Graphite oxide and polyacrylonitrile based composite

Information

  • Patent Grant
  • 11482348
  • Patent Number
    11,482,348
  • Date Filed
    Thursday, March 31, 2016
    8 years ago
  • Date Issued
    Tuesday, October 25, 2022
    2 years ago
Abstract
The present method includes graphene, preferably in the form of flat graphene oxide flakes with, by mass, preferably between 0.5% and 35% PAN. The graphene oxide and conductive-polymer PAN is in a co-suspension in water and is co-deposited on a surface. The deposited PAN with a high-percentage graphene-oxide layer is dried. Our tests have produced electrical conductivities 1000 times more conductive than the PAN by itself. Our testing indicates that using flakes that are flat is essential to getting very high conductivity, and that controlled oxidation is very important in suspending graphene oxide in water.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of high electrical conductivity nanocomposites, and more particularly, to graphene based additives to enhance electrical conductivity.


BACKGROUND OF THE INVENTION

Without limiting the scope of the invention, its background is described in connection with compound conductive materials.


Polyacrylonitrile (PAN) is a synthetic resin prepared by the polymerization of acrylonitrile. PAN is the starting precursor for the creation of carbon fiber. PAN is first polymerized and pulled into a fiber. The pulled fiber has an initial diameter on the order of 200 μm. The PAN fiber goes through a series of thermal and chemical treatments to produce a carbon fiber or filament on the order of 10 μm. Creating a carbon fiber structure with a 250 μm diameter to weave a fabric requires an excessive amount of PAN. PAN has none of the hazardous properties of the monomer due to the formation of strong chemical bonds between the nitrile (CN) groups. PAN does not melt without decomposing, and in most cases, the polymer is dissolved in a Dimethylformamide (DMF) dimethylsulphoxide (DMSO) or other solvent prior to being spun or pulled into a fiber. PAN is not as widely used as the simple acrylics because of the higher cost of the precursor. The GNFs have an entangled micro-fibril structure.


The synthesis of carbon fibers from a PAN fiber in general involves three processing steps: i) stabilization, ii) carbonization and iii) graphitization. The stabilization processing step is where PAN is heated to 200-300° C. in an oxygen-containing atmosphere. Heating the PAN 200-300° C. in an oxygen stabilizes the molecular structure and prevents reactions between the fiber in the subsequent processing stems at higher temperatures. This also prevents chain scission and mass loss that occurs when a PAN fiber is heated in an inert atmosphere without stabilization. The carbonization processing step requires 500° C., in an inert atmosphere or vacuum. The graphitization processing step requires 1500° C.


Graphene is an allotrope of carbon. Graphene's structure can be a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb or hexagonal crystal lattice. The carbon-carbon bond length in graphene is about 1.42 Å. Graphene sheets stack to form graphite with an inter-planar spacing of 3.35 Å. Multiple graphene sheets/flakes are bonded together by van der Waals forces.


Graphene can be oxidized by a number of processes including thermal, chemical or mechanochemical. Reduction of graphite oxide monolayer films e.g. by hydrazine, annealing in argon/hydrogen was reported to yield graphene films of low quality; the flakes are not flat.


Graphene oxide can be produced in significant quantities from microcrystalline graphite that is treated with a mixture of acids such as sulfuric, nitric, and other oxidizing chemicals in combination with mechanical and/or thermal energy elements. This processing will produce graphene oxide flakes with diameters ranging from a few nanometers to tens of microns depending on the specific processing environment. If one uses a shaker mill in conjunction with an oxidizing agent the time duration in the mill will determine the size of the flake of graphene oxide. In general, the longer the processing time in the mill, the smaller the graphene oxide flake. The oxidizing process can produce a carboxyl group on the perimeter of the flake. The graphene flakes can be suspended in a number of solutions including but not limited to: tetrahydrofuran, tetrachloromethane, water, and/or dichloroethane.


Graphene is one of the strongest materials and most electrically conductive ever tested. Measurements have shown that graphene has a breaking strength 200 times greater than steel, with a tensile modulus (stiffness) of 1 TPa (150,000,000 psi). An Atomic Force Microscope (AFM) has been used to measure the mechanical properties of a suspended graphene sheet. Graphene sheets, held together by Van der Waals forces, were suspended over SiO2 cavities where an AFM tip was probed to test its mechanical properties. Its spring constant was in the range 1-5 N/m and the Young's modulus was 0.5 TPa (500 GPa) thereby demonstrating that graphene can be mechanically very strong and rigid. Measurements of the electrical properties showed to be more conductive than copper. The enhanced conductivity is associated with the electrons being transmitted on the sp2 orbitals that extend out of the plane of the two dimensional graphene structure. Graphene and graphene oxide nanocomposites have superior mechanical, thermal, and electrical properties. Improvement in the physicochemical properties of the nanocomposites depends on the distribution of the graphene oxide layers as well as interfacial bonding between the graphene oxide layers and the host.


