The present invention pertains to the field of semiconductor devices. More particularly, this invention pertains to the field of using a graphics memory switch to provide a graphics device access to system memory.
The rapid and efficient transfer of information between a graphics device and system memory has been and will continue to be one of the most challenging tasks faced by computer system component designers. Through the years, different interface protocols have been used to accomplish these transfers. Several years ago, the Peripheral Component Interconnect (PCI) bus was a commonly used implementation to couple graphics devices to memory controllers. As graphics memory bandwidth requirements increased, the Accelerated Graphics Port (AGP) specification was created and adopted by a large segment of the computer industry.
One of the main advantages of the AGP implementations is the ability of the graphics device to view a large, contiguous graphics memory space where multi-megabyte textures, bitmaps, and graphics commands are stored. A graphics address remapping table is used to generate addresses to system memory from graphics memory addresses. There is no actual memory behind the graphics memory space, but the graphics address remapping table and associated translation circuitry provides access to actual system memory pages that may be scattered throughout the system memory.
Graphics memory bandwidth requirements continue to increase, and faster interconnect technologies are being developed to keep ahead of the growing requirements. One such interconnect technology is based on the PCI Express specification (PCI Express Base Specification, revision 1.0a). It would be desirable to provide a large, contiguous, graphics memory space for use with these emerging interconnect technologies.
The invention will be understood more fully from the detailed description given below and from the accompanying drawings of embodiments of the invention which, however, should not be taken to limit the invention to the specific embodiments described, but are for explanation and understanding only.
In general, a graphics device delivers a virtual graphics address to a graphics memory switch that includes a graphics random access memory translator and a graphics memory page table. The virtual graphics memory address is delivered to the graphics memory switch via a point-to-point, packet based interconnect. The graphics memory. switch generates a physical system memory address and delivers the physical address to a root complex. The physical system memory address is delivered to the root complex via a point-to-point, packet based interconnect.
For the embodiments described herein, virtual graphics addresses are defined as graphics addresses that are physical, but where no real physical memory exists at these addresses. In other words, converting virtual graphics addresses to physical memory addresses involves only a graphics memory switch and a graphics memory page table, and no system page tables are required. Another way to look at the conversion of virtual graphics addresses to physical system memory addresses is to see the conversion as including converting physical graphics addresses (contiguous, non-existent) to physical system memory addresses (non-contiguous, existent).
For this example embodiment, the links 163 and 165 adhere to the PCI Express specification. The root complex 140 and the switch 160 also comply with the PCI Express specification.
The system 100 further includes a graphics device 120 that is coupled to a graphics memory (GM) switch 130 via a point-to-point, packet based interconnect, which for this example embodiment is a PCI Express interconnect 125. The GM switch 130 is further coupled to the root complex 140 via another point-to-point interconnect, which for this example embodiment is a PCI Express Link 135.
The graphics device 120 may be a component soldered to a motherboard, or may be located on a graphics card, or may be integrated into a larger component.
Although the system 100 is shown with the graphics device 120, the GM switch 130, and the root complex 140 as separate devices, other embodiments are possible where the GM switch 130 is integrated into one device along with the root complex 140. Yet other embodiments are possible where the graphics device 120, the GM switch 130, and the root complex 140 are integrated into a single device.
For the system 100, a contiguous memory called graphics random access memory (GRAM) is allocated in system address space. However, there is no real memory behind the GRAM. The GRAM is seen by the graphics device 120 as a large, contiguous memory space. An operating system will allocate the GRAM as pages scattered all over the system memory 150, wherever it can find space.
The GMP table 134 is an address translation table. As previously mentioned, the GMP table 134 holds the addresses of the physical memory allocated by the operating system. The size of the table 134 may depend on the size of the GRAM. For example, if the GRAM is 2 GB, using 32-bit addresses for the pages and 4 kbytes per page, the GMP Table 134 will be (2*1024*1024*1024)/(4*1024) entries * 4 bytes per entry =2 Mbytes. Although the GMP Table 134 is shown in this example embodiment as being integrated into the GM switch 130, other embodiments are possible where the GMP Table is located in memory separate from but local to the GM switch 130 or in system memory 150.
The overall functioning environment of the GRAM Translator may be such that the same operating system drivers that are used for AGP implementations can be used for managing the GMP Table and for allocating and releasing GRAM pages. In AGP, this driver is often referred to as the GART (graphics address remapping table) driver. Being able to reuse the existing GART drivers may ease the transition from AGP to PCI Express.
A video device driver may request N number of GRAM pages to the operating system. The GMP Table driver may allocate these pages in the memory and populate the GMP Table 134. The video driver will reserve the pages it needs to use for a particular application. The graphics device's view of the GRAM will be starting from the GRAM Base address and extending as far as is required. When the graphics device 120 needs to use the GRAM, it will issue a transaction for an address with the GRAM range. The GRAM translator 132, after checking to be sure that the request is within an appropriate range, will calculate an index into the GMP Table 134 and picks up an address of the actual page in the system memory 150. This address is sent over the PCI Express link 135 to the root complex 140 so that the system memory 150 can be accessed.
The graphics drivers 610, 620, and 630 are coupled to the virtual PCI-PCI bridge 628 via virtual PCI-PCI bridges 622, 624, and 626, respectively.
In the foregoing specification the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the invention. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments.