Graphical application integration with MPEG objects

Information

  • Patent Grant
  • 9123084
  • Patent Number
    9,123,084
  • Date Filed
    Thursday, April 12, 2012
    12 years ago
  • Date Issued
    Tuesday, September 1, 2015
    9 years ago
Abstract
System and methods are provided to cache encoded graphical objects that may be subsequently combined with other encoded video data to form a data stream decodable by a client device according to a format specification. Paint instructions relating to a graphical object are sent from a layout engine to a rendering library. A shim intercepts these instructions and determines whether the graphical object already has been rendered and encoded. If so, a cached copy of the object is transmitted to the client device. If not, the shim transparently passes the instructions to the rendering library, and the object is rendered, encoded, and cached. Hash values are used for efficiency. Methods are disclosed to detect and cache animations, and to cut and splice cached objects into encoded video data.
Description
TECHNICAL FIELD

The present invention relates to computer graphics display memory systems and methods, and more particularly to providing a graphical user interface having cached graphical elements.


BACKGROUND ART

Content providers are experiencing a growth in demand for interactive applications, such as interactive menus, games, web browsing, and the like. Each such interactive application must provide an output that is tailored to the individual requesting it. This is done by establishing a session between the content provider and a client device over a data network, for example the Internet or a cable television system. Furthermore, the audiovisual data for each application is typically encoded or compressed according to an encoding scheme, such as MPEG, to reduce the amount of data that must be transferred. However, encoding audiovisual data for transmission over such a data network is computationally expensive. As the number of requests for interactive sessions grows, it becomes problematic to both render and encode the output of a large number of application sessions, each output destined for a different viewer.


It is known in the art to reuse audiovisual content by caching it. In this way, a frame of video content may be produced once, and sent to as many client devices as required. However, many applications generate reusable images that are smaller than a full frame of video. For example, a menuing application may generate a pulsating menu button animation, or a video game may draw a spaceship image at nearly any location on the screen. Prior art systems must re-render and re-encode these sub-frame images for each video frame produced. Caching mechanisms cannot be used, because the encoding process often uses a state-based data compression system that does not permit insertion of images into an existing data stream. As rendering and encoding are computationally expensive operations, prior art systems require a large hardware and software investment to keep up with demand.


SUMMARY OF ILLUSTRATED EMBODIMENTS

To solve the aforementioned problems, various embodiments of the present invention permit caching of encoded or compressed images that can be composited together with an audiovisual data source. In particular, for each application that defines a graphical user interface, various embodiments insert a small software hook, or shim, between layers in the application execution environment that intercepts rendering commands and determines whether the image to be rendered is already cached in an encoded state. If so, the encoded image is inserted into the video without being completely decoded and re-encoded. Slice cutting and slice linking techniques as separately disclosed herein may be used to accomplish such an insertion.


Thus, in a first embodiment there is given a method of providing an image to a client device from an application execution environment having a layout engine that assembles graphical components into a graphical user interface screen for a graphical application, and a rendering library that renders graphical components into pixels. The method includes receiving, from the layout engine, one or more paint instructions having parameters that pertain to a given graphical object. Next, the method requires computing a hash value based on the received one or more paint instructions. There are two paths, depending on whether the hash value is contained within a cache memory. If so, the method calls for retrieving, from the cache, encoded audiovisual data that are uniquely associated with the hash value, and transmitting the retrieved audiovisual data to the client device. If not, the method requires several more steps. The first such step is forwarding the received one or more paint instructions to the rendering library for rendering the graphical object into pixels according to the paint instruction. The second such step is encoding the rendered pixels into encoded audiovisual data. The third such step is storing the hash value and the encoded audiovisual data in the cache, whereby the hash value and the encoded audiovisual data are uniquely associated. Finally, the fourth such step is transmitting the encoded audiovisual data to the client device. Determining that the hash value is contained within the cache may be done by comparing the hash value to a stored hash value of a cached image that forms part of an animation.


The client device may be a television, a television set-top box, a tablet computer, a laptop computer, a desktop computer, or a smartphone. The graphical application may be, for example, a web browser or a menu interface.


Encoding may include dividing the screen into blocks of pixels. In one such related embodiment, the method may be extended, after receiving the painting data and before computing the hash value, by determining the smallest rectangle consisting of whole blocks of pixels that surrounds the at least one graphical object; requesting that the layout engine repaint the smallest surrounding rectangle; and receiving, from the layout engine, second painting data that include at least one paint instruction having parameters that reflect the smallest surrounding rectangle, wherein computing the hash value is based on the second painting data.


In a separate related embodiment, the method may be extended by determining the smallest rectangle consisting of whole blocks of pixels that surrounds the at least one graphical object; copying current image data into a pixel buffer having the size and shape of the smallest surrounding rectangle; and requesting that the rendering library render the graphical object into the pixel buffer according to the painting data, wherein computing the hash value is based on the pixel data in the pixel buffer.


Sometimes an interactive application will provide a repeating sequence of images that forms an animation, and images in the sequence may benefit from other optimizations. For example, regarding these sequences of images as an animation allows motion detection to be performed, resulting in much more efficient inter-encoding (e.g., producing P-frames and B-frames). This increase in efficiency may manifest as, for example, a lower bandwidth required to transmit a video that includes the animation, or a higher quality for the same bandwidth.


Thus, in a second embodiment there is provided a method of transmitting, to a client device, images that comprise an animation. The method requires first receiving a current image into a computing processor. As with the first method embodiment, there are two paths. When the current image is identical to a previously rendered image, the previously rendered image being uniquely associated with an encoded image in a cache memory, the method concludes by transmitting to the client device the cached, encoded image without encoding the current image. However, when the current image is not identical to a previously rendered image, but shares at least a given minimum percentage of its pixels with a given, previously rendered image, the method continues with a number of additional steps. The first such step is identifying the current image and the given, previously rendered image as belonging to a common animation. The second such step is encoding the current image according to a predictive encoding scheme. The third such step is storing the encoded current image in the cache memory. The fourth such step is transmitting to the client device the encoded current image.


The predictive encoding scheme may be an MPEG encoding scheme. The previously rendered image may not have been rendered immediately previously to the current image, but may be an image rendered earlier. The previously rendered image may be uniquely associated with a predictively encoded image in the cache memory. This second method may be extended by computing a hash value for each unique chain of images that forms an animation, the hash value being a function of all images in the chain of images and a screen displacement between two consecutive images in the chain.


On occasion, it is more efficient to form a row of encoded data by combining currently-displayed visual data with newly rendered rectangles or animations than it is to re-render and re-encode an entire screen. Thus, it is necessary to develop methods for cutting rows of the currently-displayed data into slices, and methods for combining slices of data together again to form whole rows.


Therefore, in a third embodiment there is provided a method of forming two encoded slices from data comprising a given encoded slice, each encoded slice comprising a sequence of macroblocks that are encoded according to a variable length code. This method includes locating, in the given slice, a location of a macroblock. Then, the method requires altering a DC luma value or a DC chroma value of the located macroblock without fully decoding the macroblock according to the variable length code. The first formed slice consists of the data of the given slice up to but not including the altered macroblock, and the second formed slice consists of the encoded macroblock and any subsequent encoded macroblocks in the given slice. Altering the DC luma value or the DC chroma value may be performed through a bit-shifting operation.


Further, in a fourth embodiment there is provided a method of combining a first encoded slice and a second encoded slice to form a third encoded slice, each encoded slice comprising a sequence of macroblocks that are encoded according to a variable length code. The method first requires altering a DC luma value or a DC chroma value in the first macroblock of the second slice without fully decoding the macroblock according to the variable length code. The method ends by concatenating the data of the first slice with the altered macroblock and the undecoded data of the second slice to form the third encoded slice. As before, altering the DC luma value or the DC chroma value may be performed through a bit-shifting operation.


It is contemplated that the invention may be embodied in a tangible medium on which is stored non-transitory computer program code for performing any of the above methods.


It is also contemplated that the invention may be embodied in a system for providing an image to a client device from an application execution environment having a layout engine that assembles graphical components into a graphical user interface screen for a graphical application, and a rendering library that renders graphical components into pixels. The system may include a memory. The system may also include a shim comprising hardware or a combination of hardware and software that is configured to: receive, from the layout engine, one or more paint instructions having parameters that pertain to a given graphical object, compute a hash value based on the received one or more paint instructions, and, when the hash value is not contained within the memory, forward the received one or more paint instructions to the rendering library for rendering the graphical object into pixels according to the one or more paint instructions. The system may also include a controller comprising hardware or a combination of hardware and software that is configured to:


retrieve, from the memory, encoded audiovisual data that are uniquely associated with the hash value, and transmit the retrieved audiovisual data to the client device when the hash value is contained within the memory; and transmit, to the client device, encoded audiovisual data comprising a rendering of the graphical object into pixels according to the received one or more paint instructions when the hash value is not contained within the memory.


The client device may be a television, a television set-top box, a tablet computer, a laptop computer, a desktop computer, or a smartphone. The graphical application may be, for example, a web browser or a menu interface. The memory may store a sequence of images that collectively form an animation, in which case the controller is further configured to determine that the hash value is contained within the cache by comparing the hash value to a stored hash value of a cached image that forms part of the animation. The audiovisual data may be encoded according to an MPEG encoding scheme.


The system may also include a block-based encoder that is configured to form two encoded MPEG slices from data comprising a given encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded macroblocks. Forming the slices may be performed by locating, in the given MPEG slice, a location of a macroblock that is encoded according to a variable length code; then decoding the encoded macroblock according to the variable length code; then altering a DC luma value in the decoded macroblock; and finally encoding the altered macroblock according to the variable length code, wherein the first formed MPEG slice consists of the data of the given MPEG slice up to but not including the encoded macroblock, and the second formed MPEG slice consists of the encoded macroblock and any subsequent encoded macroblocks in the given MPEG slice.


The system may also include a block-based encoder that is configured to combine a first encoded MPEG slice and a second encoded MPEG slice to form a third encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded macroblocks. Combining the slices may be performed by decoding the first macroblock of the second slice according to a variable length code; then altering a DC luma value in the decoded macroblock; then encoding the altered macroblock according to the variable length code; and finally concatenating the data of the first slice with the encoded macroblock and the undecoded data of the second slice to form the third slice.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 is a schematic diagram of a typical system in which various embodiments of the invention may be used;



FIG. 2 is a block diagram showing functional modules and data flow in a prior art web browser system;



FIG. 3 is a block diagram showing functional modules and data flow in accordance with an embodiment of the invention;



FIG. 4 is a flowchart showing a method of generating an initial screen for a graphical user interface in accordance with an embodiment of the invention;



FIGS. 5A-5C collectively comprise a flowchart showing a method of generating a screen update in accordance with the embodiment of FIG. 4;



FIGS. 6A-6D show an exemplary screen area that is being updated at various stages of the methods of FIGS. 4 and 5;



FIG. 6E shows a pixel buffer relating to the exemplary screen area of FIG. 6;



FIG. 7 is a flowchart showing a method of detecting an animation in accordance with an embodiment of the invention;



FIGS. 8A-8C show a “rolling update” of several rows of macroblocks;



FIGS. 9A-9E illustrate the concept of slice cutting and slice linking, as used in accordance with an embodiment of the invention;



FIG. 10 is a flowchart showing a method of cutting an MPEG slice in accordance with an embodiment of the invention;



FIGS. 11A-11D show the effects of slice cutting at the level of slice data;



FIG. 12 is a flowchart showing a method of linking MPEG slices in accordance with an embodiment of the invention; and



FIGS. 13A-13D show the effects of slice linking at the level of slice data.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
Definitions

As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context otherwise requires:


The term “application” refers to an executable program, or a listing of instructions for execution, that defines a graphical user interface (“GUI”) for display on a display device. An application may be written in a declarative language such as HTML or CSS, a procedural language such as C, JavaScript, or Perl, any other computer programming language, or a combination of languages.


A “rectangle” is a rectangular area on a screen of the display device. The screen area may in fact reside within a window in a windowed user interface.


A rectangle is “clean” if its contents match what is currently being output to the display device, and “dirty” if its contents do not match what is currently being output.


A “layout engine” is a computing service that is used to convert a document into graphical objects placed on a display screen. For example, Trident, WebKit, and Gecko are software layout engines that convert web pages into a collection of graphical objects (text strings, images, and so on) arranged, according to various instructions, within a page display area of a web browser. The instructions may be static, as in the case of parts of HTML, or dynamic, as in the case of JavaScript or other scripting languages, and the instructions may change as a function of user input. Trident is developed by Microsoft Corporation and used by the Internet Explorer web browser; WebKit is developed by a consortium including Apple, Nokia, Google and others, and is used by the Google Chrome and Apple Safari web browsers; Gecko is developed by the Mozilla Foundation, and is used by the Firefox web browser.


A “rendering library” is a computing service that is used by a layout engine to convert graphical objects into images. Graphical objects include, without limitation, alphanumeric symbols, shapes such as circles and rectangles, and images defined according to an image format such as GIF or JPEG. For example, Cairo is a software rendering library that converts two-dimensional objects defined using vector graphics into either pixel data or into drawing commands for underlying graphical systems such as X Windows, the Windows 32-bit graphics device interface, or OpenGL. Cairo is developed by Carl Worth of Intel Corporation, Behdad Esfahbod of Google (Waterloo, Canada), and a host of others.


A “pixel buffer” is a data buffer used to temporarily store the pixel data of a screen rectangle.


A “pixel hash” is a hash value that is calculated over all pixels in a pixel buffer.


A “repaint request” is a request from a controller to a layout engine to repaint the contents of a rectangle for output. Repaint requests may be used to “clean” a dirty rectangle.


A “graphical object” is a collection of data that permits a shape to be drawn on a display. For example, a graphical object that represents a square may include data pertaining to coordinates of the square's vertices, a line thickness, a line color, and so on. A graphical object that represents a text character may include data pertaining to a font name, a letter height, a color, a font weight, and so on. A graphical object may contain other graphical objects; for example, a text string may include a number of letters.


A “paint instruction” is an instruction from the layout engine to a rendering library to generate pixel data, in a pixel buffer, that relates to a given graphical object.


A “paint hash” is a hash value that is calculated as a function of a sequence of paint instructions that are generated to repaint a rectangle's content, including their parameters (or certain appropriately chosen representations of their parameters).


An “MPEG fragment” is one or more MPEG-encoded macroblocks, as disclosed in U.S. patent application Ser. No. 12/443,571, filed Oct. 1, 2007, the contents of which are incorporated by reference in their entirety.


“Audiovisual data” are data that represent audio, video, or a combination of audio and video.


An “animation” is a repeating sequence of individual images.


A “slice”, in the context of video encoding and especially in the context of a H.264/MPEG-4 encoding format, is a group of one or more horizontally contiguous macroblocks, in raster order, that can be encoded independently from other slices according to the encoding format.



FIG. 1 is a schematic diagram of a typical system in which various embodiments of the invention may be used. These embodiments transmit streaming audiovisual data to a variety of client devices for playback, including a smart television, cable set top box, or a desktop computer in house 11, a tablet computer 12, a laptop computer 13, and a smartphone 14. The audiovisual data are typically streamed from an operator headend 15. The operator may obtain content via a public data network, shown here as the Internet 16, from a content provider, shown here as a web server 17. The operator also may obtain the content from an operator-controlled web server via a private data network.


The operator headend 15 is connected to each of the various client devices via a gateway. Thus, the headend is connected to house 11 through a cable gateway 151, which may be, for example, a cable modem termination system for terminating a cable system 1511. The headend is connected to the tablet computer 12 via a wireless gateway 152, such as an antenna, that transmits and receives on a wireless data network 1521. The headend is connected to the laptop computer 13 via a wired network gateway 153, such as a router, that uses a wired data network 1531. And the headend is connected to the smartphone 14 via a cellular network gateway 154 that uses a cellular telephone network 1541. Similarly, the headend is connected to the Internet 16 via a network gateway 155 (which typically includes a firewall, as indicated, to prevent unauthorized access). The headend may be connected to other client devices known in the art using similar, ordinary means.


All of these gateways are connected, typically via one or more firewalls or data routing devices (not shown), to a central headend data network 150. Also connected to the central network are various other useful headend systems, such as an administrative system 156 and media storage server 157. Various embodiments of the invention are particularly directed to the creation and use of transcoders and image scalers 158, and application engine and session manager 159. These functional components are described in more detail in connection with FIGS. 3-6 below. The administrative functions 157, media storage 157, transcoders and scalers 158, and application engine and session manager 159 may be implemented in software and/or hardware using general purpose computers or special-purpose computing systems. It will be appreciated that any or all of these components may be implemented in parallel to handle large numbers of concurrent users. Thus, for example, a given headend 15 may execute a plurality of transcoder instances, scaler instances, and/or application engine instances at any given time. Moreover, these instances need not be executed within one physical premises, but may be distributed as required by the service provider.


Transcoders may be used to re-encode data from a first data format (such as a broadcast format or storage format) into a second data format (such as a data streaming format). Scalers may be used to dynamically resize video streams, for example to provide a “mosaic” of multiple video streams on a single display. An application engine may be used to run an application having a graphical user interface, such as an HTML page or a web browser, in a user session with a particular client device. Such user sessions may be managed by the session manager.


Typically, a client device forms a data connection to the operator headend and requests a particular interactive service, such as a menuing interface or a web browser. In response, the headend requests a new session from the session manager, and allocates an application engine associated with the requested service. If the particular service requires transcoding or scaling, the session manager will also allocate these resources. The application engine communicates with the client device, and requests transcoding and scaling operations (as well as access to administrative functions 156 such as billing, and stored media 157) to provide an enjoyable interactive experience to a user of the client device. When the service is terminated, either by the headend or the client device, the session manager frees up the allocated resources. In accordance with these processes, many thousands of client devices may be simultaneously supported.


For purposes of illustration, and not by way of limitation, one service that may be requested is web browsing. FIG. 2 is a block diagram showing functional modules and data flow in a prior art web browser system having a remote browser engine. In this system, a client device 20, such as a cable set top box, is coupled to an input device, such as video keyboard 21, and a display device, such as monitor 22. It will be understood that these components are shown separately for clarity, but they may be integrated into a single form factor, such as a tablet computer or other computing device.


The input device 21 transmits a request for a web page through the client device 20 to a remote browser 23. The remote browser includes four components: a layout engine 231, one or more rendering libraries 232, a pixel buffer 233, and a block-based streaming data encoder 234. The layout engine receives the request and downloads the linked content. This content must be rendered, and when the layout engine wishes to render a graphical object, such as a text string or an image file, it issues one or more paint instructions to a rendering library 232 using an application programming interface (API) for the library. The rendering library then renders the graphical object into a pixel buffer 233 at a location determined by the layout engine.


File formats for encoded image data may be recognized by humans using a (e.g. three or four letter) filename extension such as GIF or JPEG. However, often these extensions are incorrect, so the layout engine may resort to reading a “magic number” inside the file itself at industry-standard byte offsets. Such magic numbers are well known in the art, and their careful management across the industry permits unambiguous identification of file formats by the application execution environment. Correct identification of the file format for an image graphical object permits the layout engine to invoke the proper rendering library 232 to draw its encoded data.


Once the pixel data have been drawn into the pixel buffer 233, the block-based encoder 234 receives blocks of pixels from the buffer and encodes them according to an encoding. Encodings are used to compress the data for transmission, as it is often the case that data transmission capabilities between the remote browser and the client device are limited. One encoding used in the art is the MPEG encoding, although it will be understood that the scope of the invention is not limited only to MPEG. Once the pixel data are encoded, they are transmitted from the remote browser 23 to the client device 20, where they are decoded and displayed on the display 22.


Interactive behavior typically is controlled from the client device as part of a session established between the client device and the remote browser. Further input received from the client device, such as a repeated key press or a held key on a remote control or a keyboard, causes the layout engine to execute any application logic (e.g., JavaScript). If the application logic requires the screen output to change in response to this interactive input, as it often does, the process may begin again as if a new page request (or update request) were received, thereby causing a modified pixel buffer to be encoded and sent to the client device.


Screen Updates



FIG. 3 is a block diagram showing functional modules and data flow in accordance with an embodiment of the invention. As can be seen, the application engine 159 of this embodiment, also referred to as the application execution environment, differs substantially from the remote browser of FIG. 2. Some of the components of the remote browser 23 (i.e., the layout engine 231, rendering library 232, pixel buffer 233, and block-based encoder 234) operate as described above in connection with FIG. 2. However, the application engine 159 adds a controller 1591, a data cache 1592, and a “shim” 1593, that cooperate to perform novel functionality as described below. Therefore, the application engine leverages the functions of the remote browser components 231-234 without modifying them. Because of this design, when newer and improved versions of remote browser components are released by third party developers, this embodiment advantageously may be adapted to integrate with the new components without requiring substantial modification.


The controller 1591 is responsible for controlling and optimizing the encoding of portions of the graphical user interface of an application. For purposes of concreteness, the application execution environment described herein provides a web browser, but the invention may be used with other application engines having modules that interact via an API. The controller receives service requests from a client device 20 and returns encoded audiovisual data.


The controller is coupled to a data cache 1592. This cache stores encoded audiovisual data that may be decoded by the client device 20 for display on a display device 22. For example, and not by way of limitation, the audiovisual data may be encoded according to an MPEG standard. The cached data may include either full frame, intracoded data (I-frames), intercoded data (P-frames, or B-frames) or MPEG fragments as disclosed in U.S. patent application Ser. No. 12/443,571. It will be appreciated that the data cache 1592 may be shared between application engine instances, so that it may be accessed by any number of controllers.


A shim 1593 is a software mechanism that is interposed between the layout engine 231 and the rendering library 232. As described above in connection with FIG. 2, a prior art layout engine sends paint instructions to a rendering library according to the library's API. However, in accordance with the embodiment shown in FIG. 3, the shim intercepts these instructions and processes them. The shim passes some instructions through to the rendering library automatically, so that the instructions appear to have been issued by the layout engine. For example, if the paint instruction modifies a state in the library (e.g., instructs the library to use a particular coordinate system), or obtains information from the rendering library, then the shim forwards the instruction and returns any response to the layout engine. However, the shim may or may not forward certain other paint instructions to the rendering library, such as rendering instructions, depending on whether it is in a ‘forwarding’ state or a ‘non-forwarding’ state. The controller instructs the shim as to which of these two states it should have, as described below. By avoiding unnecessary rendering, the shim advantageously saves processing time and memory.


The operation of the embodiment of FIG. 3 is now explained in more detail with reference to FIGS. 4, 5, and 6. FIG. 4 is a flowchart showing a method of generating an initial screen for a graphical user interface in accordance with an embodiment of the invention. FIGS. 5A-5C collectively comprise a flowchart showing a method of generating a screen update. FIGS. 6A-6D show various screen areas affected by these methods, and FIG. 6E shows an exemplary pixel buffer.


With reference to FIG. 4, a method to generate an initial screen for a client device begin in process 40, in which the controller receives a page request from the client device. This request may be generated, for example, when an individual presses a button on remote control 21, thereby activating the requested application. In process 41, the layout engine (having performed any necessary preprocessing such as retrieving HTML data associated with a URL) determines and positions graphical objects according to methods known in the art. After the data are properly positioned based on their dimensions and other factors, they are rendered in process 42, in which the layout engine requests rendering from one or more rendering libraries. In process 43, the initial pixel buffer data are populated with the drawing outputs of the one or more rendering libraries. In process 44, the pixel buffer data are encoded according to an audiovisual encoding scheme. As known in the art, this scheme may be a block-based encoding scheme such as MPEG. In process 45, the encoded data are sent to the client device 20 for eventual display on display device 22. An example of an initial screen generated as a result of this method is shown in FIG. 6A.


A method of providing a screen update to a client device begins in FIG. 5A. This method may be triggered when an individual activates a control in the graphical user interface that causes a portion of the screen to be updated. The method causes only the portion of the screen to be encoded, and a new image to be transmitted to the client device 20, thereby saving memory and computing resources in the application engine. For encoding schemes other than MPEG, the method potentially saves bandwidth between the application engine and the client device. An example of a screen update request is shown by comparing FIG. 6A to FIG. 6B. FIG. 6A represent an initial screen prompting an individual to choose between tomatoes and potatoes. FIG. 6B represents the desired output of highlighting a button around the “potatoes” element. Highlighting the button is a “screen update” that does not require a full-screen refresh.


The screen update method begins in process 50, in which the application engine receives a screen update request from the client device. Upon receiving the user input, the controller passes it to the layout engine. In process 51, the layout engine creates and returns to the controller a list of dirty rectangles; i.e., rectangular areas of the screen that must be repainted (redrawn) in response to the request. FIG. 6C shows an example of such a dirty rectangle that corresponds to the button of FIG. 6B. This dirty rectangle is the smallest rectangle that may be drawn completely around the affected button. The size and location of dirty rectangles may be determined in accordance with methods known in the art of layout engines.


In process 52, the controller instructs the shim to prevent rendering; that is, to enter the ‘non-forwarding’ state. Therefore, any rendering paint instructions received by the shim from the layout engine will not be sent to the rendering library.


In process 53, the controller determines whether any rectangles need resizing. This determination is made with knowledge of the size of the blocks of pixels encoded by the block-based encoder. Thus, if the encoder operates on MPEG macroblocks that are 16 pixels by 16 pixels (256 pixels in each block), the controller optionally may determine whether each dirty rectangle is aligned on 16 pixel boundaries. If a rectangle is not so aligned, the controller may determine to resize the dirty rectangles, and proceed to a process 531 in which the controller snaps the rectangles to pixel block boundaries. FIG. 6D shows the dirty rectangle of FIG. 6C, expanded to align with 16 pixel macroblocks. If one or more rectangles were resized, then the controller modifies the received repaint request (or creates a new repaint request) in a process 532, so that the layout engine will cause the proper screen area to be repainted. Thus, in accordance with these optional latter two processes 531, 532, the controller determines the smallest rectangle consisting of macroblocks that surrounds the graphical object being repainted. In this case, the repaint request sent to the layout engine reflects this smallest surrounding rectangle, and the output of the layout engine will include parameters that reflect the smallest surrounding rectangle. The above processes may be performed using a pixel buffer provided by the controller and having the size and shape of the smallest surrounding rectangle, into which current screen image data have been copied, so that any newly rendered image will be drawn on top of the current screen image. Alternately, the above processes may be performed without such a pixel buffer.


Whether or not the controller determines to resize any rectangles, in process 54 the layout engine processes the list of dirty rectangles to produce one or more paint instructions. These instructions have parameters that indicate how the instructions should be executed. For example, the parameters may define the size and coordinates of a dirty rectangle having an image to be re-rendered, and they may define properties of a graphical object, such as a font, weight, and size for a text string. In prior art systems, these instructions would be sent from the layout engine 231 directly to the rendering library 232, but in accordance with this embodiment of the invention, the shim 1593 instead intercepts the instructions.


Continuing the method in FIG. 5B as indicated, recall that the shim is in the ‘non-forwarding’ state. Thus, in process 55, rather than forwarding the instruction to the rendering library, instead the shim computes a hash value based on the received painting data. This hash value may be computed using a hash function known in the art for producing a small number (a hash) based on a large number according to a computationally inexpensive algorithm that deterministically distributes hash values uniformly and approximately randomly across the set of small output numbers. Because hash values are calculated deterministically, applying the function to the same input twice will yield the same output both times. Because hash values are distributed approximately randomly, applying the function to different inputs will yield different outputs in all but a vanishing number of cases. Thus, hash values are small numbers that may be used to discriminate between large data sets without requiring expensive comparison of the large data sets themselves.


The hash value may be calculated based on the painting data received by the shim, and especially the parameters of at least one paint instruction. In one embodiment, pixel data pertaining to a graphical object are used to produce the hash value. In another embodiment, the hash is calculated as a function of a series of incremental paint instructions that pertain to a particular rectangle. Other variations are contemplated, so long as the hash function is applied uniformly to paint instructions that would result in identical output graphics. Thus, if multiple users of the same menuing interface, accessing the menu at different times, request identical behaviors of the interface, then the same hash value is produced for both users. This is true even if the two users access different application engine instances, and even if some of the parameters (such as a session identifier) are different. Moreover, such identical output graphics could occur at different locations on the screen. For example, a menu button may be rendered at different locations in different menu screens, but otherwise appear identical.


In process 56, the shim transmits the hash value to the controller. The controller 1591 then consults the cache 1592 using the received hash value to determine whether there is an associated entry in the cache. If the data are determined to be in the cache in process 57, then in process 571 the controller immediately retrieves the encoded audiovisual data from the cache, and in process 572 the controller transmits the retrieved data to the client device. Because MPEG does not allow a system to send encoded images that represent less than a full frame to a client device, and because the encoded audiovisual data may represent less than a full frame, the encoded data may be stitched or composited into other encoded data to form a full frame prior to transmission, in accordance with methods known in the art. In process 573, the controller instructs the shim to discard the paint instruction it received from the layout engine, as it is no longer needed.


Thus, if the data are already cached, no further rendering or encoding is necessary to deliver the content to the client device that requested it. If, however, in process 57 the data are determined not to be in the cache, then they must be rendered and encoded. In this case, in process 58 the controller instructs the shim to permit painting (that is, to enter the ‘forwarding’ state), and in process 59 the controller resends the previous repaint request to the layout engine. At this point, the controller also temporarily stores the received hash value for later use as described below.


Continuing the process in FIG. 5C as indicated, in process 510 the layout engine resends the repaint request to the shim. Unlike previously, the shim now has been configured to forward the received paint instruction to the rendering library, which it does in process 511. This pass-through effect may be accomplished using the rendering library API in the same manner as the layout engine would if the shim were not present. In process 512, the rendering library creates a pixel buffer having the appropriate pixel data. For example, FIG. 6E shows a pixel buffer associated with the (expanded) dirty rectangle of FIG. 6D. In FIG. 6E, the word “potatoes” is visible along with the button around it. Therefore, this rectangle corresponds to the pixel data (of FIG. 6B) that must be encoded by the encoder.


At this point in the process, an optional animation detection method may be invoked. The purpose of the optional method is to determine whether any optimizations may be made to the encoding process. This optional method is described below in connection with FIG. 7.


In process 513, the encoder encodes the rendered pixel data in the pixel buffer to form encoded audiovisual data. Process 513 may be performed according to methods known in the art, or it may be performed according to methods described in further detail below in connection with detecting and encoding animations, and/or performing slice linking and cutting. In process 514, the controller receives the encoded pixel data and stores it in the screen update cache 1592. These encoded data are stored in unique association with the hash value previously received by the controller in process 56. Thus, if a future screen update request causes the shim 1593 to generate an identical hash value, the encoded data will be available in the cache for immediate retrieval. Next, in process 515, the encoded pixel data are formed into an audiovisual data stream. This process may include generating a continuous stream of frames according to a fixed number of frames per second, in accordance with an industry encoding standard such as MPEG. During this process, any number (zero or more) MPEG fragments may be combined with output from a scaled and/or transcoded input video stream to form the final encoded audiovisual data stream. Finally, in process 516 the controller transmits the encoded audiovisual data stream to the client device. Advantageously, this method does not require an MPEG motion search on the entire displayed screen, but only the “dirty” rectangle that is being updated. The method therefore requires less processing power than in the prior art.


The above method may be modified as follows. In process 58, the shim receives a command from the controller to permit painting. The purpose of this command is to permit the system to render the received painting data. However, these painting data already are stored in the shim. Therefore, in an alternate embodiment, rather than executing processes 59, 510, and 511 (which collectively require a further repaint request being issued to the layout engine), the shim may forward the painting data directly to the rendering library in process 58 upon receiving notification that there was a cache “miss”.


The above method also may be modified in a different manner. Some paint instructions read back pixel information from the pixel buffer used by the rendering library. However, the pixel buffer may include incorrect data (i.e., data of a previously rendered image) if the controller and shim bypassed the previous paint instruction because the image was found in the cache. In this case, the cached image may be retrieved, and the shim may either simulate the effect of the paint instruction directly, or update the state of the rendering library to use the retrieved, cached image and then pass the paint instruction to the library for execution. The information read from the pixel buffer might also be cached for later retrieval if a similar sequence of paint commands is issued.


Detecting Animations


According to the embodiments described above, each image is individually compressed in isolation; for example, the images may be compressed using MPEG intra-encoding. However, sometimes an application will provide a repeating sequence of images that forms an animation, and images in the sequence may benefit from other optimizations. For example, regarding these sequences of images as an animation allows motion detection to be performed, resulting in much more efficient inter-encoding (e.g., producing P-frames and B-frames). This increase in efficiency may manifest as, for example, a lower bandwidth required to transmit a video that includes the animation, or a higher quality for the same bandwidth.



FIG. 7 is a flowchart showing a method of detecting an animation in accordance with an embodiment of the invention. The method may be applied for any given screen update during or just before process 513 (in which the encoder encodes the frame pixel data).


The method begins with process 70, in which the controller compares the current rendered image with a previously rendered image to determine screen area overlap. The locations and sizes of the two images, but not necessarily their content, are compared to determine a percentage overlap in their respective pixel “surface area”. For example, a 50×100 pixel image having upper left coordinate (100,100) and a 50×100 pixel image having upper left coordinate (105,95) have an overlap of 45×95 pixels, or a percentage surface area overlap of 4275/5000=85.5%. A sequence of screen updates for a flashing button, or a graphical object that is simply changing color, will have rectangles that do not change position on the screen, and will therefore have 100% screen area overlap. The controller stores a list including coordinates of previously rendered rectangles for this purpose. Because such a list includes only coordinate data, it may include data pertaining to a large number of previously rendered frames; therefore, the two images being compared need not be in consecutively rendered frames.


In process 71, a choice is made depending on whether the percentage overlap is substantial, as defined by a given minimum percentage. For illustrative purposes, and not by way of limitation, the minimum percentage may be 50%, so that two rectangles that share at least half of their pixel coordinates in common are considered to contain images that are part of a single animation. If there is not a substantial overlap, then in process 711 the controller determines whether there are any other previously rendered images in the list against which to compare the current image. If so, the method restarts at process 70 using a different previously rendered image, but if not, then the method ends.


However, if there is substantial overlap between the two compared image coordinates, then the algorithm concludes that the images form part of a single animation. To prevent loops, in process 72 a choice is made depending on whether the currently rendered image is identical to a first image in a previously-rendered chain of overlapping images. Rather than comparing the image pixel data directly, the hash values of the two images may be compared for improved efficiency. If the hash values are equal, then the current image is the first image of the animation cycle, and it does not need to be re-encoded. Thus, in process 721 the cached, encoded image is transmitted and the method ends.


If the image was not previously animated, then in process 73 the current image is intra-encoded. Further images that are determined to belong to the same animation chain are subsequently inter-encoded with respect to the previous image in the animation. Once the controller has determined that an animation is ongoing, new images generated by an application are checked against corresponding images, in sequence, in the stored animation. In case the current image does not match the corresponding stored image, a new animation sequence is started, and the first image in the sequence is intra-coded.


In accordance with the above discussion, an animation starts with intra-coded macroblocks, and subsequent images are generated as predictive macroblocks (P or B). It is sometimes the case that an animation starts at an intermediate image that has been predictively encoded, rather than the first, intra-coded image. Such an animation has a unique encoder history, so it needs to be identified as a different object in the cache. In particular, it has a different hash value than an animation that begins with the “first” image in the chain. Therefore, each chain of images in an animation is assigned a unique hash, calculated over the pixels of all individual images that are part of the chain. The displacement on the screen between images is also included in the hash calculation.


Slice Cutting and Slice Linking


By way of background to inform another aspect of the invention, it is known in prior art MPEG systems to perform a periodic refresh of a screen by providing, to a client device, an entirely intra-coded frame (I-frame) of image data. Such refreshes eliminate screen artifacts caused by errors in the transmission of audiovisual data. However, intra-coded frames (I-frames) encode all pixel data in the image, and therefore require the use of more data than inter-coded frames (e.g. P-frames and B-frames) that merely encode the differences between successive images. I-frame transmissions therefore use more bandwidth than predictively coded frame transmissions. Moreover, they must be transmitted on a regular basis, or accumulating screen artifacts will eventually degrade the displayed image beyond usefulness.


Typically the high peak bitrate of an I-frame is handled by large buffers in the client, however this is detrimental for latency sensitive applications such as the interactive TV services that are the subject of the present invention. As a result of this problem, it is known to spread out the bitrate of a single I-frame across multiple transmitted frames by using a “rolling update”. In a rolling update, sometimes also called a “curtain refresh”, each consecutive frame updates a portion of the screen area using intra-encoded macroblocks. For example, each consecutive frame may update two or more rows of macroblocks, starting from the middle of the screen and progressing upwards and downwards simultaneously. The advantage to this type of refresh is that a rolling update distributes the large, intra-encoded macroblocks over multiple frames. As a result, the bitrate is slightly elevated over multiple frames, instead of spiking as it would if all intra-encoded data were transmitted in a single frame. An alternative method of handling bitrate spikes by encoding I-frames at a very low bitrate, known as “I-frame pumping”, is known in the art but not discussed further herein.


An example of a vertical rolling update is shown graphically in FIGS. 8A-8C. The example screen here consists of 10 rows of macroblocks, where each macroblock is a square of pixels. Rows having a right-slanted appearance represent predictively encoded image data from before a screen update, rows that are unshaded represent intra-encoded rows used in the rolling update, and rows having a left-slanted appearance represent predictively encoded image data having updated image data.


In FIG. 8A, central rows 5 and 6 are updated with intra-encoded macroblock data. As is known in the art, rows 5 and 6 may be represented by an intra-encoded MPEG slice (an I-slice). During this update, rows 1-4 and 7-10 may be updated with inter-encoded macroblock data pertaining to the current image (i.e., the image that is in the process of being replaced). Thus, each of these other rows may be represented by a P-slice or a B-slice. In FIG. 8B, rows 5 and 6 are updated with data (a P-slice or a B-slice) pertaining to the updated image, while rows 4 and 7 are updated with intra-encoded data (an I-slice) pertaining to the updated image, and the other rows are updated with inter-encoded data pertaining to the current image. In FIG. 8C, rows 3 and 8 are updated with intra-encoded data, while the other rows are updated with inter-encoded data. This process continues until each row has received intra-encoded macroblock data. It should be noted that newly refreshed slices can only perform motion searching and prediction within the refreshed screen area, and cannot refer to the non-refreshed areas.


One system in accordance with the invention stores screen objects as intra-encoded macroblocks, called “MPEG fragments”. To generate I-frames or intra-refresh rows based upon stored MPEG fragments, slices of one or more rows have to be cut and linked. The cutting and linking methods described below may be used during active periods where there are many screen updates.


The cutting and linking principles are illustrated with reference to FIGS. 9A and 9B. FIG. 9A represents a “current image” displayed on a screen that is 14 rows of macroblocks in height and 24 columns of macroblocks (only the rows are marked). Thus, if a macroblock is a square 16 pixels on a side, this screen has a resolution of 384 by 224 pixels. FIG. 9B shows an “updated image” on the same screen, obtained by performing a screen update in accordance with an embodiment of the invention, has caused a rectangle 91 to be displayed. Rectangle 91 is five rows tall and 10 rows wide.


A method for integrating the image data of rectangle 91 into the rows of the screen is illustrated using FIGS. 9C-9E. While these figures show the method as applied to only one row of macroblocks, it should be understood that this method must be repeated for each row of macroblocks that is covered (or partially covered) by rectangle 91. FIG. 9C shows one full-row slice of the screen 92. Logically superimposed on this slice is a slice 91a of MPEG fragments that represents a single row of macroblocks of the rectangle 91. To insert slice 91a into the row, the slice 92 is cut using a slice cutting method to form two partial-row slices 92a, 92b as shown in FIG. 9D. The slice cutting method is described in more detail below in connection with FIGS. 10 and 11. Note that the three slices 92a, 91a, 92b together form 24 macroblocks; that is, when placed side-by-side, they have the width of a single row. However, they do not yet form a single slice. While the MPEG standard permits a row of macroblocks to be described by multiple slices, some display devices place a limit on the number of slices that may be used in a given frame (or the number of slices per second). In some extreme cases, a given frame of data may only permit as many slices as there are rows of macroblocks. Therefore, to account for such limitations, these three slices (or any two adjacent slices) may be linked to form a single slice, as shown in FIG. 9E. Slice linking is performed according to a slice linking method, described in more detail in connection with FIGS. 12 and 13.


Slice cutting is a procedure that is required to perform an intra-refresh of the entire screen, built up of several possibly overlapping MPEG fragments. To compose the intra-encoded frame, only the non-obscured macroblocks of fragments are needed. Consequently, the slices in such fragments are cut.



FIG. 10 is a flowchart showing a method of cutting an MPEG4 slice in accordance with an embodiment of the invention. An MPEG slice includes macroblock image data. For sake of terminology, an original slice ‘S’ is cut to form two slices ‘S1’ and ‘S2’, where slice ‘S1’ includes those macroblocks earlier in the data stream and slice ‘S2’ includes those macroblocks later in the data stream. It will be understood that this method may be applied to standards other than MPEG4 by appropriate modification.


The method begins with a slice encoded (compressed) using a variable-length code (VLC) for transmission over a data network. For example, the slice shown in FIG. 11A is compressed, as indicated by the slanted lines, and contains 13 macroblocks. An arrow indicates where the slice should be cut. In process 1001, metadata are added to the slice S, for example in its elementary stream, as shown in FIG. 11B. In particular, these metadata pertain at least to the DC context of each macroblock in the slice. Next, in process 1002, the location in the compressed data stream of the start of the first macroblock of the new slice S2 is determined. This may be done by either VLC decoding the entire slice, or, if present, using macroblock pointers in the slice metadata. In process 1003, the found (compressed) macroblock is partially VLC decoded to produce uncompressed macroblock data, as shown in FIG. 11C. However, only DC luma and DC chroma information needs to be decoded; the full image data of the macroblock should not be decoded in the interest of efficiency. In process 1004, the DC luma and DC chroma information is located in the uncompressed data. Locating these data values may be done using methods known in the art. For example, in the H.264 standard, this information is stored in the Intra16×16DCLevel data block. The method only requires decoding of this information; other image data may remain compressed. In process 1005, the primary coefficient of the DC luma or DC chroma level is patched to match the DC context of the default slice start context, as shown in FIG. 11C. In this way, the macroblock may act as the first macroblock of an entire slice, namely the new slice S2. Patching may be accomplished using a bit-shifting operation; that is, the bits of the DC luma value or the DC chroma value may be shifted according to low-level, efficient bit-shifting instructions. In process 1006, the decoded portions of the patched macroblock are VLC re-encoded, as shown in FIG. 11D. Note that, in embodiments in which the slice metadata includes pointers to macroblocks in the compressed data stream, only the data of the patched macroblock must be VLC decoded and re-encoded; data of the other macroblocks in original slice S (including all data of slice S1 and the other macroblocks of slice S2) remain undisturbed by the method.



FIG. 12 is a flowchart showing a method of linking MPEG slices in accordance with an embodiment of the invention. Screen updates that consist of multiple fragments may result in more slices per line than can be permitted for certain end devices, especially for H.264 encodings. The purpose of slice linking is to reduce the number of slices by linking two or more slices together. For the sake of simplicity, the process is described with respect to only two slices; those having ordinary skill in the art should understand that the process may be repeated to operate on more than two slices.


This method begins with two VLC-encoded slices S1′ and S2′ that must be linked, as shown in FIG. 13A. In process 1201, metadata are added to the slices, as shown in FIG. 13B. These metadata comprise at least the DC context of the last macroblock (right-most) of slice S1′, the VLC state of this macroblock, and the DC context of the first macroblock (left-most) of the slice S2′. In process 1202, the first macroblock of slice S2′ is partially VLC decoded using the VLC state of the last macroblock of slice S1′. As with the method of FIG. 10, only the Intra16×16DCLevel data block needs to be decoded. In process 1203, the Intra16×16DCLevel block is obtained for the first macroblock of slice S2′. In process 1204, the primary coefficient of this block is patched, using the metadata, to match the DC context of the last macroblock of the slice S1′, as shown in FIG. 13C. The VLC tables for the left row of AC blocks are modified correspondingly. After patching, in process 1205 the decoded portions of the macroblock are VLC re-encoded. In process 1206, the compressed data are concatenated to form a new compressed slice S′, as shown in FIG. 13D. As before, only the data of the patched macroblock must be VLC decoded and re-encoded; all data of slice S1′ and data of the other macroblocks of slice S2′ appear unchanged (and compressed) in the new slice S′.


The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims. For example, while H.264 stores DC luma and DC chroma information in a Intra16×16DCLevel data block, other standards such as MPEG2 and VC-1 store this data elsewhere; the methods and systems described above may be modified accordingly.


It should be noted that the logic flow diagrams are used herein to demonstrate various aspects of the invention, and should not be construed to limit the present invention to any particular logic flow or logic implementation. The described logic may be partitioned into different logic blocks (e.g., programs, modules, functions, or subroutines) without changing the overall results or otherwise departing from the true scope of the invention. Often times, logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.


The present invention may be embodied in many different forms, including, but in no way limited to, computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer), programmable logic for use with a programmable logic device (e.g., a Field Programmable Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means including any combination thereof.


Computer program logic implementing all or part of the functionality previously described herein may be embodied in various forms, including, but in no way limited to, a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator). Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating environments. The source code may define and use various data structures and communication messages. The source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.


The computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g., PCMCIA card), or other memory device. The computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The computer program may be distributed in any form as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).


Hardware logic (including programmable logic for use with a programmable logic device) implementing all or part of the functionality previously described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).


Programmable logic may be fixed either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The programmable logic may be fixed in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and internetworking technologies. The programmable logic may be distributed as a removable storage medium with accompanying printed or electronic documentation (e.g., shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board over the communication system (e.g., the Internet or World Wide Web).

