This method typically involves preparing bulk graphite oxide using SP-1 bulk graphite (30 μm, Bay Carbon, Bay City, Mich.). In particular, the SP-1 graphite is subjected to an oxidative treatment with potassium permanganate in concentrated sulfuric acid. For example, two (2) grams graphite were placed into a round bottom flask. Concentrated sulfuric acid (46 mL) was added and the mixture cooled in an ice bath. Potassium permanganate was added to the ice cooled mixture in small portions over 30 minutes. Following this addition, the reaction mixture was stirred at 35 degrees C. for 2 hours. After the two hour period, water (92 mL) was added to the reaction mixture and stirring continued for 15 minutes. Finally, the reaction mixture was poured into 270 mL of water and excess of potassium permanganate was neutralized by adding sufficient amount of water solution (30%) of hydrogen peroixde. Graphite oxide was recovered by filtration and washed with an HCl solution (10:1 water: concentrated HCl) until sulfates are no longer detected by a barium chloride test. The graphite oxide then was dried under vacuum (30 mTorr) for 24 hours.
Preparation of laminate sheets was follows: Dried GO was exfoliated in de-ionized water (in 20 mL batches) with ultrasonic treatment (about 30 min using a Fisher Scientific FS60 ultrasonic bath cleaner, 150 W) to form a colloidal suspension (3 mg/mL) of graphene oxide sheets.
Graphene oxide paper was prepared from the suspension by continuous vacuum or suction filtration of the resulting colloid through an Anodisc® membrane filter (47 mm in diameter, 0.2-μm pore size, Whatman, Middlesex, UK) as illustrated in
Light microscopy (LM: Axioscop (Zeiss, Germany) and scanning electron microscopy (SEM: Nova NanoSEM (FEI Co, Hillsboro, OR)) were used to examine the paper samples. The paper material density was measured using the Archimedes method in water (33360 kit with the PB303-S DeltaRange Mettler Toledo balance, Mettler-Toledo, Switzerland).
X-ray diffraction experiments were performed at room temperature using the specular reflection mode (i.e., incident angle=exit angle). Measurements were carried out in-house with a Geigerflex (Rigaku Co., Japan) diffractometer (Cu Ka radiation, X-ray wavelength λ=1.5406 Å, operating at 40 keV, cathode current of 20 mA) under normal laboratory conditions; and at beamline X23B of the National Synchrotron Light Source (Brookhaven National Lab, NY) with a four-circle diffractometer operating at 10 keV (λ=1.2398 Å, the beam size 0.4×1.0 mm2. During the ‘beamline’ measurements, the samples were kept under a slight overpressure of helium to reduce the background scattering from the ambient gas and radiation damage. The inherent and instrumental broadenings of the diffraction peak were higher for the in-house measurements. The thermal stability of graphene oxide paper was characterized by then mogravimetric analysis (TGA-SDT 2960, TA Instruments, New Castle, Del.). All measurements were conducted under dynamic nitrogen flow (industrial grade, flow rate 100 mL/min) over a temperature range of 35-800° C. with a slow ramp rate of 1° C./min to prevent sample loss.
Static mechanical uniaxial in-plane tensile tests were conducted with a dynamic mechanical analyzer (2980 DMA, TA Instruments, New Castle, Del.). The paper samples were gripped using film tension clamps with a clamp compliance of approximately 0.2 μm/N. All tensile tests were conducted in controlled force mode with a preload of 0.01 N and a force ramp rate of 0.02 N/min. The sample width was measured using standard calipers (Mitutoyo Co., Japan). The length between the clamps was measured by the DMA instrument, and the sample thickness was obtained from SEM imaging of the fracture edge.
Vacuum filtration of colloidal dispersions of graphene oxide sheets through the Anodisc® membrane filter yielded, after drying, free-standing graphene oxide paper with thicknesses ranging from 1 to 30 μm. This sheet laminate is uniform and dark brown under transmitted white light and almost black in reflection when thicker than 5 μm. The fracture edges of a graphene oxide paper sample when imaged via scanning electron microscopy (SEM) revealed well-packed layers in the center of the stacks, sandwiched between less densely packed ‘wavy’ skin layers about 100-200 nm thick (
In a typical stress-strain curve three regimes of deformation can be observed for samples of graphene oxide paper: straightening, almost linear (“elastic”), and plastic (
The deformation of the graphene oxide paper samples can be divided into three regimes: (I) straightening where loading is started, (II) “elastic” having a Young's modulus E, and (III) nonlinear plastic regime up to failure (see
Cyclic loading experiments revealed that permanent deformations were introduced in the samples even when they were loaded within the limits of the “elastic” regime (
Interestingly, the stress-strain curves for a number of graphene oxide paper samples displayed “wash-board” patterns and sometimes even exhibited sharp upturns, manifested as a sequence of the peaks in the derivative of the stress-strain curve (
Given that water molecules are present between graphene oxide sheets (vide supra) one would expect the mechanical properties of graphene oxide paper samples to strongly depend on its water content. Indeed, as the moisture content of graphene oxide paper decreases with increasing temperature, the modulus increased (from 17 to 25 GPa for the same sample shown in
The following table displays the complete list of the graphene oxide samples which were successfully tested via static mechanical testing in a uniaxial in-plane tensile load-to-fracture configuration. The first digit in the sample number indicates the graphene oxide membrane or laminate from which the strip was cut. Thus, samples 6-1 thru 6-5 were five strips derived from the same piece of graphene oxide paper and have similar thicknesses. R in the sample number indicates that the broken fragment of the initial sample was reloaded for the second tensile test. In particular for sample number 10-1, it was possible to reload the fragments twice.
In the Table below, t, w, L are the thickness, width, and length, of the samples, respectively. E is Young's modulus, determined by fitting the stress-strain plot in the “elastic” regime with a straight line. σ is engineering stress at fracture, referred to above as the stress and computed using the sample width and thickness of the fracture surface. ∈ is engineering strain at fracture, referred to above as the strain and computed from the instantaneous length of the sample between the clamps. W is the work of extension to fracture, the amount of energy absorbed to fracture, calculated by taking the integral beneath the stress-strain curve. The values shown above in the table are for those samples that went through the “elastic” regime (usually with the strain value above 0.3%).
Superscript 1 is a sample that showed slip-stick behavior. Superscript 2 represents tensile tests that were carried out in the temperature range between 20 and 150° C. Superscript 3 represents tensile tests were carried out at temperatures of 40, 90, and 120° C.
In addition to tensile tests, the bending performance of graphene oxide paper sample was evaluated. A 25-μm thick graphene oxide paper sample could be bent to a radius of curvature of about 2 mm without delamination of the surface layers, as observed with a light microscope. A 1-μm thick graphene oxide paper sample buckled during bending when the thickness (t) to radius of curvature (R) ratio was increased from 1/75 to 1/20. According to the solution for pure uniform bending of a bar comprised of an isotropically homogeneous material, the positive (negative) normal strain, ∈x, at the outer (inner) bar surface is ∈x=0.5 t/R. Therefore, buckling of graphene oxide paper sample took place somewhere between strains of 0.67% (t/R= 1/75) and 2.5% (t/R= 1/20). These data point to the graphene oxide paper sample being a highly pliable macroscopic material composed of stiff (in-plane) but compliant (out-of-plane) graphene oxide layers that are tightly interlocked, allowing for high resiliency against bending.
The directed-flow assembly method described above yielded a graphene oxide paper-like sheet laminate possessing a unique layered structure where individual compliant graphene oxide sheets are interlocked/tiled together in a near-parallel fashion. Although not wishing or intending to be bound by any theory, in the initial stages of the filtration the graphene oxide sheets appear to be forced rapidly onto the surface of the Anodisc membrane by the water flow and randomly assembled (folded, crumpled, and wrinkled) on the surface of the membrane filter. After a short time the filter becomes clogged due to the deposition of the graphene oxide sheets, and the water flow slows down considerably. During the subsequent period of slow filtering (evaporation of water is also occurring), the concentration of graphene oxide sheets in the suspension appears to rise, resulting in a significant increase in the sheet-to-sheet interactions. During this stage, the sheets are more likely to be aligned on top of each other in the ever-growing deposit and are probably also “smoothed out” by the water flow. The whole filtration process takes from about 12 hours to 2 days, depending on the amount of colloidal dispersion of graphite oxide used for achieving the desired film thickness. Toward the end, one can visually observe the formation of a mat with a gradually decreasing thickness. The unique properties of the slowly flowing water in the confined galleries, together with the electrostatic and van der Waals attractive forces a between the very large aspect ratio compliant sheets of graphene oxide, appear to be largely responsible for their sequential deposition into the observed macroscopic layered structure. The top layer of the resulting graphene oxide paper is not as dense and ordered as its core. Upon drying, the van der Waals attractions between the sheets squeezed and pushed out the remaining water molecules, leaving only those that are immobilized by the formation of hydrogen bonds with donor and acceptor sites on the neighboring graphene oxide sheets.
After drying, if water is poured on top of the graphene oxide paper, the paper swells sufficiently to allow the water to seep through, and then returns back to the “dry” state. A piece of graphene oxide paper left in water for several hours does not disperse and maintains its shape (in contrast, graphite oxide powder samples disperse immediately), but disintegrates easily if it is handled while still wet. However, moderate ultrasound agitation of a wetted graphene oxide paper readily re-disperses the graphene oxide sheets into colloidal dispersions. This behavior strongly suggests that no covalent bonding was present between the individual graphene oxide sheets in the graphene oxide paper. If a wetted graphene oxide paper is left to dry, it will regain its mechanical integrity and can again be handled without failure. If a drop of water is placed on the graphene oxide surface, the water uptake is very slow and only localized seepage of water into graphene oxide paper occurs.
The large interaction surfaces between the layered graphene oxide sheets, their corrugation at the atomic scale, and their wrinkled morphology at the sub-micrometer scale, allow for a highly effective load distribution across the entire macroscopic sample, and thus make this laminate more resilient than traditional carbon- and clay-based papers. Utilization of an inexpensive starting material such as graphite oxide can facilitate the fabrication of large-area paper-like sheets for use in the preparation of membranes with controlled permeability, anisotropic ionic conductors, supercapacitors, and materials for molecular storage, among many others. Graphene oxide paper laminate also can also be infused or serve as a carrier substance for producing hybrid materials containing polymers, ceramics, and metals. Additionally, the numerous chemical functionalities on the surface of the layered graphene oxide sheets can readily lend themselves to further chemical functionalization.
Although the invention has been described in detail above with respect to certain embodiments, the invention is not limited to such embodiments since changes, modifications and omissions can be made thereot within the scope of the invention as defined in the appended claims.
This application claims priority and benefits of U.S. provisional application Ser. No. 60/930,101 filed May 14, 2007, the disclosure of which is incorporated herein by reference.
The invention was made with government support under Grant No. NCC-1 02037 awarded by NASA. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60930101 | May 2007 | US |