Graphene polymer composites for hair styling tools and appliances

Information

  • Patent Grant
  • 11653750
  • Patent Number
    11,653,750
  • Date Filed
    Tuesday, August 21, 2018
    6 years ago
  • Date Issued
    Tuesday, May 23, 2023
    a year ago
  • Inventors
  • Original Assignees
    • (Novi, MI, US)
  • Examiners
    • Guidotti; Laura C
    Agents
    • Taft Stettinius & Hollister LLP
Abstract
A hairstyling assembly comprising the main components of a handle and a barrel and bristles having a graphene material composite for retaining energy and is electrically conducting static electricity from a head of hair through the bristles and barrel and handle to ground.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

A thermally conductive hairstyling assembly being thermally conductive for conducting static electricity from the hair to ground.


2. Description of the Prior Art

Personal grooming of hair is frequently accomplished using a hair dryer and brush or comb. This can result in damaged hair due to the brush or comb comprising synthetic materials, such as a nylon or plastic. These types of dielectric materials do not adequately conduct and/or retain heat properly and lead to electrostatic charge build up causing hair to be more prone to frizz, fly-away, split ends, dullness, dry and itchy scalp. Also, the use of polymer composites in the beauty industry hair tools consists of traditional plastic and nylon polymers that have performed adequately but because of the high-heat and high-style trends, have shorter life expectancies. Combs and brush bristles bend, melt, and break under the high heat/high stress conditions.


Hair styling devices such as brushes and combs in general are known in the art. Wood combs have been well known for decades for their antistatic capabilities. Metal brushes and combs are known to have excellent anti-static qualities, as well as, for being more conductive with the heat of a blow dryer. Compounds and coatings have been developed to give brush bristles and brush barrels non-static properties, but brushes treated with them do nothing to dissipate the static electricity built up in the hair. Even though static charge has been better managed in the bristles and barrel of the brush, this does not help with the electrical charge build up that takes place over the rest of the body of the styling device. Static charge needs a place to be truly remediated. Creating connected pathways of positive ionic flow from the hair styling tool to the user is the only means of effective static charge remediation.


A hair styling tool having antistatic qualities is U.S. Pat. No. 4,632,135 issued Dec. 30, 1986 to Lenting et al. This patent describes a comb connected to a device having a high-voltage source arranged in a holder and a plurality of electrodes electrically connected to the source for generating ions and projecting into the air. These ions neutralize the positive charge of the hair caused by the friction between the hair and the movement of the comb over the hair.


Likewise, U.S. Patent Application Publication No. 2004/0016066 issued Jan. 29, 2004 introduces a static removing hairbrush that dissipates electrostatic charges from the hair and brush by providing a circuit away from the hair being brushed and away from the user. The brush has a plurality of conductive bristles connected to a ground wire that is attached to an electrical ground.


U.S. Pat. No. 4,797,966 issued Jan. 17, 1989 to Fong describes an antistatic hairbrush that eliminates the electrostatic charge in a user's hair by providing a discharge circuit from the brush handle to the user's hand.


U.S. Pat. No. 2,665,443 issued Jun. 4, 1949 to Simon et al., teaches bristles of a hairbrush made from dielectric materials combined with etymols to create antistatic properties within bristles.


Similarly, U.S. Pat. No. 4,610,925 issued Sep. 9, 1986 teaches bristles of a hairbrush having a nylon or polyester core and a compatible polymeric sheath containing carbon to create antistatic properties within the bristles.


WIPO Patent Application Publication No. WO2018001196 issued on Jun. 30, 2016 to Xu Jiacai introduces an antistatic hair brush where the main body of the brush is coated with an electrically conductive film and a resin film that lowers the static property of the brush handle.


U.S. Pat. No. 6,024,101 issued on Feb. 15, 200 to Garner discusses a hair styling brush having a brush head that is conductive and coated with a temperature sensitive color-changed material to indicate a minimum threshold temperature for hair styling.


Similarly, WIPO Patent Application Publication No. WO 2014001879 issued on Jun. 26, 2013 teaches a brush having a heat conductive coating allowing for continuous application of heat at lower temperatures.


SUMMARY OF THE INVENTION

The subject invention provides such an assembly for a hairstyling assembly with a material makeup including:


a coating disposed on the handle and containing graphene and an antistatic agent


a barrel containing graphene and an antistatic agent


a plurality of bristles containing graphene and an antistatic agent


and whereby graphene and the antistatic agent retains thermal energy and is electrically conductive for transferring static electricity from a head of hair through the bristles, barrel, and handle to ground the static electricity out of the handle.


Advantages of the Invention

The invention in its broadest aspect is a hairstyling assembly that thermally conducts heat from a source such as a blow dryer for hair styling and statically dissipates static electricity buildup on a person's hair and grounds the static electricity through the user by a combination of parts having a material makeup of a graphene polymer composite.





BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a perspective view of the hairstyling assembly.



FIG. 2 is a section view of the hairstyling assembly.



FIG. 3 is a section view of the barrel of the hairstyling assembly.



FIG. 4 is a side view of the bristle tree assembly.





DESCRIPTION OF THE ENABLING EMBODIMENT

Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a hairstyling assembly 20 of the type for styling hair is generally shown in FIG. 1. This styling device is known as a hairbrush. Other types of hairstyling assembly 20 may include, but are not limited to all types of brushes, hair dryers, diffuser attachments, flat irons, hair curlers, hair clips, hair pins, barrettes, headbands, haircutting combs, detangling combs and brushes, hot rollers, and velcro rollers.


The device, generally indicated in FIGS. 1 and 2, includes a handle 22 for holding while styling hair, having a cylindrical shape and extending along a center axis A. The handle 22 has a distal end 24 that extends through a grip section 26 and into a cup-shaped end 28 being radially larger than the grip section 26. The handle 22 presenting a hanger hole 30 extending transversely through the distal end 24 for storage or usage functions, e.g., storage by a hook or looping a cord through the hole 30 for fastening around a person's wrist. The handle 22 has a bore 32 extending along the center axis A from the cup-shaped end 28.


A barrel 34 of the styling device is retained in the cup-shaped end 28 of the handle 22 and axially aligned with the center axis A and extending to an open end 36. FIG. 3 shows the barrel 34 having a wall 38 that is defined by an interior 40 and an exterior 42 and surrounding the center axis A. The wall 38 of the barrel 34 having a plurality of apertures 44 forming a honeycomb pattern mutually in an offset relationship to one another. Alternatively, the apertures 44 can be arranged in other such patterns, for instance, where the ovals are lined in a block grid pattern or diagonal grid pattern, or instead elongated parallel apertures 44, that extend the length of the barrel 34. The preferred shape of the apertures 44 is an oval for optimal airflow, venting, and heat distribution, but can also be other shapes, such as for example, triangles, squares, hexagons, and other geometric type shapes.


A bristle tree assembly 46, shown in FIG. 4, including a rod 48 with a mounting section 50 and a bristle section 52. The mounting section 50 of the rod 48 retained in the bore 32 of the handle 22. A plurality of bristles 54 are anchored to the bristle section 52 of the rod 48 and extend radially from the bristle section 52 of the rod 48. The bristles 56 extend outwardly past the interior 40 of the barrel 34 and through the apertures 44 to the exterior 42 of the barrel 34. The diameter of the apertures 44 are dimensioned such that the total cross-section of the plurality of bristles 54 extending through a single aperture 44 only fills a fraction of the aperture 44 cross-section. A top cap 58 being cup-shaped and covering the open end 36 of the barrel 34 to close off the open end 36 of the barrel 34. The top cap 58 can also be provided with a bore 32 for receiving the bristle section 52 of the rod 48 so that the rod 48 is coaxially supported with respect to the handle 22.


The handle 22 a molded polymer, and is characterized by a coating 60 disposed on the handle 22. The coating 60 comprises,

    • Propane and being a % volume of 25˜30
    • VM&P Naphtha and being a % volume of 25˜30
    • Heptane and being a % volume of 13˜15
    • N-Butane and being a % volume of 5˜10
    • Xylene and being a % volume of 5˜10
    • Methyl Ethyl Ketone and being a % volume of 1˜5
    • Methyl n-Amyl Ketone and being a % volume of 1˜4
    • Ethylbenzene and being a % volume of 1˜2
    • N006-010-P graphene powder and being a % volume of 7
    • Alkyl Sulphonate and being a % volume of 2˜3
    • Benzenepropanamide,N,N′-1,6-hexanediylbis [3,5-bis(1,1-dimethylethyl)-4-hydroxy and being a % volume of 0.05˜0.2.


The graphene polymer based thermal coating 60 can be applied to the substrate surface of any polymer. The coating 60 transforms the surface of the polymer into having a thermal conductivity of about 6-8 Watts per meter Kelvin (W/mK), a surface resistivity of 1×104˜106, and increased mechanical and tribological strength. The paint base can also have different finishes such as a rubber finish, leather finish, suede finish, metallic finish, faux finish, plaster finish, texture sand finish, sandstone finish, flat finish, and satin finish. Other suitable paint bases including polyurethane paint, elastomer paints, and other rubberized and plastic paint coatings may be used.


The barrel 34 comprises:

    • Polyoxymethylene POM and being a % volume of 77˜87
    • N006-010-P graphene powder and being a % volume of 9˜19
    • N002-PDR nano graphene platelets and being a % volume of 0.5˜1
    • Alkyl Sulphonate and being a % volume of 2˜3
    • Benzenepropanamide,N,N′-1,6-hexanediylbis [3,5-bis(1,1-dimethylethyl)-4-hydroxy and being a % volume of 0.05˜0.5.


The POM graphite polymer composite transforms the polymer into having a thermal conductivity of about 4-8 Watts per meter Kelvin (W/mK), and a surface resistivity of 1×104, as well as, increased qualities of higher tensile and mechanical strength and improved antibacterial properties. POM is the preferred polymer base for the graphene polymer composite, but can be substituted by nylon, polypropylene, ABS, and other like polymer based materials. Alkyl sulphonate is the preferred antistatic agent. Ionic antistats of cationic compounds, quaternary ammonium, phosphium, or sulfonium salts, and nonionic compounds, including sodium salts of sulfonates, phosphates, and carboxylic acids, can replace the alkyl sulphonate. Nonionic antistats including glycerol esters of fatty acids, and ethoxylated teriary amines, can also replace alkyl sulphonate. N002-PDR nano graphene platelets is preferred, but can be replaced with graphene oxide. Other additives can also be added into the current invention including, antioxidants, thermal stabilizers, antimicrobial agents, flame retardants, colorants, lubricants, clip agents, and radiation stabilizers.


The rod 48 comprises of any type of conductive material, such as, aluminum, iron, steel which is preferably rust-proof, or a composite plastic with conductive qualities.


The bristles 56 comprise:

    • a material chosen from the material group of Nylon wherein the material is Nylon 46 or Nylon 66 and being a % volume of 86˜96
    • N006-010-P graphene powder and being a % volume of 1.5˜10
    • N002-PDR nano graphene platelets and being a % volume of 0.5˜1.0
    • Alkyl Sulphonate and being a % volume of 2˜3
    • Benzenepropanamide,N,N-1,6-hexanediylbis [3,5-bis(1,1-dimethylethyl)-4-hydroxy and being a % volume of 0.05˜0.5.


The graphene nylon polymer composite transforms the polymer into having increased thermal conductivity by transferring the heat energy form the initial point of contact down and throughout the entire bristle 56 of the styling device and therefore preventing structural failure in a localized area of the bristle 56. Static dissipation is reduced to a surface resistivity of 1×106˜109, as well as, increased qualities of higher tensile and mechanical strength and improved antibacterial properties.


The percentage of graphene nano platelets dispersion varies upon the level of static dissipation desired contrasted with the level of mechanical stiffness desired for the bristle 56. Graphene Oxide (GO) can also be introduced into the formula as a partial substitute for graphene nanoplatelets to increase the flexibility of the bristles 56.


Alkyl sulphonate is the preferred antistatic agent for the bristle 56 formula. Ionic antistats of cationic compounds including quaternary ammonium, phosphonium, or sulfonium salts, and nonionic compounds, including sodium salts of sulfonates, phosphates, and carboxylic acids, can replace the alkyl sulphonate. Nonionic antistats including glycerol esters of fatty acids, and ethoxylated teriary amines, can also replace alkyl sulphonate.


Tourmaline powder can be used as an additive by emitting anions to help eliminate moisture form the hair. Other additives can also be added into the current invention including, antioxidants, thermal stabilizers, antimicrobial agents, flame retardants, colorants, lubricants, slip agents, and radiation stabilizers. The top cap 58 is molded in one piece from plastic/polymer material and coated with the coating 60.


The graphene and antistatic agent is for retaining energy and for electrically conducting static electricity from a person's hair the bristles 56 and barrel 34 and the handle 22 to ground.


The general characteristics, particle size distribution and physical sizes of the N002-PDR Nano Graphene Platelets are as follows in Tables 1-3 (Data retrieved from Angstron Materials Technical Data Sheet, revision date Apr. 1, 2014).









TABLE 1







General Characteristics of the


N002-PDR Nano Graphene Platelets










PARAMETER
SPECIFICATIONS







Visual
Fluffy, Light Powder



Color
Match Standard, Black



Moisture
 ≤0.5%



Solids
≥97.90%



True Density
≤2.20 g/cm3



Specific Surface Area
400 m2/g-800 m2/g



Carbon by wt %
≥95.00%



Hydrogen by wt %
 ≤2.00%



Nitrogen by wt %
 ≤0.50%



Oxygen by wt %
 ≤2.50%



Ash by wt %
 ≤2.50%

















TABLE 2







Particle Size Distribution of the


N002-PDR Nano Graphene Platelets













PARAMETER
SPECIFICATIONS


















MT10
 3.30 um-3.90 um





MT50
 8.00 um-10.00 um





MT90
17.00 um-20.00 um

















TABLE 3







Physical Sizes of the N002-PDR Nano Graphene Platelets










PARAMETER
SPECIFICATIONS







Average Lateral Dimension
≤10.00 um



(x & y)




Average Through-Plane
~1.0-1.2 nm (as estimated



Dimension (z)
by BET and particle size




distribution data)










The general characteristics, particle size distribution and physical sizes of the N006-010-P Nano Graphene Platelets are as follows in Tables 4-6 (Data retrieved from Angstron Materials Technical Data Sheet, revision date Aug. 14, 2012).









TABLE 4







General Characteristics of the N006-010-P Nano Graphene


Platelets are Fine Greyish-Black Carbon in Powder Form










PARAMETER
SPECIFICATIONS







Visual
Homogeneous; No Aggregation



Color
Match Standard Greyish-Black



Moisture
 ≤1.20%



Solids
≤98.80%



True Density
≤2.20 g/cm3



Specific Surface Area
21 m2/g



Carbon by wt %
≤97.00%



Hydrogen by wt %
 ≤0.70%



Nitrogen by wt %
 ≤0.50%



Oxygen by wt %
 ≤1.50%



Ash by wt %
 ≤1.50%

















TABLE 5







General Characteristics of the N006-010-P


Nano Graphene Platelets are Fine Greyish-


Black Carbon in Powder Form













PARAMETER
SPECIFICATIONS









MT10
 4.00 um-8.00 um





MT50
10.00 um-14.00 um





MT90
23.00 um-27.00 um

















TABLE 6







General Characteristics of the N006-010-P Nano Graphene


Platelets are Fine Greyish-Black Carbon in Powder Form








PARAMETER
SPECIFICATIONS





Average Lateral Dimension
≤14.00 um


(x & y)



Average Through-Plane
~10.0-20.0 nm (as estimated by a


Dimension (z)
Dye Absorbing Method and



particle size distribution data)









Please note that the composites described in the present invention include, but are not limited to, compounded polymers such as PP, POM, LDPE, HDPE, LLDPE, ABS, PA6, PA46, PLA, Nylons, UHMWPE, and TPEs.


Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims.