Claims
  • 1. A method of providing an image to a client device from an application execution environment having a layout engine that assembles graphical components into a graphical user interface screen for a graphical application, and a rendering library that renders graphical components into pixels, the method comprising: receiving, from the layout engine, one or more paint instructions having parameters that pertain to a given graphical object;computing a hash value based on the received one or more paint instructions;when the hash value is contained within a cache memory, retrieving, from the cache memory, encoded audiovisual data that are uniquely associated with the hash value, and transmitting the retrieved audiovisual data to the client device; andwhen the hash value is not contained within the cache memory, forwarding the received one or more paint instructions to the rendering library for rendering the graphical object into pixels according to the one or more paint instructions,encoding the rendered pixels into encoded audiovisual data,storing the hash value and the encoded audiovisual data in the cache memory, wherein the hash value and the encoded audiovisual data are uniquely associated, andtransmitting the encoded audiovisual data to the client device.
  • 2. The method of claim 1, wherein the client device is one of the group consisting of: a television, a television set-top box, a tablet computer, a laptop computer, a desktop computer, and a smartphone.
  • 3. The method according to claim 1, wherein the graphical application is one of the group consisting of: a web browser and a menu interface.
  • 4. The method according to claim 1, wherein the encoding comprises dividing the screen into blocks of pixels, the method further comprising: after receiving the one or more paint instructions and before computing the hash value, determining the smallest rectangle consisting of whole blocks of pixels that surrounds the graphical object;requesting that the layout engine repaint the smallest surrounding rectangle; andreceiving, from the layout engine, painting data that include at least one paint instruction having parameters that reflect the smallest surrounding rectangle, wherein computing the hash value is based on the painting data.
  • 5. The method according to claim 1, further comprising: determining that the hash value is contained within the cache memory by comparing the hash value to a stored hash value of a cached image that forms part of an animation.
  • 6. A tangible device on which is stored non-transitory computer program code for providing an image to a client device from an application execution environment having a layout engine that assembles graphical components into a graphical user interface screen for a graphical application, and a rendering library that renders graphical components into pixels, the computer program code comprising: program code for receiving, from the layout engine, one or more paint instructions having parameters that pertain to a given graphical object;program code for computing a hash value based on the received one or more paint instructions;program code for retrieving, from a cache memory, encoded audiovisual data that are uniquely associated with the hash value, and transmitting the retrieved audiovisual data to the client device when the hash value is contained within the cache memory; andprogram code for: forwarding the received one or more paint instructions to the rendering library for rendering the graphical object into pixels according to the one or more paint instructions,encoding the rendered pixels into encoded audiovisual data,storing the hash value and the encoded audiovisual data in the cache memory, wherein the hash value and the encoded audiovisual data are uniquely associated, andtransmitting the encoded audiovisual data to the client device, when the hash value is not contained within the cache memory.
  • 7. The device according to claim 6, wherein the client device is one of the group consisting of: a television, a television set-top box, a tablet computer, a laptop computer, a desktop computer, and a smartphone.
  • 8. The device according to claim 6, wherein the graphical application is one of the group consisting of: a web browser and a menu interface.
  • 9. The device according to claim 6, wherein the program code for encoding comprises program code for dividing the screen into blocks of pixels, the computer program code further comprising: program code for determining the smallest rectangle consisting of whole blocks of pixels that surrounds the graphical object after receiving the painting data and before computing the hash value;program code for requesting that the layout engine repaint the smallest surrounding rectangle; andprogram code for receiving, from the layout engine, painting data that include at least one paint instruction having parameters that reflect the smallest surrounding rectangle, wherein computing the hash value is based on the painting data.
  • 10. The device according to claim 6, further comprising: program code for determining that the hash value is contained within the cache memory by comparing the hash value to a stored hash value of a cached image that forms part of an animation.
  • 11. The device according to claim 6, further comprising: program code for receiving a current image into a computing processor;program code for receiving a previously rendered image into the computer processor, the previously rendered image being uniquely associated with an encoded image in the cache memory;program code for transmitting to the client device the cached, encoded image without encoding the current image when the current image and the previously rendered image are identical; andprogram code for: encoding the current image according to a predictive encoding scheme,storing the encoded current image in the cache memory, andtransmitting to the client device the encoded current image when the current image and the previously rendered image are not identical but share at least a given minimum percentage of their pixels.
  • 12. The device according to claim 11, wherein the predictive encoding scheme is an MPEG encoding scheme.
  • 13. The device according to claim 11, wherein the previously rendered image was not rendered immediately previously to the current image.
  • 14. The device according to claim 11, wherein the previously rendered image is uniquely associated with a predictively encoded image in the cache memory.
  • 15. The device according to claim 11, further comprising program code for computing a hash value for each unique chain of images that forms an animation, the hash value being a function of all images in the chain of images and a screen displacement.
  • 16. The device according to claim 6, further comprising program code for forming two encoded MPEG slices from data comprising a given encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded macro blocks, the program code comprising: program code for locating, in the given MPEG slice, a location of a macro block that is encoded according to a variable length code;program code for decoding the encoded macroblock according to the variable length code;program code for altering a DC luma value in the decoded macroblock; andprogram code for encoding the altered macroblock according to the variable length code,wherein the first formed MPEG slice consists of the data of the given MPEG slice up to but not including the encoded macro block, and the second formed MPEG slice consists of the encoded macroblock and any subsequent encoded macroblocks in the given MPEG slice.
  • 17. The device according to claim 6, further comprising program code for combining a first encoded MPEG slice and a second encoded MPEG slice to form a third encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded macro blocks, the program code comprising: program code for decoding the first macro block of the second slice according to a variable length code;program code for altering a DC luma value in the decoded macroblock;program code for encoding the altered macroblock according to the variable length code; andprogram code for concatenating the data of the first slice with the encoded macro block and the undecoded data of the second slice to form the third slice.
  • 18. A system for providing an image to a client device from an application execution environment having a layout engine that assembles graphical components into a graphical user interface screen for a graphical application, and a rendering library that renders graphical components into pixels, the system comprising: a memory;a shim comprising hardware or a combination of hardware and software that is configured to: receive, from the layout engine, one or more paint instructions having parameters that pertain to a given graphical object,compute a hash value based on the received one or more paint instructions, andwhen the hash value is not contained within the memory, forward the received one or more paint instructions to the rendering library for rendering the graphical object into pixels according to the one or more paint instructions; anda controller comprising hardware or a combination of hardware and software that is configured to: retrieve, from the memory, encoded audiovisual data that are uniquely associated with the hash value, andtransmit the retrieved audiovisual data to the client device when the hash value is contained within the memory; andtransmit, to the client device, encoded audiovisual data comprising a rendering of the graphical object into pixels according to the received one or more paint instructions when the hash value is not contained within the memory.
  • 19. The system according to claim 18, wherein the client device is one of the group consisting of: a television, a television set-top box, a tablet computer, a laptop computer, a desktop computer, and a smartphone.
  • 20. The system according to claim 18, wherein the graphical application is one of the group consisting of: a web browser and a menu interface.
  • 21. The system according to claim 18, wherein the memory stores a sequence of images that collectively form an animation, and wherein the controller is further configured to determine that the hash value is contained within the memory by comparing the hash value to a stored hash value of a cached image that forms part of the animation.
  • 22. The system according to claim 18, wherein the audiovisual data are encoded according to an MPEG encoding scheme.
  • 23. The system according to claim 18, further comprising a block-based encoder that is configured to form two encoded MPEG slices from data comprising a given encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded macro blocks, by: locating, in the given MPEG slice, a location of a macro block that is encoded according to a variable length code; decoding the encoded macroblock according to the variable length code;altering a DC luma value in the decoded macroblock; andencoding the altered macroblock according to the variable length code,wherein the first formed MPEG slice consists of the data of the given MPEG slice up to but not including the encoded macro block, and the second formed MPEG slice consists of the encoded macroblock and any subsequent encoded macroblocks in the given MPEG slice.
  • 24. The system according to claim 18, further comprising a block-based encoder that is configured to combine a first encoded MPEG slice and a second encoded MPEG slice to form a third encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded macroblocks, by: decoding the first macro block of the second slice according to a variable length code;altering a DC luma value in the decoded macroblock; Pencoding the altered macroblock according to the variable length code; andconcatenating the data of the first slice with the encoded macro block and the undecoded data of the second slice to form the third slice.
US Referenced Citations (707)
Number Name Date Kind
3889050 Thompson Jun 1975 A
3934079 Barnhart Jan 1976 A
3997718 Ricketts et al. Dec 1976 A
4002843 Rackman Jan 1977 A
4032972 Saylor Jun 1977 A
4077006 Nicholson Feb 1978 A
4081831 Tang et al. Mar 1978 A
4107734 Percy et al. Aug 1978 A
4107735 Frohbach Aug 1978 A
4145720 Weintraub et al. Mar 1979 A
4168400 de Couasnon et al. Sep 1979 A
4186438 Benson et al. Jan 1980 A
4222068 Thompson Sep 1980 A
4245245 Matsumoto et al. Jan 1981 A
4247106 Jeffers et al. Jan 1981 A
4253114 Tang et al. Feb 1981 A
4264924 Freeman Apr 1981 A
4264925 Freeman et al. Apr 1981 A
4290142 Schnee et al. Sep 1981 A
4302771 Gargini Nov 1981 A
4308554 Percy et al. Dec 1981 A
4350980 Ward Sep 1982 A
4367557 Stern et al. Jan 1983 A
4395780 Gohm et al. Jul 1983 A
4408225 Ensinger et al. Oct 1983 A
4450477 Lovett May 1984 A
4454538 Toriumi Jun 1984 A
4466017 Banker Aug 1984 A
4471380 Mobley Sep 1984 A
4475123 Dumbauld et al. Oct 1984 A
4484217 Block et al. Nov 1984 A
4491983 Pinnow et al. Jan 1985 A
4506387 Walter Mar 1985 A
4507680 Freeman Mar 1985 A
4509073 Baran et al. Apr 1985 A
4523228 Banker Jun 1985 A
4533948 McNamara et al. Aug 1985 A
4536791 Campbell et al. Aug 1985 A
4538174 Gargini et al. Aug 1985 A
4538176 Nakajima et al. Aug 1985 A
4553161 Citta Nov 1985 A
4554581 Tentler et al. Nov 1985 A
4555561 Sugimori et al. Nov 1985 A
4562465 Glaab Dec 1985 A
4567517 Mobley Jan 1986 A
4573072 Freeman Feb 1986 A
4591906 Morales-Garza et al. May 1986 A
4602279 Freeman Jul 1986 A
4614970 Clupper et al. Sep 1986 A
4616263 Eichelberger Oct 1986 A
4625235 Watson Nov 1986 A
4627105 Ohashi et al. Dec 1986 A
4633462 Stifle et al. Dec 1986 A
4670904 Rumreich Jun 1987 A
4682360 Frederiksen Jul 1987 A
4695880 Johnson et al. Sep 1987 A
4706121 Young Nov 1987 A
4706285 Rumreich Nov 1987 A
4709418 Fox et al. Nov 1987 A
4710971 Nozaki et al. Dec 1987 A
4718086 Rumreich et al. Jan 1988 A
4732764 Hemingway et al. Mar 1988 A
4734764 Pocock et al. Mar 1988 A
4748689 Mohr May 1988 A
4749992 Fitzemeyer et al. Jun 1988 A
4750036 Martinez Jun 1988 A
4754426 Rast et al. Jun 1988 A
4760442 O'Connell et al. Jul 1988 A
4763317 Lehman et al. Aug 1988 A
4769833 Farleigh et al. Sep 1988 A
4769838 Hasegawa Sep 1988 A
4789863 Bush Dec 1988 A
4792849 McCalley et al. Dec 1988 A
4801190 Imoto Jan 1989 A
4805134 Calo et al. Feb 1989 A
4807031 Broughton et al. Feb 1989 A
4816905 Tweedy et al. Mar 1989 A
4821102 Ichikawa et al. Apr 1989 A
4823386 Dumbauld et al. Apr 1989 A
4827253 Maltz May 1989 A
4827511 Masuko May 1989 A
4829372 McCalley et al. May 1989 A
4829558 Welsh May 1989 A
4847698 Freeman Jul 1989 A
4847699 Freeman Jul 1989 A
4847700 Freeman Jul 1989 A
4848698 Newell et al. Jul 1989 A
4860379 Schoeneberger et al. Aug 1989 A
4864613 Van Cleave Sep 1989 A
4876592 Von Kohorn Oct 1989 A
4889369 Albrecht Dec 1989 A
4890320 Monslow et al. Dec 1989 A
4891694 Way Jan 1990 A
4901367 Nicholson Feb 1990 A
4903126 Kassatly Feb 1990 A
4905094 Pocock et al. Feb 1990 A
4912760 West, Jr. et al. Mar 1990 A
4918516 Freeman Apr 1990 A
4920566 Robbins et al. Apr 1990 A
4922532 Farmer et al. May 1990 A
4924303 Brandon et al. May 1990 A
4924498 Farmer et al. May 1990 A
4937821 Boulton Jun 1990 A
4941040 Pocock et al. Jul 1990 A
4947244 Fenwick et al. Aug 1990 A
4961211 Tsugane et al. Oct 1990 A
4963995 Lang Oct 1990 A
4975771 Kassatly Dec 1990 A
4989245 Bennett Jan 1991 A
4994909 Graves et al. Feb 1991 A
4995078 Monslow et al. Feb 1991 A
5003384 Durden et al. Mar 1991 A
5008934 Endoh Apr 1991 A
5014125 Pocock et al. May 1991 A
5027400 Baji et al. Jun 1991 A
5051720 Kittirutsunetorn Sep 1991 A
5051822 Rhoades Sep 1991 A
5057917 Shalkauser et al. Oct 1991 A
5058160 Banker et al. Oct 1991 A
5060262 Bevins, Jr. et al. Oct 1991 A
5077607 Johnson et al. Dec 1991 A
5083800 Lockton Jan 1992 A
5088111 McNamara et al. Feb 1992 A
5093718 Hoarty et al. Mar 1992 A
5109414 Harvey et al. Apr 1992 A
5113496 McCalley et al. May 1992 A
5119188 McCalley et al. Jun 1992 A
5130792 Tindell et al. Jul 1992 A
5132992 Yurt et al. Jul 1992 A
5133009 Rumreich Jul 1992 A
5133079 Ballantyne et al. Jul 1992 A
5136411 Paik et al. Aug 1992 A
5142575 Farmer et al. Aug 1992 A
5144448 Hornbaker, III et al. Sep 1992 A
5155591 Wachob Oct 1992 A
5172413 Bradley et al. Dec 1992 A
5191410 McCalley et al. Mar 1993 A
5195092 Wilson et al. Mar 1993 A
5208665 McCalley et al. May 1993 A
5220420 Hoarty et al. Jun 1993 A
5230019 Yanagimichi et al. Jul 1993 A
5231494 Wachob Jul 1993 A
5236199 Thompson, Jr. Aug 1993 A
5247347 Letteral et al. Sep 1993 A
5253341 Rozmanith et al. Oct 1993 A
5262854 Ng Nov 1993 A
5262860 Fitzpatrick et al. Nov 1993 A
5303388 Kreitman et al. Apr 1994 A
5319455 Hoarty et al. Jun 1994 A
5319707 Wasilewski et al. Jun 1994 A
5321440 Yanagihara et al. Jun 1994 A
5321514 Martinez Jun 1994 A
5351129 Lai Sep 1994 A
5355162 Yazolino et al. Oct 1994 A
5359601 Wasilewski et al. Oct 1994 A
5361091 Hoarty et al. Nov 1994 A
5371532 Gelman et al. Dec 1994 A
5404393 Remillard Apr 1995 A
5408274 Chang et al. Apr 1995 A
5410343 Coddington et al. Apr 1995 A
5410344 Graves et al. Apr 1995 A
5412415 Cook et al. May 1995 A
5412720 Hoarty May 1995 A
5418559 Blahut May 1995 A
5422674 Hooper et al. Jun 1995 A
5422887 Diepstraten et al. Jun 1995 A
5442389 Blahut et al. Aug 1995 A
5442390 Hooper et al. Aug 1995 A
5442700 Snell et al. Aug 1995 A
5446490 Blahut et al. Aug 1995 A
5469283 Vinel et al. Nov 1995 A
5469431 Wendorf et al. Nov 1995 A
5471263 Odaka Nov 1995 A
5481542 Logston et al. Jan 1996 A
5485197 Hoarty Jan 1996 A
5487066 McNamara et al. Jan 1996 A
5493638 Hooper et al. Feb 1996 A
5495283 Cowe Feb 1996 A
5495295 Long Feb 1996 A
5497187 Banker et al. Mar 1996 A
5517250 Hoogenboom et al. May 1996 A
5526034 Hoarty et al. Jun 1996 A
5528281 Grady et al. Jun 1996 A
5537397 Abramson Jul 1996 A
5537404 Bentley et al. Jul 1996 A
5539449 Blahut et al. Jul 1996 A
RE35314 Logg Aug 1996 E
5548340 Bertram Aug 1996 A
5550578 Hoarty et al. Aug 1996 A
5557316 Hoarty et al. Sep 1996 A
5559549 Hendricks et al. Sep 1996 A
5561708 Remillard Oct 1996 A
5570126 Blahut et al. Oct 1996 A
5570363 Holm Oct 1996 A
5579143 Huber Nov 1996 A
5581653 Todd Dec 1996 A
5583927 Ely et al. Dec 1996 A
5587734 Lauder et al. Dec 1996 A
5589885 Ooi Dec 1996 A
5592470 Rudrapatna et al. Jan 1997 A
5594507 Hoarty Jan 1997 A
5594723 Tibi Jan 1997 A
5594938 Engel Jan 1997 A
5596693 Needle et al. Jan 1997 A
5600364 Hendricks et al. Feb 1997 A
5600573 Hendricks et al. Feb 1997 A
5608446 Carr et al. Mar 1997 A
5617145 Huang et al. Apr 1997 A
5621464 Teo et al. Apr 1997 A
5625404 Grady et al. Apr 1997 A
5630757 Gagin et al. May 1997 A
5631693 Wunderlich et al. May 1997 A
5631846 Szurkowski May 1997 A
5632003 Davidson et al. May 1997 A
5649283 Galler et al. Jul 1997 A
5668592 Spaulding, II Sep 1997 A
5668599 Cheney et al. Sep 1997 A
5708767 Yeo et al. Jan 1998 A
5710815 Ming et al. Jan 1998 A
5712906 Grady et al. Jan 1998 A
5740307 Lane Apr 1998 A
5742289 Naylor et al. Apr 1998 A
5748234 Lippincott May 1998 A
5754941 Sharpe et al. May 1998 A
5786527 Tarte Jul 1998 A
5790174 Richard, III et al. Aug 1998 A
5802283 Grady et al. Sep 1998 A
5812665 Hoarty et al. Sep 1998 A
5812786 Seazholtz et al. Sep 1998 A
5815604 Simons et al. Sep 1998 A
5818438 Howe et al. Oct 1998 A
5821945 Yeo et al. Oct 1998 A
5822537 Katseff et al. Oct 1998 A
5828371 Cline et al. Oct 1998 A
5844594 Ferguson Dec 1998 A
5845083 Hamadani et al. Dec 1998 A
5862325 Reed et al. Jan 1999 A
5864820 Case Jan 1999 A
5867208 McLaren Feb 1999 A
5883661 Hoarty et al. Mar 1999 A
5903727 Nielsen May 1999 A
5903816 Broadwin et al. May 1999 A
5905522 Lawler May 1999 A
5907681 Bates et al. May 1999 A
5917822 Lyles et al. Jun 1999 A
5946352 Rowlands et al. Aug 1999 A
5952943 Walsh et al. Sep 1999 A
5959690 Toebes et al. Sep 1999 A
5961603 Kunkel et al. Oct 1999 A
5963203 Goldberg et al. Oct 1999 A
5966163 Lin et al. Oct 1999 A
5978756 Walker et al. Nov 1999 A
5982445 Eyer et al. Nov 1999 A
5990862 Lewis Nov 1999 A
5995146 Rasmusse Nov 1999 A
5995488 Kalhunte et al. Nov 1999 A
5999970 Krisbergh et al. Dec 1999 A
6014416 Shin et al. Jan 2000 A
6021386 Davis et al. Feb 2000 A
6031989 Cordell Feb 2000 A
6034678 Hoarty Mar 2000 A
6049539 Lee et al. Apr 2000 A
6049831 Gardell et al. Apr 2000 A
6052555 Ferguson Apr 2000 A
6055314 Spies et al. Apr 2000 A
6055315 Doyle et al. Apr 2000 A
6064377 Hoarty et al. May 2000 A
6078328 Schumann et al. Jun 2000 A
6084908 Chiang et al. Jul 2000 A
6100883 Hoarty Aug 2000 A
6108625 Kim Aug 2000 A
6131182 Beakes et al. Oct 2000 A
6141645 Chi-Min et al. Oct 2000 A
6141693 Perlman et al. Oct 2000 A
6144698 Poon et al. Nov 2000 A
6167084 Wang et al. Dec 2000 A
6169573 Sampath-Kumar et al. Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6182072 Leak et al. Jan 2001 B1
6184878 Alonso et al. Feb 2001 B1
6192081 Chiang et al. Feb 2001 B1
6198822 Doyle et al. Mar 2001 B1
6205582 Hoarty Mar 2001 B1
6226041 Florencio et al. May 2001 B1
6236730 Cowieson et al. May 2001 B1
6243418 Kim Jun 2001 B1
6253238 Lauder et al. Jun 2001 B1
6256047 Isobe et al. Jul 2001 B1
6259826 Pollard et al. Jul 2001 B1
6266369 Wang et al. Jul 2001 B1
6266684 Kraus et al. Jul 2001 B1
6275496 Burns et al. Aug 2001 B1
6292194 Powell, III Sep 2001 B1
6305020 Hoarty et al. Oct 2001 B1
6317151 Ohsuga et al. Nov 2001 B1
6317885 Fries Nov 2001 B1
6349284 Park et al. Feb 2002 B1
6385771 Gordon May 2002 B1
6386980 Nishino et al. May 2002 B1
6389075 Wang et al. May 2002 B2
6389218 Gordon et al. May 2002 B2
6415031 Colligan et al. Jul 2002 B1
6415437 Ludvig et al. Jul 2002 B1
6438140 Jungers et al. Aug 2002 B1
6446037 Fielder et al. Sep 2002 B1
6459427 Mao et al. Oct 2002 B1
6477182 Calderone Nov 2002 B2
6481012 Gordon et al. Nov 2002 B1
6512793 Maeda Jan 2003 B1
6525746 Lau et al. Feb 2003 B1
6536043 Guedalia Mar 2003 B1
6557041 Mallart Apr 2003 B2
6560496 Michnener May 2003 B1
6564378 Satterfield et al. May 2003 B1
6578201 LaRocca et al. Jun 2003 B1
6579184 Tanskanen Jun 2003 B1
6584153 Gordon et al. Jun 2003 B1
6588017 Calderone Jul 2003 B1
6598229 Smyth et al. Jul 2003 B2
6604224 Armstrong et al. Aug 2003 B1
6614442 Ouyang et al. Sep 2003 B1
6621870 Gordon et al. Sep 2003 B1
6625574 Taniguchi et al. Sep 2003 B1
6639896 Goode et al. Oct 2003 B1
6645076 Sugai Nov 2003 B1
6651252 Gordon et al. Nov 2003 B1
6657647 Bright Dec 2003 B1
6675385 Wang Jan 2004 B1
6675387 Boucher Jan 2004 B1
6681326 Son et al. Jan 2004 B2
6681397 Tsai et al. Jan 2004 B1
6684400 Goode et al. Jan 2004 B1
6687663 McGrath et al. Feb 2004 B1
6691208 Dandrea et al. Feb 2004 B2
6697376 Son et al. Feb 2004 B1
6704359 Bayrakeri et al. Mar 2004 B1
6717600 Dutta et al. Apr 2004 B2
6718552 Goode Apr 2004 B1
6721794 Taylor et al. Apr 2004 B2
6721956 Wasilewski Apr 2004 B2
6727929 Bates et al. Apr 2004 B1
6732370 Gordon et al. May 2004 B1
6747991 Hemy et al. Jun 2004 B1
6754271 Gordon et al. Jun 2004 B1
6754905 Gordon et al. Jun 2004 B2
6758540 Adolph et al. Jul 2004 B1
6766407 Lisitsa et al. Jul 2004 B1
6771704 Hannah Aug 2004 B1
6785902 Zigmond et al. Aug 2004 B1
6807528 Truman et al. Oct 2004 B1
6810528 Chatani Oct 2004 B1
6817947 Tanskanen Nov 2004 B2
6886178 Mao et al. Apr 2005 B1
6907574 Xu et al. Jun 2005 B2
6931291 Alvarez-Tinoco et al. Aug 2005 B1
6941019 Mitchell et al. Sep 2005 B1
6941574 Broadwin et al. Sep 2005 B1
6947509 Wong Sep 2005 B1
6952221 Holtz et al. Oct 2005 B1
6956899 Hall et al. Oct 2005 B2
7030890 Jouet et al. Apr 2006 B1
7050113 Campisano et al. May 2006 B2
7089577 Rakib et al. Aug 2006 B1
7095402 Kunil et al. Aug 2006 B2
7114167 Slemmer et al. Sep 2006 B2
7146615 Hervet et al. Dec 2006 B1
7158676 Rainsford Jan 2007 B1
7200836 Brodersen et al. Apr 2007 B2
7212573 Winger May 2007 B2
7224731 Mehrotra May 2007 B2
7272556 Aguilar et al. Sep 2007 B1
7310619 Baar et al. Dec 2007 B2
7325043 Rosenberg et al. Jan 2008 B1
7346111 Winger et al. Mar 2008 B2
7360230 Paz et al. Apr 2008 B1
7412423 Asano Aug 2008 B1
7412505 Slemmer et al. Aug 2008 B2
7421082 Kamiya et al. Sep 2008 B2
7444306 Varble Oct 2008 B2
7444418 Chou et al. Oct 2008 B2
7500235 Maynard et al. Mar 2009 B2
7508941 O'Toole et al. Mar 2009 B1
7512577 Slemmer et al. Mar 2009 B2
7543073 Chou et al. Jun 2009 B2
7596764 Vienneau et al. Sep 2009 B2
7623575 Winger Nov 2009 B2
7669220 Goode Feb 2010 B2
7742609 Yeakel et al. Jun 2010 B2
7743400 Kurauchi Jun 2010 B2
7751572 Villemoes et al. Jul 2010 B2
7757157 Fukuda Jul 2010 B1
7830388 Lu Nov 2010 B1
7840905 Weber et al. Nov 2010 B1
7936819 Craig et al. May 2011 B2
7970263 Asch Jun 2011 B1
7987489 Krzyzanowski et al. Jul 2011 B2
8027353 Damola et al. Sep 2011 B2
8036271 Winger et al. Oct 2011 B2
8046798 Schlack et al. Oct 2011 B1
8074248 Sigmon et al. Dec 2011 B2
8118676 Craig et al. Feb 2012 B2
8136033 Bhargava et al. Mar 2012 B1
8149917 Zhang et al. Apr 2012 B2
8155194 Winger et al. Apr 2012 B2
8155202 Landau Apr 2012 B2
8170107 Winger May 2012 B2
8194862 Herr et al. Jun 2012 B2
8243630 Luo et al. Aug 2012 B2
8270439 Herr et al. Sep 2012 B2
8284842 Craig et al. Oct 2012 B2
8296424 Malloy et al. Oct 2012 B2
8370869 Paek et al. Feb 2013 B2
8411754 Zhang et al. Apr 2013 B2
8442110 Pavlovskaia et al. May 2013 B2
8473996 Gordon et al. Jun 2013 B2
8619867 Craig et al. Dec 2013 B2
8621500 Weaver et al. Dec 2013 B2
20010008845 Kusuda et al. Jul 2001 A1
20010049301 Masuda et al. Dec 2001 A1
20020007491 Schiller et al. Jan 2002 A1
20020013812 Krueger et al. Jan 2002 A1
20020016161 Dellien et al. Feb 2002 A1
20020021353 DeNies Feb 2002 A1
20020026642 Augenbraun et al. Feb 2002 A1
20020027567 Niamir Mar 2002 A1
20020032697 French et al. Mar 2002 A1
20020040482 Sextro et al. Apr 2002 A1
20020047899 Son et al. Apr 2002 A1
20020049975 Thomas et al. Apr 2002 A1
20020056083 Istvan May 2002 A1
20020056107 Schlack May 2002 A1
20020056136 Wistendahl et al. May 2002 A1
20020059644 Andrade et al. May 2002 A1
20020062484 De Lange et al. May 2002 A1
20020067766 Sakamoto et al. Jun 2002 A1
20020069267 Thiele Jun 2002 A1
20020072408 Kumagai Jun 2002 A1
20020078171 Schneider Jun 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020083464 Tomsen et al. Jun 2002 A1
20020095689 Novak Jul 2002 A1
20020105531 Niemi Aug 2002 A1
20020108121 Alao et al. Aug 2002 A1
20020131511 Zenoni Sep 2002 A1
20020136298 Anantharamu et al. Sep 2002 A1
20020152318 Menon et al. Oct 2002 A1
20020171765 Waki et al. Nov 2002 A1
20020175931 Holtz et al. Nov 2002 A1
20020178447 Plotnick et al. Nov 2002 A1
20020188628 Cooper et al. Dec 2002 A1
20020191851 Keinan Dec 2002 A1
20020194592 Tsuchida et al. Dec 2002 A1
20020196746 Allen Dec 2002 A1
20030018796 Chou et al. Jan 2003 A1
20030020671 Santoro et al. Jan 2003 A1
20030027517 Callway et al. Feb 2003 A1
20030035486 Kato et al. Feb 2003 A1
20030038893 Rajamaki et al. Feb 2003 A1
20030039398 McIntyre Feb 2003 A1
20030046690 Miller Mar 2003 A1
20030051253 Barone, Jr. Mar 2003 A1
20030058941 Chen et al. Mar 2003 A1
20030061451 Beyda Mar 2003 A1
20030065739 Shnier Apr 2003 A1
20030071792 Safadi Apr 2003 A1
20030072372 Shen et al. Apr 2003 A1
20030076546 Johnson et al. Apr 2003 A1
20030088328 Nishio et al. May 2003 A1
20030088400 Nishio et al. May 2003 A1
20030095790 Joshi May 2003 A1
20030107443 Yamamoto Jun 2003 A1
20030122836 Doyle et al. Jul 2003 A1
20030123664 Pedlow, Jr. et al. Jul 2003 A1
20030126608 Safadi Jul 2003 A1
20030126611 Chernock et al. Jul 2003 A1
20030131349 Kuczynski-Brown Jul 2003 A1
20030135860 Dureau Jul 2003 A1
20030169373 Peters et al. Sep 2003 A1
20030177199 Zenoni Sep 2003 A1
20030188309 Yuen Oct 2003 A1
20030189980 Dvir et al. Oct 2003 A1
20030196174 Pierre Cote et al. Oct 2003 A1
20030208768 Urdang et al. Nov 2003 A1
20030229719 Iwata et al. Dec 2003 A1
20030229900 Reisman Dec 2003 A1
20030231218 Amadio Dec 2003 A1
20040016000 Zhang et al. Jan 2004 A1
20040034873 Zenoni Feb 2004 A1
20040040035 Carlucci et al. Feb 2004 A1
20040078822 Breen et al. Apr 2004 A1
20040088375 Sethi et al. May 2004 A1
20040091171 Bone May 2004 A1
20040111526 Baldwin et al. Jun 2004 A1
20040117827 Karaoguz et al. Jun 2004 A1
20040128686 Boyer et al. Jul 2004 A1
20040133704 Krzyzanowski et al. Jul 2004 A1
20040136698 Mock Jul 2004 A1
20040139158 Datta Jul 2004 A1
20040157662 Tsuchiya Aug 2004 A1
20040163101 Swix et al. Aug 2004 A1
20040184542 Fujimoto Sep 2004 A1
20040193648 Lai et al. Sep 2004 A1
20040210824 Shoff et al. Oct 2004 A1
20040261106 Hoffman Dec 2004 A1
20040261114 Addington et al. Dec 2004 A1
20050015259 Thumpudi et al. Jan 2005 A1
20050015816 Christofalo et al. Jan 2005 A1
20050021830 Urzaiz et al. Jan 2005 A1
20050034155 Gordon et al. Feb 2005 A1
20050034162 White et al. Feb 2005 A1
20050044575 Der Kuyl Feb 2005 A1
20050055685 Maynard et al. Mar 2005 A1
20050055721 Zigmond et al. Mar 2005 A1
20050071876 van Beek Mar 2005 A1
20050076134 Bialik et al. Apr 2005 A1
20050089091 Kim et al. Apr 2005 A1
20050091690 Delpuch et al. Apr 2005 A1
20050091695 Paz et al. Apr 2005 A1
20050105608 Coleman et al. May 2005 A1
20050114906 Hoarty et al. May 2005 A1
20050132305 Guichard et al. Jun 2005 A1
20050135385 Jenkins et al. Jun 2005 A1
20050141613 Kelly et al. Jun 2005 A1
20050149988 Grannan Jul 2005 A1
20050160088 Scallan et al. Jul 2005 A1
20050166257 Feinleib et al. Jul 2005 A1
20050180502 Puri Aug 2005 A1
20050198682 Wright Sep 2005 A1
20050213586 Cyganski et al. Sep 2005 A1
20050216933 Black Sep 2005 A1
20050216940 Black Sep 2005 A1
20050226426 Oomen et al. Oct 2005 A1
20050273832 Zigmond et al. Dec 2005 A1
20050283741 Balabanovic et al. Dec 2005 A1
20060001737 Dawson et al. Jan 2006 A1
20060020960 Relan et al. Jan 2006 A1
20060020994 Crane et al. Jan 2006 A1
20060031906 Kaneda Feb 2006 A1
20060039481 Shen et al. Feb 2006 A1
20060041910 Hatanaka et al. Feb 2006 A1
20060088105 Shen et al. Apr 2006 A1
20060095944 Demircin et al. May 2006 A1
20060112338 Joung et al. May 2006 A1
20060117340 Pavlovskaia et al. Jun 2006 A1
20060143678 Cho et al. Jun 2006 A1
20060161538 Kiilerich Jul 2006 A1
20060173985 Moore Aug 2006 A1
20060174026 Robinson et al. Aug 2006 A1
20060174289 Theberge Aug 2006 A1
20060195884 van Zoest et al. Aug 2006 A1
20060212203 Furuno Sep 2006 A1
20060218601 Michel Sep 2006 A1
20060230428 Craig et al. Oct 2006 A1
20060242570 Croft et al. Oct 2006 A1
20060256865 Westerman Nov 2006 A1
20060269086 Page et al. Nov 2006 A1
20060271985 Hoffman et al. Nov 2006 A1
20060285586 Westerman Dec 2006 A1
20060285819 Kelly et al. Dec 2006 A1
20070009035 Craig et al. Jan 2007 A1
20070009036 Craig et al. Jan 2007 A1
20070009042 Craig et al. Jan 2007 A1
20070025639 Zhou et al. Feb 2007 A1
20070033528 Merrit et al. Feb 2007 A1
20070033631 Gordon et al. Feb 2007 A1
20070074251 Oguz et al. Mar 2007 A1
20070079325 de Heer Apr 2007 A1
20070115941 Patel et al. May 2007 A1
20070124282 Wittkotter May 2007 A1
20070124795 McKissick et al. May 2007 A1
20070130446 Minakami Jun 2007 A1
20070130592 Haeusel Jun 2007 A1
20070152984 Ording et al. Jul 2007 A1
20070162953 Bolliger et al. Jul 2007 A1
20070172061 Pinder Jul 2007 A1
20070174790 Jing et al. Jul 2007 A1
20070237232 Chang et al. Oct 2007 A1
20070300280 Turner et al. Dec 2007 A1
20080046928 Poling et al. Feb 2008 A1
20080052742 Kopf et al. Feb 2008 A1
20080066135 Brodersen et al. Mar 2008 A1
20080084503 Kondo Apr 2008 A1
20080086688 Chandratillake et al. Apr 2008 A1
20080094368 Ording et al. Apr 2008 A1
20080098450 Wu et al. Apr 2008 A1
20080104520 Swenson et al. May 2008 A1
20080127255 Ress et al. May 2008 A1
20080154583 Goto et al. Jun 2008 A1
20080163059 Craner Jul 2008 A1
20080163286 Rudolph et al. Jul 2008 A1
20080170619 Landau Jul 2008 A1
20080170622 Gordon et al. Jul 2008 A1
20080178125 Elsbree et al. Jul 2008 A1
20080178243 Dong et al. Jul 2008 A1
20080178249 Gordon et al. Jul 2008 A1
20080189740 Carpenter et al. Aug 2008 A1
20080195573 Onoda et al. Aug 2008 A1
20080201736 Gordon et al. Aug 2008 A1
20080212942 Gordon et al. Sep 2008 A1
20080232452 Sullivan et al. Sep 2008 A1
20080243918 Holtman Oct 2008 A1
20080243998 Oh et al. Oct 2008 A1
20080246759 Summers Oct 2008 A1
20080253440 Srinivasan et al. Oct 2008 A1
20080271080 Grossweiler et al. Oct 2008 A1
20090003446 Wu et al. Jan 2009 A1
20090003705 Zou et al. Jan 2009 A1
20090007199 La Joie Jan 2009 A1
20090025027 Craner Jan 2009 A1
20090031341 Schlack et al. Jan 2009 A1
20090041118 Pavlovskaia et al. Feb 2009 A1
20090083781 Yang et al. Mar 2009 A1
20090083813 Dolce et al. Mar 2009 A1
20090083824 McCarthy et al. Mar 2009 A1
20090089188 Ku et al. Apr 2009 A1
20090094113 Berry et al. Apr 2009 A1
20090094646 Walter et al. Apr 2009 A1
20090100465 Kulakowski Apr 2009 A1
20090100489 Strothmann Apr 2009 A1
20090106269 Zuckerman et al. Apr 2009 A1
20090106386 Zuckerman et al. Apr 2009 A1
20090106392 Zuckerman et al. Apr 2009 A1
20090106425 Zuckerman et al. Apr 2009 A1
20090106441 Zuckerman et al. Apr 2009 A1
20090106451 Zuckerman et al. Apr 2009 A1
20090106511 Zuckerman et al. Apr 2009 A1
20090113009 Slemmer et al. Apr 2009 A1
20090132942 Santoro et al. May 2009 A1
20090138966 Krause et al. May 2009 A1
20090144781 Glaser et al. Jun 2009 A1
20090146779 Kumar et al. Jun 2009 A1
20090157868 Chaudhry Jun 2009 A1
20090158369 Van Vleck et al. Jun 2009 A1
20090160694 Di Flora Jun 2009 A1
20090172757 Aldrey et al. Jul 2009 A1
20090178098 Westbrook et al. Jul 2009 A1
20090183219 Maynard et al. Jul 2009 A1
20090189890 Corbett et al. Jul 2009 A1
20090193452 Russ et al. Jul 2009 A1
20090196346 Zhang et al. Aug 2009 A1
20090204920 Beverley et al. Aug 2009 A1
20090210899 Lawrence-Apfelbaum et al. Aug 2009 A1
20090225790 Shay et al. Sep 2009 A1
20090228620 Thomas et al. Sep 2009 A1
20090228922 Haj-khalil et al. Sep 2009 A1
20090233593 Ergen et al. Sep 2009 A1
20090251478 Maillot et al. Oct 2009 A1
20090254960 Yarom et al. Oct 2009 A1
20090265617 Randall et al. Oct 2009 A1
20090271512 Jorgensen Oct 2009 A1
20090271818 Schlack Oct 2009 A1
20090298535 Klein et al. Dec 2009 A1
20090313674 Ludvig et al. Dec 2009 A1
20090328109 Pavlovskaia et al. Dec 2009 A1
20100033638 O'Donnell et al. Feb 2010 A1
20100035682 Gentile et al. Feb 2010 A1
20100058404 Rouse Mar 2010 A1
20100067571 White et al. Mar 2010 A1
20100077441 Thomas et al. Mar 2010 A1
20100104021 Schmit Apr 2010 A1
20100115573 Srinivasan et al. May 2010 A1
20100118972 Zhang et al. May 2010 A1
20100131996 Gauld May 2010 A1
20100146139 Brockmann Jun 2010 A1
20100158109 Dahlby et al. Jun 2010 A1
20100166071 Wu et al. Jul 2010 A1
20100174776 Westberg et al. Jul 2010 A1
20100175080 Yuen et al. Jul 2010 A1
20100180307 Hayes et al. Jul 2010 A1
20100211983 Chou Aug 2010 A1
20100226428 Thevathasan et al. Sep 2010 A1
20100235861 Schein et al. Sep 2010 A1
20100242073 Gordon et al. Sep 2010 A1
20100251167 DeLuca et al. Sep 2010 A1
20100254370 Jana et al. Oct 2010 A1
20100325655 Perez Dec 2010 A1
20110002376 Ahmed et al. Jan 2011 A1
20110002470 Purnhagen et al. Jan 2011 A1
20110023069 Dowens Jan 2011 A1
20110035227 Lee et al. Feb 2011 A1
20110067061 Karaoguz et al. Mar 2011 A1
20110096828 Chen et al. Apr 2011 A1
20110107375 Stahl et al. May 2011 A1
20110110642 Salomons et al. May 2011 A1
20110150421 Sasaki et al. Jun 2011 A1
20110153776 Opala et al. Jun 2011 A1
20110167468 Lee et al. Jul 2011 A1
20110191684 Greenberg Aug 2011 A1
20110243024 Osterling et al. Oct 2011 A1
20110258584 Williams et al. Oct 2011 A1
20110289536 Poder et al. Nov 2011 A1
20110317982 Xu et al. Dec 2011 A1
20120023126 Jin et al. Jan 2012 A1
20120030212 Koopmans et al. Feb 2012 A1
20120137337 Sigmon et al. May 2012 A1
20120204217 Regis et al. Aug 2012 A1
20120209815 Carson et al. Aug 2012 A1
20120224641 Haberman et al. Sep 2012 A1
20120257671 Brockmann et al. Oct 2012 A1
20130003826 Craig et al. Jan 2013 A1
20130071095 Chauvier et al. Mar 2013 A1
20130086610 Brockmann Apr 2013 A1
20130179787 Brockmann et al. Jul 2013 A1
20130198776 Brockmann Aug 2013 A1
20130254308 Rose et al. Sep 2013 A1
20130272394 Brockmann et al. Oct 2013 A1
20140033036 Gaur et al. Jan 2014 A1
Foreign Referenced Citations (311)
Number Date Country
191599 Apr 2000 AT
198969 Feb 2001 AT
250313 Oct 2003 AT
472152 Jul 2010 AT
475266 Aug 2010 AT
550086 Feb 1986 AU
199060189 Nov 1990 AU
620735 Feb 1992 AU
199184838 Apr 1992 AU
643828 Nov 1993 AU
2004253127 Jan 2005 AU
2005278122 Mar 2006 AU
2010339376 Aug 2012 AU
2011249132 Nov 2012 AU
2011258972 Nov 2012 AU
2011315950 May 2013 AU
682776 Mar 1964 CA
2052477 Mar 1992 CA
1302554 Jun 1992 CA
2163500 May 1996 CA
2231391 May 1997 CA
2273365 Jun 1998 CA
2313133 Jun 1999 CA
2313161 Jun 1999 CA
2528499 Jan 2005 CA
2569407 Mar 2006 CA
2728797 Apr 2010 CA
2787913 Jul 2011 CA
2798541 Dec 2011 CA
2814070 Apr 2012 CA
1507751 Jun 2004 CN
1969555 May 2007 CN
101180109 May 2008 CN
101627424 Jan 2010 CN
101637023 Jan 2010 CN
102007773 Apr 2011 CN
4408355 Oct 1994 DE
69516139 Dec 2000 DE
69132518 Sep 2001 DE
69333207 Jul 2004 DE
98961961 Aug 2007 DE
602008001596 Aug 2010 DE
602006015650 Sep 2010 DE
0093549 Nov 1983 EP
0128771 Dec 1984 EP
0419137 Mar 1991 EP
0449633 Oct 1991 EP
0477786 Apr 1992 EP
0523618 Jan 1993 EP
0534139 Mar 1993 EP
0568453 Nov 1993 EP
0588653 Mar 1994 EP
0594350 Apr 1994 EP
0612916 Aug 1994 EP
0624039 Nov 1994 EP
0638219 Feb 1995 EP
0643523 Mar 1995 EP
0661888 Jul 1995 EP
0714684 Jun 1996 EP
0746158 Dec 1996 EP
0761066 Mar 1997 EP
0789972 Aug 1997 EP
0830786 Mar 1998 EP
0861560 Sep 1998 EP
0933966 Aug 1999 EP
0933966 Aug 1999 EP
1026872 Aug 2000 EP
1038397 Sep 2000 EP
1038399 Sep 2000 EP
1038400 Sep 2000 EP
1038401 Sep 2000 EP
1051039 Nov 2000 EP
1055331 Nov 2000 EP
1120968 Aug 2001 EP
1345446 Sep 2003 EP
1422929 May 2004 EP
1428562 Jun 2004 EP
1521476 Apr 2005 EP
1645115 Apr 2006 EP
1725044 Nov 2006 EP
1767708 Mar 2007 EP
1771003 Apr 2007 EP
1772014 Apr 2007 EP
1877150 Jan 2008 EP
1887148 Feb 2008 EP
1900200 Mar 2008 EP
1902583 Mar 2008 EP
1908293 Apr 2008 EP
1911288 Apr 2008 EP
1918802 May 2008 EP
2100296 Sep 2009 EP
2105019 Sep 2009 EP
2106665 Oct 2009 EP
2116051 Nov 2009 EP
2124440 Nov 2009 EP
2248341 Nov 2010 EP
2269377 Jan 2011 EP
2271098 Jan 2011 EP
2304953 Apr 2011 EP
2364019 Sep 2011 EP
2384001 Nov 2011 EP
2409493 Jan 2012 EP
2477414 Jul 2012 EP
2487919 Aug 2012 EP
2520090 Nov 2012 EP
2567545 Mar 2013 EP
2577437 Apr 2013 EP
2628306 Aug 2013 EP
2632164 Aug 2013 EP
2632165 Aug 2013 EP
2695388 Feb 2014 EP
2207635 Jun 2004 ES
8211463 Jun 1982 FR
2529739 Jan 1984 FR
2891098 Mar 2007 FR
2207838 Feb 1989 GB
2248955 Apr 1992 GB
2290204 Dec 1995 GB
2365649 Feb 2002 GB
2378345 Feb 2003 GB
1134855 Oct 2010 HK
1116323 Dec 2010 HK
19913397 Apr 1992 IE
99586 Feb 1998 IL
215133 Dec 2011 IL
222829 Dec 2012 IL
222830 Dec 2012 IL
225525 Jun 2013 IL
180215 Jan 1998 IN
200701744 Nov 2007 IN
200900856 May 2009 IN
200800214 Jun 2009 IN
3759 Mar 1992 IS
60-054324 Mar 1985 JP
63-033988 Feb 1988 JP
63-263985 Oct 1988 JP
2001-241993 Sep 1989 JP
04-373286 Dec 1992 JP
06-054324 Feb 1994 JP
7015720 Jan 1995 JP
7-160292 Jun 1995 JP
7160292 Jun 1995 JP
8095599 Apr 1996 JP
8-265704 Oct 1996 JP
8265704 Oct 1996 JP
10-228437 Aug 1998 JP
10-510131 Sep 1998 JP
11-134273 May 1999 JP
H11-261966 Sep 1999 JP
2000-152234 May 2000 JP
2001-203995 Jul 2001 JP
2001-245271 Sep 2001 JP
2001-514471 Sep 2001 JP
2002-016920 Jan 2002 JP
2002-057952 Feb 2002 JP
2002-112220 Apr 2002 JP
2002-141810 May 2002 JP
2002-208027 Jul 2002 JP
2002-319991 Oct 2002 JP
2003-506763 Feb 2003 JP
2003-087785 Mar 2003 JP
2003-529234 Sep 2003 JP
2004-501445 Jan 2004 JP
2004-056777 Feb 2004 JP
2004-110850 Apr 2004 JP
2004-112441 Apr 2004 JP
2004-135932 May 2004 JP
2004-264812 Sep 2004 JP
2004-533736 Nov 2004 JP
2004-536381 Dec 2004 JP
2004-536681 Dec 2004 JP
2005-033741 Feb 2005 JP
2005-084987 Mar 2005 JP
2005-095599 Mar 2005 JP
8-095599 Apr 2005 JP
2005-156996 Jun 2005 JP
2005-519382 Jun 2005 JP
2005-523479 Aug 2005 JP
2005-309752 Nov 2005 JP
2006-067280 Mar 2006 JP
2006-512838 Apr 2006 JP
11-88419 Sep 2007 JP
2008-523880 Jul 2008 JP
2008-535622 Sep 2008 JP
04252727 Apr 2009 JP
2009-543386 Dec 2009 JP
2011-108155 Jun 2011 JP
2012-080593 Apr 2012 JP
04996603 Aug 2012 JP
05121711 Jan 2013 JP
53-004612 Oct 2013 JP
05331008 Oct 2013 JP
05405819 Feb 2014 JP
2006067924 Jun 2006 KR
2007038111 Apr 2007 KR
20080001298 Jan 2008 KR
2008024189 Mar 2008 KR
2010111739 Oct 2010 KR
2010120187 Nov 2010 KR
2010127240 Dec 2010 KR
2011030640 Mar 2011 KR
2011129477 Dec 2011 KR
20120112683 Oct 2012 KR
2013061149 Jun 2013 KR
2013113925 Oct 2013 KR
1333200 Nov 2013 KR
2008045154 Nov 2013 KR
2013138263 Dec 2013 KR
1032594 Apr 2008 NL
1033929 Apr 2008 NL
2004670 Nov 2011 NL
2004780 Jan 2012 NL
239969 Dec 1994 NZ
99110 Dec 1993 PT
WO 8202303 Jul 1982 WO
WO 8908967 Sep 1989 WO
WO 9013972 Nov 1990 WO
WO 9322877 Nov 1993 WO
WO 9416534 Jul 1994 WO
WO 9419910 Sep 1994 WO
WO 9421079 Sep 1994 WO
WO 9515658 Jun 1995 WO
WO 9532587 Nov 1995 WO
WO 9533342 Dec 1995 WO
WO 9614712 May 1996 WO
WO 9627843 Sep 1996 WO
WO 9631826 Oct 1996 WO
WO 9637074 Nov 1996 WO
WO 9642168 Dec 1996 WO
WO 9716925 May 1997 WO
WO 9733434 Sep 1997 WO
WO 9739583 Oct 1997 WO
WO 9826595 Jun 1998 WO
WO 9900735 Jan 1999 WO
WO 9904568 Jan 1999 WO