Claims
  • 1. A hairstyling apparatus, comprising: a handle configured to be gripped by a hand of a user;a barrel mounted to said handle; anda plurality of bristles extending from said barrel, said bristles configured to engage hair of the user;wherein said handle, said barrel, and said bristles comprise graphene;wherein said graphene provides an electrically-conductive pathway between said plurality of bristles, said barrel, and said handle such that static electricity generated by engagement of said bristles with the hair is dissipated to the hand via said hairstyling apparatus;wherein said handle comprises a coating including said graphene; andwherein said coating has a thermal conductivity is in the range of six to eight Watts per meter-Kelvin.
  • 2. The hairstyling apparatus of claim 1, wherein said handle further comprises a polymer substrate covered by said coating.
  • 3. The hairstyling apparatus of claim 1, wherein said barrel is formed of a composite, said composite comprising a polymer and said graphene.
  • 4. The hairstyling apparatus of claim 3, wherein said polymer comprises polyoxymethylene.
  • 5. The hairstyling apparatus of claim 3, wherein said composite has a thermal conductivity of four to eight Watts per meter-Kelvin.
  • 6. The hairstyling apparatus of claim 1, wherein said bristles are formed of a composite, said composite comprising a nylon and said graphene.
  • 7. The hairstyling apparatus of claim 6, wherein said nylon comprises Nylon 46 and/or Nylon 66.
  • 8. A hairstyling apparatus, comprising: a handle comprising first graphene particles;a barrel mounted to said handle and comprising second graphene particles;a plurality of bristles extending from said barrel, said bristles comprising third graphene particles; andan electrically-conductive pathway extending between said handle and said bristles, said electrically-conductive pathway comprising said first graphene particles, said second graphene particles, and said third graphene particles;wherein said barrel is formed of a composite, said composite comprising a polymer and said second graphene particles; andwherein said composite has a thermal conductivity is in the range of four to eight Watts per meter-Kelvin.
  • 9. The hairstyling apparatus of claim 8, wherein said handle further comprises a substrate and a coating covering at least a portion of said substrate; and wherein said coating comprises said first graphene particles.
  • 10. The hairstyling apparatus of claim 9, wherein said substrate comprises a polymer.
  • 11. The hairstyling apparatus of claim 8, wherein said second graphene particles comprise graphene powder and graphene nanoplatelets.
  • 12. The hairstyling apparatus of claim 8, wherein said third graphene particles comprise graphene powder and graphene nanoplatelets.
  • 13. The hairstyling apparatus of claim 8, wherein said bristles further comprise a nylon material.
  • 14. The hairstyling apparatus of claim 8, wherein, with said handle held by a hand of a user and said bristles engaged with hair of the user, said electrically-conductive pathway dissipates static electricity from the hair to the hand.
  • 15. A hairstyling apparatus, comprising: a handle configured to be gripped by a hand of a user;a barrel mounted to said handle; anda plurality of bristles extending from said barrel, said bristles configured to engage hair of the user;wherein said handle, said barrel, and said bristles comprise graphene;wherein said graphene provides an electrically-conductive pathway between said plurality of bristles, said barrel, and said handle such that static electricity generated by engagement of said bristles with the hair is dissipated to the hand via said hairstyling apparatus;wherein said barrel is formed of a composite, said composite comprising a polymer and said graphene; andwherein said composite has a thermal conductivity is in the range of four to eight Watts per meter-Kelvin.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application Ser. No. 62/548,153 filed Aug. 21, 2017.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/047145 8/21/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/040391 2/28/2019 WO A
US Referenced Citations (21)
Number Name Date Kind
2665443 Simon Jan 1954 A
4500939 Gueret Feb 1985 A
4549559 Gueret et al. Oct 1985 A
4610925 Bond Sep 1986 A
4632135 Lenting et al. Dec 1986 A
4797966 Fong Jan 1989 A
5150491 Ikemoto Sep 1992 A
6024101 Garner Feb 2000 A
6382216 Clark May 2002 B1
6915543 McEntyre Jul 2005 B2
8196592 Choi Jun 2012 B2
8875717 Murzynski et al. Nov 2014 B2
10925367 Loose Feb 2021 B2
20040016066 Frazier et al. Jan 2004 A1
20090165234 Bernat Bernat Jul 2009 A1
20110017226 Choi Jan 2011 A1
20110240053 Murzynski Oct 2011 A1
20150064571 Wu et al. Mar 2015 A1
20150128366 Kim May 2015 A1
20170037257 Yang et al. Feb 2017 A1
20210161270 Loose Jun 2021 A1
Foreign Referenced Citations (5)
Number Date Country
2265829 Oct 1993 GB
3004649 Nov 1994 JP
2016-0028049 Mar 2016 KR
2014001879 Jan 2014 WO
2018001196 Jan 2018 WO
Non-Patent Literature Citations (3)
Entry
English translation of KR 2016-0028049 A, Park et al., Mar. 2016. (Year: 2016).
English translation of JP 3004649 U, Nov. 1994. (Year: 1994).
International Search Report and Written Opinion for corresponding PCT/US18/47145 dated Sep. 11, 2018.
Related Publications (1)
Number Date Country
20210186197 A1 Jun 2021 US
Provisional Applications (1)
Number Date Country
62548153 Aug 2017 US