WO 9900735 Jan 1999 WO
WO 9930496 Jun 1999 WO
WO 9930497 Jun 1999 WO
WO 9930500 Jun 1999 WO
WO 9930501 Jun 1999 WO
WO 9935840 Jul 1999 WO
WO 9941911 Aug 1999 WO
WO 9956468 Nov 1999 WO
WO 9965232 Dec 1999 WO
WO 9965243 Dec 1999 WO
WO 9966732 Dec 1999 WO
WO 0002303 Jan 2000 WO
WO 0007372 Feb 2000 WO
WO 0008967 Feb 2000 WO
WO 0019910 Apr 2000 WO
WO 0038430 Jun 2000 WO
WO 0041397 Jul 2000 WO
WO 0139494 May 2001 WO
WO 0141447 Jun 2001 WO
WO 0182614 Nov 2001 WO
WO 0192973 Dec 2001 WO
WO 02089487 Jul 2002 WO
WO 02076097 Sep 2002 WO
WO 02076099 Sep 2002 WO
WO 03026232 Mar 2003 WO
WO 03026275 Mar 2003 WO
WO 03047710 Jun 2003 WO
WO 03065683 Aug 2003 WO
WO 03071727 Aug 2003 WO
WO 03091832 Nov 2003 WO
WO 2004012437 Feb 2004 WO
WO 2004018060 Mar 2004 WO
WO 2004073310 Aug 2004 WO
WO 2005002215 Jan 2005 WO
WO 2005041122 May 2005 WO
WO 2005053301 Jun 2005 WO
WO 2005120067 Dec 2005 WO
WO 2006014362 Feb 2006 WO
WO 2006022881 Mar 2006 WO
WO 2006053305 May 2006 WO
WO 2006067697 Jun 2006 WO
WO 2006081634 Aug 2006 WO
WO 2006105480 Oct 2006 WO
WO 2006110268 Oct 2006 WO
WO 2007001797 Jan 2007 WO
WO 2007008319 Jan 2007 WO
WO 2007008355 Jan 2007 WO
WO 2007008356 Jan 2007 WO
WO 2007008357 Jan 2007 WO
WO 2007008358 Jan 2007 WO
WO 2007018722 Feb 2007 WO
WO 2007018726 Feb 2007 WO
WO 2008044916 Apr 2008 WO
WO 2008086170 Jul 2008 WO
WO 2008088741 Jul 2008 WO
WO 2008088752 Jul 2008 WO
WO 2008088772 Jul 2008 WO
WO 2008100205 Aug 2008 WO
WO 2009038596 Mar 2009 WO
WO 2009099893 Aug 2009 WO
WO 2009099895 Aug 2009 WO
WO 2009105465 Aug 2009 WO
WO 2009110897 Sep 2009 WO
WO 2009114247 Sep 2009 WO
WO 2009155214 Dec 2009 WO
WO 2010044926 Apr 2010 WO
WO 2010054136 May 2010 WO
WO 2010107954 Sep 2010 WO
WO 2011014336 Sep 2010 WO
WO 2011082364 Jul 2011 WO
WO 2011139155 Nov 2011 WO
WO 2011149357 Dec 2011 WO
WO 2012051528 Apr 2012 WO
WO 2012138660 Oct 2012 WO
WO 2013106390 Jul 2013 WO
WO 2013155310 Jul 2013 WO
Non-Patent Literature Citations (253)
Entry
ActiveVideo, http://www.activevideo.com/, as printed out in year 2012, 1 pg.
ActiveVideo Networks Inc., International Preliminary Report on Patentability, PCT/US2013/020769, Jul. 24, 2014, 6 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2014/030773, Jul. 25, 2014, 8 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2014/041416, Aug. 27, 2014, 8 pgs.
ActiveVideo Networks Inc. Communication Pursuant to Rules 70(2) and 70a(2), EP10841764.3, Jun. 6, 2014, 1 pg.
ActiveVideo Networks Inc. Communication Pursuant to Rules 70(2) and 70a(2), EP11833486.1, Apr. 24, 2014, 1 pg.
ActiveVideo Networks Inc. Communication Pursuant to Article 94(3) EPC, EP08713106-1908, Jun. 26, 2014, 5 pgs.
ActiveVideo Networks Inc. Communication Pursuant to Article 94(3) EPC, EP08713106-2223, May 10, 2011, 7 pgs.
ActiveVideo Networks Inc. Communication Pursuant to Article 94(3) EPC, EP09713486.0, Apr. 14, 2014, 6 pgS.
ActiveVideo Networks Inc. Examination Report No. 1, AU2011258972, Apr. 4, 2013, 5 pgs.
ActiveVideo Networks Inc. Examination Report No. 1, AU2011258972, Jul. 21, 2014, 3 pgs.
ActiveVideo Networks Inc. Examination Report No. 1, AU2010339376, Apr. 30, 2014, 4 pgs.
ActiveVideo Networks Inc. Examination Report, App. No. EP11749946.7, Oct. 8, 2013, 6 pgs.
ActiveVideo Networks Inc., Summons to attend oral-proceeding, Application No. EP09820936-4, Aug. 19, 2014, 4 pgs.
ActiveVideo Networks Inc., International Searching Authority, International Search Report—International application No. PCT/US2010/027724, dated Oct. 28, 2010, together with the Written Opinion of the International Searching Authority, 7 pages.
ActiveVideo Networks, Inc., International Search Report and Written Opinion, PCT/US2014/041430, Oct. 9, 2014, 9 pgs.
Active Video Networks, Notice of Reasons for Rejection, JP2012-547318, Sep. 26, 2014, 7 pgs.
Adams, Jerry, NTZ Nachrichtechnische Zeitschrift. vol. 40, No. 7, Jul. 1987, Berlin DE pp. 534-536; Jerry Adams: ‘Glasfasernetz for Breitbanddienste in London’, 5 pgs. No English Translation Found.
Avinity Systems B.V., Communication pursuant to Article 94(3) EPC, EP 07834561.8, Jan. 31, 2014, 10 pgs.
Avinity Systems B.V., Communication pursuant to Article 94(3) EPC, EP 07834561.8, Apr. 8, 2010, 5 pgs.
Avinity Systems B.V., International Preliminary Report on Patentability, PCT/NL2007/000245, Mar. 31, 2009, 12 pgs.
Avinity Systems B.V., International Search Report and Written Opinion, PCT/NL2007/000245, Feb. 19, 2009, 18 pgs.
Avinity Systems B.V., Notice of Grounds of Rejection for Patent, JP 2009-530298, Sep. 3, 2013, 4 pgs.
Avinity Systems B.V., Notice of Grounds of Rejection for Patent, JP 2009-530298, Sep. 25, 2012, 6 pgs.
Avinity Systems B. V., Final Office Action, JP-2009-530298, Oct. 7, 2014, 8 pgs.
Bird et al., “Customer Access to Broadband Services,” ISSLS 86—The International Symposium on Subrscriber Loops and Services Sep. 29, 1986, Tokyo,JP 6 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 13/668,004, Jul. 16, 2014, 20 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 13/686,548, Sep. 24, 2014, 13 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/686,548, Mar. 10, 2014, 11 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/668,004, Dec. 23, 2013, 9 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 13/438,617, Oct. 3, 2014, 19 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/438,617, May 12, 2014, 17 pgs.
Brockmann, Final Office Action, U.S. Appl. No. 12/443,571, Mar. 7, 2014, 21 pgs.
Brockmann, Office Action, U.S. Appl. No. 12/443,571, Jun. 5, 2013, 18 pgs.
Brockmann, Office Action, U.S. Appl. No. 12/443,571, Nov. 5, 2014, 26 pgs.
Chang, Shih-Fu, et al., “Manipulation and Compositing of MC-DOT Compressed Video, ” IEEE Journal on Selected Areas of Communications, Jan. 1995, vol. 13, No. 1, 11 pgs. Best Copy Available.
Dahlby, Office Action, U.S. Appl. No. 12/651,203, Jun. 5, 2014, 18 pgs.
Dahlby, Final Office Action, U.S. Appl. No. 12/651,203, Feb. 4, 2013, 18 pgs.
Dahlby, Office Action, U.S. Appl. No. 12/651,203, Aug. 16, 2012, 18 pgs.
Dukes, Stephen D., “Photonics for cable television system design, Migrating to regional hubs and passive networks,” Communications Engineering and Design, May 1992, 4 pgs.
Ellis, et al., “INDAX: An Operation Interactive Cabletext System”, IEEE Journal on Selected Areas in Communications, vol. sac-1, No. 2, Feb. 1983, pp. 285-294.
European Patent Office, Supplementary European Search Report, Application No. EP 09 70 8211, dated Jan. 5, 2011, 6 pgs.
Frezza, W., “The Broadband Solution—Metropolitan CATV Networks,” Proceedings of Videotex '84, Apr. 1984, 15 pgs.
Gecsei, J., “Topology of Videotex Networks,” The Architecture of Videotex Systems, Chapter 6, 1983 by Prentice-Hall, Inc.
Gobl, et al., “ARIDEM—a multi-service broadband access demonstrator,” Ericsson Review No. 3, 1996, 7 pgs.
Gordon, Notice of Allowance, U.S. Appl. No. 12/008,697, Mar. 20, 2014, 10 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/008,722, Mar. 30, 2012, 16 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Jun. 11, 2014, 14 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Jul. 22, 2013, 7 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Sep. 20, 2011, 8 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/035,236, Sep. 21, 2012, 9 pgs.
Gordon, Final Office Action, U.S. Appl. No. 12/008,697, Mar. 6, 2012, 48 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Mar. 13, 2013, 9 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Mar. 22, 2011, 8 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Mar. 28, 2012, 8 pgs.
Gordon, Office Action, U.S. Appl. No. 12/035,236, Dec. 16, 2013, 11 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,697, Aug. 1, 2013, 43 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,697, Aug. 4, 2011, 39 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,722, Oct. 11, 2011, 16 pgs.
Handley et al, “TCP Congestion Window Validation,” RFC 2861, Jun. 2000, Network Working Group, 22 pgs.
Henry et al. “Multidimensional Icons” ACM Transactions on Graphics, vol. 9, No. 1 Jan. 1990, 5 pgs.
Insight advertisement, “In two years this is going to be the most watched program on TV” On touch VCR programming, published not later than 2000, 10 pgs.
Isensee et al., “Focus Highlight for World Wide Web Frames,” Nov. 1, 1997, IBM Technical Disclosure Bulletin, vol. 40, No. 11, pp. 89-90.
ICTV, Inc., International Search Report / Written Opinion, PCT/US2008/000400, Jul. 14, 2009, 10 pgs.
ICTV, Inc., International Search Report / Written Opinion, PCT/US2008/000450, Jan. 26, 2009, 9 pgs.
Kato, Y., et al., “A Coding Control algorithm for Motion Picture Coding Accomplishing Optimal Assignment of Coding Distortion to Time and Space Domains,” Electronics and Communications in Japan, Part 1, vol. 72, No. 9, 1989, 11 pgs.
Koenen, Rob,“MPEG-4 Overview—Overview of the MPEG-4 Standard” Internet Citation, Mar. 2001, http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm, May 9, 2002, 74 pgs.
Konaka, M. et al., “Development of Sleeper Cabin Cold Storage Type Cooling System,” SAE International, The Engineering Society for Advancing Mobility Land Sea Air and Space, SAE 2000 World Congress, Detroit, Michigan, Mar. 6-9, 2000, 7 pgs.
Le Gall, Didier, “MPEG: A Video Compression Standard for Multimedia Applications”, Communication of the ACM, vol. 34, No. 4, Apr. 1991, New York, NY, 13 pgs.
Langenberg, E, et al., “Integrating Entertainment and Voice on the Cable Network,” SCTE , Conference on Emerging Technologies, Jan. 6-7, 1993, New Orleans, Louisiana, 9 pgs.
Large, D., “Tapped Fiber vs. Fiber-Reinforced Coaxial CATV Systems”, IEEE LCS Magazine, Feb. 1990, 7 pgs. Best Copy Available.
Mesiya, M.F, “A Passive Optical/Coax Hybrid Network Architecture for Delivery of CATV, Telephony and Data Services,” 1993 NCTA Technical Papers, 7 pgs.
“MSDL Specification Version 1.1” International Organisation for Standardisation Organisation Internationale EE Normalisation, ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Autdio, N1246, MPEG96/Mar. 1996, 101 pgs.
Noguchi, Yoshihiro, et al., “MPEG Video Compositing in the Compressed Domain,” IEEE International Symposium on Circuits and Systems, vol. 2, May 1, 1996, 4 pgs.
Regis, Notice of Allowance U.S. Appl. No. 13/273,803, Sep. 2, 2014, 8 pgs.
Regis, Notice of Allowance U.S. Appl. No. 13/273,803, May 14, 2014, 8 pgs.
Regis, Final Office Action U.S. Appl. No. 13/273,803, Oct. 11, 2013, 23 pgs.
Regis, Office Action U.S. Appl. No. 13/273,803, Mar. 27, 2013, 32 pgs.
Richardson, Ian E.G., “H.264 and MPEG-4 Video Compression, Video Coding for Next-Genertion Multimedia,” Johm Wiley & Sons, US, 2003, ISBN: 0-470-84837-5, pp. 103-105, 149-152, and 164.
Rose, K., “Design of a Switched Broad-Band Communications Network for Interactive Services,” IEEE Transactions on Communications, vol. com-23, No. 1, Jan. 1975, 7 pgs.
Saadawi, Tarek N., “Distributed Switching for Data Transmission over Two-Way CATV”, IEEE Journal on Selected Areas in Communications, vol. Sac-3, No. 2, Mar. 1985, 7 pgs.
Schrock, “Proposal for a Hub Controlled Cable Television System Using Optical Fiber,” IEEE Transactions on Cable Television, vol. CATV-4, No. 2, Apr. 1979, 8 pgs.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Sep. 22, 2014, 5 pgs.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Feb. 27, 2014, 14 pgs.
Sigmon, Final Office Action, U.S. Appl. No. 13/311,203, Sep. 13, 2013, 20 pgs.
Sigmon, Office Action, U.S. Appl. No. 13/311,203, May 10, 2013, 21 pgs.
Smith, Brian C., et al., “Algorithms for Manipulating Compressed Images,” IEEE Computer Graphics and Applications, vol. 13, No. 5, Sep. 1, 1993, 9 pgs.
Smith, J. et al., “Transcoding Internet Content for Heterogeneous Client Devices” Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Monterey, CA, USA May 31-Jun. 3, 1998, New York, NY, USA,IEEE, US, May 31, 1998, 4 pgs.
Stoll, G. et al., “GMF4iTV: Neue Wege zur-lnteraktivitaet Mit Bewegten Objekten Beim Digitalen Fernsehen,” Fkt Fernseh Und Kinotechnik, Fachverlag Schiele & Schon GmbH, Berlin, DE, vol. 60, No. 4, Jan. 1, 2006, ISSN: 1430-9947, 9 pgs. No English Translation Found.
Tamitani et al., “An Encoder/Decoder Chip Set for the MPEG Video Standard,” 1992 IEEE International Conference on Acoustics, vol. 5, Mar. 1992, San Francisco, CA, 4 pgs.
Terry, Jack, “Alternative Technologies and Delivery Systems for Broadband ISDN Access”, IEEE Communications Magazine, Aug. 1992, 7 pgs.
Thompson, Jack, “DTMF-TV, The Most Economical Approach to Interactive TV,” GNOSTECH Incorporated, NCF'95 Session T-38-C, 8 pgs.
Thompson, John W. Jr., “The Awakening 3.0: PCs, TSBs, or DTMF-TV—Which Telecomputer Architecture is Right for the Next Generations's Public Network?,” GNOSTECH Incorporated, 1995 The National Academy of Sciences, downloaded from the Unpredictable Certainty: White Papers, http://www.nap.edu/catalog/6062.html, pp. 546-552.
Tobagi, Fouad A., “Multiaccess Protocols in Packet Communication Systems,” IEEE Transactions on Communications, vol. Com-28, No. 4, Apr. 1980, 21 pgs.
Toms, N., “An Integrated Network Using Fiber Optics (Info) for the Distribution of Video, Data, and Telephone in Rural Areas,” IEEE Transactions on Communication, vol. Com-26, No. 7, Jul. 1978, 9 pgs.
Trott, A., et al.“An Enhanced Cost Effective Line Shuffle Scrambling System with Secure Conditional Access Authorization,” 1993 NCTA Technical Papers, 11 pgs.
Jurgen—Two-way applications for cable television systems in the '70s, IEEE Spectrum, Nov. 1971, 16 pgs.
va Beek, P., “Delay-Constrained Rate Adaptation for Robust Video Transmission over Home Networks,” Image Processing, 2005, ICIP 2005, IEEE International Conference, Sep. 2005, vol. 2, No. 11, 4 pgs.
Van der Star, Jack A. M., “Video on Demand Without Compression: A Review of the Business Model, Regulations and Future Implication,” Proceedings of PTC'93, 15th Annual Conference, 12 pgs.
Welzenbach et al., “The Application of Optical Systems for Cable TV,” AEG-Telefunken, Backnang, Federal Republic of Germany, ISSLS Sep. 15-19, 1980, Proceedings IEEE Cat. No. 80 CH1565-1, 7 pgs.
Yum, TS P., “Hierarchical Distribution of Video with Dynamic Port Allocation,” IEEE Transactions on Communications, vol. 39, No. 8, Aug. 1, 1991, XP000264287, 7 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/U52013/036182, Jul. 29, 2013, 12 pgs.
AC-3 digital audio compression standard, Extract, Dec. 20, 1995, 11 pgs.
ActiveVideo Networks BV, International Preliminary Report on Patentability, PCT/NL2011/050308, Sep. 6, 2011, 8 pgs.
ActiveVideo Networks BV, International Search Report and Written Opinion, PCT/NL2011/050308, Sep. 6, 2011, 8 pgs.
Activevideo Networks Inc., International Preliminary Report on Patentability, PCT/US2011/056355, Apr. 16, 2013, 4 pgs.
ActiveVideo Networks Inc., International Preliminary Report on Patentability, PCT/US2012/032010, Oct. 8, 2013, 4 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2011/056355, Apr. 13, 2012, 6 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2012/032010, Oct. 10, 2012, 6 pgs.
ActiveVideo Networks Inc., International Search Report and Written Opinion, PCT/US2013/020769, May 9, 2013, 9 pgs.
ActiveVideo Networks, Inc., International Search Report and Written Opinion, PCT/US2009/032457, Jul. 22, 2009, 7 pgs.
AcitveVideo Networks Inc., Korean Intellectual Property Office, International Search Report; PCT/US2009/032457, Jul. 22, 2009, 7 pgs.
Annex C—Video buffering verifier, information technology—generic coding of moving pictures and associated audio information: video, Feb. 2000, 6 pgs.
Antonoff, Michael, “Interactive Television,” Popular Science, Nov. 1992, 12 pages.
Avinity Systems B.V., Extended European Search Report, Application No. 12163713.6, 10 pgs.
Avinity Systems B.V., Extended European Search Report, Application No. 12163712-8, 10 pgs.
Benjelloun, A summation algorithm for MPEG-1 coded audio signals: a first step towards audio processed domain, 2000, 9 pgs.
Broadhead, Direct manipulation of MPEG compressed digital audio, Nov. 5-9, 1995, 41 pgs.
Cable Television Laboratories, Inc., “CableLabs Asset Distribution Interface Specification, Version 1.1”, May 5, 2006, 33 pgs.
CD 11172-3, Coding of moving pictures and associated audio for digital storage media at up to about 1.5 MBIT, Jan. 1, 1992, 39 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,176, Dec. 23, 2010, 8 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,183, Jan. 12, 2012, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,183, Jul. 19, 2012, 8 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,189, Oct. 12, 2011, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,176, Mar. 23, 2011, 8 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 13/609,183, Aug. 26, 2013, 8 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/103,838, Feb. 5, 2009, 30 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,181, Aug. 25, 2010, 17 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/103,838, Jul. 6, 2010, 35 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,176, Oct. 1, 2010, 8 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,183, Apr. 13, 2011, 16 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,177, Oct. 26, 2010, 12 pgs.
Craig, Final Office Action, U.S. Appl. No. 11/178,181, Jun. 20, 2011, 21 pgs.
Craig, Office Action, U.S. Appl. No. 11/103,838, May 12, 2009, 32 pgs.
Craig, Office Action, U.S. Appl. No. 11/103,838, Aug. 19, 2008, 17 pgs.
Craig, Office Action, U.S. Appl. No. 11/103,838, Nov. 19, 2009, 34 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,176, May 6, 2010, 7 pgs.
Craig, Office-Action U.S. Appl. No. 11/178,177, Mar. 29, 2011, 15 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,177, Aug. 3, 2011, 26 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,177, Mar. 29, 2010, 11 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,181, Feb. 11, 2011, 19 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,181, Mar. 29, 2010, 10 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,182, Feb. 23, 2010, 15 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Dec. 6, 2010, 12 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Sep. 15, 2011, 12 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Feb. 19, 2010, 17 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,183, Jul. 20, 2010, 13 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, Nov. 9, 2010, 13 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, Mar. 15, 2010, 11 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, Jul. 23, 2009, 10 pgs.
Craig, Office Action, U.S. Appl. No. 11/178,189, May 26, 2011, 14 pgs.
Craig, Office Action, U.S. Appl. No. 13/609,183, May 9, 2013, 7 pgs.
Pavlovskaia, Office Action, JP 2011-516499, Feb. 14, 2014, 19 pgs.
Digital Audio Compression Standard(AC-3, E-AC-3), Advanced Television Systems Committee, Jun. 14, 2005, 236 pgs.
European Patent Office, Extended European Search Report for International Application No. PCT/US2010/027724, dated Jul. 24, 2012, 11 pages.
FFMPEG, http://www.ffmpeg.org, downloaded Apr. 8, 2010, 8 pgs.
FFMEG-0.4.9 Audio Layer 2 Tables Including Fixed Psycho Acoustic Model, 2001, 2 pgs.
Herr, Notice of Allowance, U.S. Appl. No. 11/620,593, May 23, 2012, 5 pgs.
Herr, Notice of Allowance, U.S. Appl. No. 12/534,016, Feb. 7, 2012, 5 pgs.
Herr, Notice of Allowance, U.S. Appl. No. 12/534,016, Sep. 28, 2011, 15 pgs.
Herr, Final Office Action, U.S. Appl. No. 11/620,593, Sep. 15, 2011, 104 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Mar. 19, 2010, 58 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Apr. 21, 2009 27 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Dec. 23, 2009, 58 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Jan. 24, 2011, 96 pgs.
Herr, Office Action, U.S. Appl. No. 11/620,593, Aug. 27, 2010, 41 pgs.
Herre, Thoughts on an SAOC Architecture, Oct. 2006, 9 pgs.
Hoarty, The Smart Headend—A Novel Approach to Interactive Television, Montreux Int'l TV Symposium, Jun. 9, 1995, 21 pgs.
ICTV, Inc., International Preliminary Report on Patentability, PCT/US2006/022585, Jan. 29, 2008, 9 pgs.
ICTV, Inc., International Search Report / Written Opinion, PCT/US2006/022585, Oct. 12, 2007, 15 pgs.
ICTV, Inc., International Search Report / Written Opinion, PCT/US2008/000419, May 15, 2009, 20 pgs.
ICTV, Inc., International Search Report / Written Opinion; PCT/US2006/022533, Nov. 20, 2006; 8 pgs.
Isovic, Timing constraints of MPEG-2 decoding for high quality video: misconceptions and realistic assumptions, Jul. 2-4, 2003, 10 pgs.
MPEG-2 Video elementary stream supplemental information, Dec. 1999, 12 pgs.
Ozer, Video Compositing 101. available from http://www.emedialive.com, Jun. 2, 2004, 5pgs.
Porter, Compositing Digital Imases, 18 Computer Graphics (No. 3), Jul. 1984, pp. 253-259.
RSS Advisory Board, “RSS 2.0 Specification”, published Oct. 15, 2007. Not Found.
SAOC use cases, draft requirements and architecture, Oct. 2006, 16 pgs.
Sigmon, Final Office Action, U.S. Appl. No. 11/258,602, Feb. 23, 2009, 15 pgs.
Sigmon, Office Action, U.S. Appl. No. 11/258,602, Sep. 2, 2008, 12 pgs.
TAG Networks, Inc., Communication pursuant to Article 94(3) EPC, European Patent Application, 06773714.8, May 6, 2009, 3 pgs.
TAG Networks Inc, Decision to Grant a Patent, JP 209-544985, Jun. 28, 2013, 1 pg.
TAG Networks Inc., IPRP, PCT/US2006/010080, Oct. 16, 2007, 6 pgs.
TAG Networks Inc., IPRP, PCT/US2006/024194, Jan. 10, 2008, 7 pgs.
TAG Networks Inc., IPRP, PCT/US2006/024195, Apr. 1, 2009, 11 pgs.
TAG Networks Inc., IPRP, PCT/US2006/024196, Jan. 10, 2008, 6 pgs.
TAG Networks Inc., International Search Report, PCT/US2008/050221, Jun. 12, 2008, 9 pgs.
TAG Networks Inc., Office Action, CN 200680017662.3, Apr. 26, 2010, 4 pgs.
TAG Networks Inc., Office Action, EP 06739032.8, Aug. 14, 2009, 4 pgs.
TAG Networks Inc., Office Action, EP 06773714.8, May 6, 2009, 3 pgs.
TAG Networks Inc., Office Action, EP 06773714.8, Jan. 12, 2010, 4 pgs.
TAG Networks Inc., Office Action, JP 2008-506474, Oct. 1, 2012, 5 pgs.
TAG Networks Inc., Office Action, JP 2008-506474, Aug. 8, 2011, 5 pgs.
TAG Networks Inc., Office Action, JP 2008-520254, Oct. 20, 2011, 2 pgs.
TAG Networks, IPRP, PCT/US2008/050221, Jul. 7, 2009, 6 pgs.
TAG Networks, International Search Report, PCT/US2010/041133, Oct. 19, 2010, 13 pgs.
TAG Networks, Office Action, CN 200880001325.4, Jun. 22, 2011, 4 pgs.
TAG Networks, Office Action, JP 2009-544985, Feb. 25, 2013, 3 pgs.
Talley, A general framework for continuous media transmission control, Oct. 13-16, 1997, 10 pgs.
The Toolame Project, Psych—nl.c, 1999, 1 pg.
Todd, AC-3: flexible perceptual coding for audio transmission and storage, Feb. 26-Mar. 1, 1994, 16 pgs.
Tudor, MPEG-2 Video Compression, Dec. 1995, 15 pgs.
TVHEAD, Inc., First Examination Report, IN 1744/MUMNP/2007, Dec. 30, 2013, 6 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/010080, Jun. 20, 2006, 3 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024194, Dec. 15, 2006, 4 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024195, Nov. 29, 2006, 9 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024196, Dec. 11, 2006, 4 pgs.
TVHEAD, Inc., International Search Report, PCT/US2006/024197, Nov. 28, 2006, 9 pgs.
Vernon, Dolby digital: audio coding for digital television and storage applications, Aug. 1999, 18 pgs.
Wang, A beat-pattern based error concealment scheme for music delivery with burst packet loss, Aug. 22-25, 2001, 4 pgs.
Wang, A compressed domain beat detector using MP3 audio bitstream, Sep. 30-Oct. 5, 2001, 9 pgs.
Wang, A multichannel audio coding algorithm for inter-channel redundancy removal, May 12-15, 2001, 6 pgs.
Wang, An excitation level based psychoacoustic model for audio compression, Oct. 30-Nov. 4, 1999, 4 pgs.
Wang, Energy compaction property of the MDCT in comparison with other transforms, Sep. 22-25, 2000, 23 pgs.
Wang, Exploiting excess masking for audio compression, Sep. 2-5, 1999, 4 pgs.
Wang, schemes for re-compressing mp3 audio bitstreams, Nov. 30-Dec. 3, 2001, 5 pgs.
Wang, Selected advances in audio compression and compressed domain processing, Aug. 2001, 68 pgs.
Wang, The impact of the relationship between MDCT and DFT on audio compression, Dec. 13-15, 2000, 9 pgs.
ActiveVideo Networks, Inc., International Preliminary Report on Patentablity, PCT/US2013/036182, Oct. 14, 2014, 9 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rule 94(3), EP08713106-6, Jun. 25, 2014, 5 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rule 94(3), EP09713486.0, Apr. 14, 2014, 6 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Rules 161(2) & 162 EPC, EP13775121.0, Jan. 20, 2015, 3 pgs.
ActiveVideo Networks Inc., Decision to refuse a European patent application (Art. 97(2) EPC, EP09820936.4, Feb. 20, 2015, 4 pgs.
ActiveVideo Networks Inc., Communication Pursuant to Article 94(3) EPC, 10754084.1, Feb. 10, 2015, 12 pgs.
ActiveVideo Networks Inc., Communication under Rule 71(3) EPC, Intention to Grant, EP08713106.6, Feb. 19, 2015, 12 pgs.
ActiveVideo Networks Inc., Notice of Reasons for Rejection, JP2013-509016, Dec. 24, 2014 (Received Jan. 14, 2015), 11 pgs.
ActiveVideo Networks Inc., Notice of Reasons for Rejection, JP2014-100460, Jan. 15, 2015, 6 pgs.
ActiveVideo Networks Inc., Certificate of Patent JP5675765, Jan. 9, 2015, 3 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/668,004, Feb. 26, 2015, 17 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/737,097, Mar. 16, 2015, 18 pgs.
Brockmann, Notice of Allowance, U.S. Appl. No. 14/298,796, Mar. 18, 2015, 11 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/686,548, Jan. 5, 2015, 12 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/911,948, Dec. 26, 2014, 12 pgs.
Brockmann, Office Action, U.S. Appl. No. 13/911,948, Jan. 29, 2015, 11 pgs.
Craig, Decision on Appeal -Reversed-, U.S. Appl. No. 11/178,177, Feb. 25, 2015, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,177, Mar. 5, 2015, 7 pgs.
Craig, Notice of Allowance, U.S. Appl. No. 11/178,181, Feb. 13, 2015, 8 pgs.
Dahlby, Office Action, U.S. Appl. No. 12/651,203, Dec. 13, 2014, 19 pgs.
Gordon, Notice of Allowance, U.S. Appl. No. 12/008,697, Dec. 8, 2014, 10 pgs.
Gordon, Office Action, U.S. Appl. No. 12/008,722, Nov. 28, 2014, 18 pgs.
Regis, Notice of Allowance, U.S. Appl. No. 13/273,803, Nov. 18, 2014, 9 pgs.
Regis, Notice of Allowance, U.S. Appl. No. 13/273,803, Mar. 2, 2015, 8 pgs. from 5024.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Dec. 19, 2014, 5 pgs.
Tag Networks Inc, Decision to Grant a Patent, JP 2008-506474, Oct. 4, 2013, 5 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 09820936-4, Oct. 26, 2012, 11 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 10754084-1, Jul. 24, 2012, 11 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 10841764.3, May 20, 2014, 16 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 11833486.1, Apr. 3, 2014, 6 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 13168509.1, Apr. 24, 2014, 10 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 13168376-5, Jan. 23, 2014, 8 pgs.
ActiveVideo Networks Inc. Extended EP Search RPT, Application No. 12767642-7, Aug. 20, 2014, 12 pgs.
Gordon, Notice of Allowance, U.S. Appl. No. 12/008,697, Apr. 1, 2015, 10 pgs.
Sigmon, Notice of Allowance, U.S. Appl. No. 13/311,203, Apr. 14, 2015, 5 pgs.
Related Publications (1)
Number Date Country
20130272394 A1 Oct 2013 US