SUMMARY OF THE INVENTION

In one embodiment, the present invention includes a method of making an electrical and/or thermal conductor, comprising: providing a surface; providing a co-suspension of at least one of graphene (G) or graphene oxide (GO) flakes and polyacrylonitrile (PAN), comprising between 1% and 25% by mass PAN and between 99% and 75% by mass flakes, in a dimethylformamide (DMF) solvent to form a G/GO-PAN layer. In one aspect, the method further comprises the step of casting or extruding an arbitrary structure of the co-suspension in a water-containing fluid. In another aspect, the method further comprises the step of casting or extruding an arbitrary shape of the co-suspension of G/GO-PAN structure in water. In another aspect, the method further comprises the step of forming a G/GO-PAN structure by at least one of: drying the G/GO-PAN structure by heating, vacuum, or a combination of heating and vacuum; stabilizing the G/GO-PAN structure by heating the structure in an oxygen containing atmosphere; carbonizing the G/GO-PAN structure by heating the layer up to 800° C. in an inert atmosphere or vacuum; or graphitizing the G/GO-PAN structure by heating the layer up to 1,500° C. in an inert atmosphere or vacuum. In another aspect, the G/GO-PAN layer is compacted by a press applying up to 300 MPA. In another aspect, the PAN is between 0.5% and 35% weight to volume. In another aspect, the G/GO flakes are 5 to 50 micron across. In another aspect, the G/GO flakes are 1 to 20 micron across. In another aspect, the G/GO flakes are 0.05 to 1 micron across. In another aspect, the G/GO-PAN structure is diffused with a non-Newtonian fluid in voids in the surface or a substrate. In another aspect, the method further comprises the step of pressing the G/GO-PAN through a stylist, or spinneret to form a fiber.


Another embodiment of the present invention includes a method of fabricating an electronic device; comprising of a high surface area electrode for an energy storage devices by: providing a surface or structure; providing a co-suspension of at least one of graphene (G) or graphene oxide (GO) flakes and polyacrylonitrile (PAN), comprising between 1% and 25% by mass PAN and between 99% and 75% by mass flakes, in a dimethylformamide (DMF) solvent to form a G/GO-PAN layer; and forming a G/GO-PAN structure by at least one of: drying the G/GO-PAN structure by heating, vacuum, or a combination of heating and vacuum; stabilizing the G/GO-PAN structure by heating the structure in an oxygen containing atmosphere; carbonizing the G/GO-PAN structure by heating the layer up to 800° C. in an inert atmosphere or vacuum; or graphitizing the G/GO-PAN structure by heating the layer up to 1,500° C. in an inert atmosphere or vacuum. In one aspect, the G/GO-PAN structure is diffused with a non-Newtonian fluid in voids in the substrate or structure. In another aspect, the G/GO-PAN layer is compacted by a press applying up to 300 MPA. In another aspect, the PAN is between 0.5% and 35% weight to volume. In another aspect, the G/GO flakes are 5 to 50 micron across. In another aspect, the G/GO flakes are 1 to 20 micron across. In another aspect, the G/GO flakes are 0.05 to 1 micron across. In another aspect, the method further comprises the step of casting or extruding an arbitrary structure of the co-suspension in a water-containing fluid. In another aspect, the method further comprises the step of casting or extruding an arbitrary shape of the co-suspension of G/GO-PAN structure in water.


The present method includes compositions and methods for using graphene in the form of graphene oxide flakes with oxidation between 0.01% and 25% by weight; preferably between 2% and 20%. The graphene oxide and Polyacrylonitrile (PAN) can be suspended in Dimethylformamide (DMF).







DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are illustrative of ways to make and use the invention and do not delimit the scope of the invention.


As used herein, the term “graphene” refers to a polycyclic hexagonal lattice with carbon atoms covalently bonded to each other. The covalently bonded carbon atoms can form a six-member ring as a repeating unit, and may also include at least one of a five-member ring and a seven-member ring. Multiple graphene layers are referred to in the art as graphite. Thus, graphene may be a single layer, or also may comprise multiple layers of graphene that are stacked on other layers of graphene yielding graphene oxide. Generally, graphene oxide can have a maximum thickness of about 100 nanometers (nm), specifically about 0.5 nm to about 90 nm.


As used herein, the term “graphene oxide flake” refers to a crystalline or “flake” form of graphene oxide that has been oxidized and includes many graphene sheets oxidized and stacked together and can have oxidation levels ranging from 0.01% to 25% by weight in ultra pure water. The flakes are preferably substantially flat.


As used herein, the term suspension refers to a combination of PAN/GO suspension in a DMF solvent.


The present method includes graphene in the form of graphene oxide flakes with oxidation between 0.01% and 25% by weight; preferably between 2% and 20%. The graphene oxide and Polyacrylonitrile (PAN) can be suspended in Dimethylformamide (DMF). The novel loading herein of PAN relative to the GO is between 0.1% and 50% by weight; this can be suspended in the DMF. The suspension can then be extruded into water-containing fluid. The PAN hydrolyzes in the water to form a gel that envelops the GO flakes. The resulting hydrolyzed-PAN and GO material can be shaped or stamped in any form; e.g. a fiber, cube, etc. The hydrolyzed-PAN and GO material may be injected into a mold. The hydrolyzed PAN (H-PAN) and GO molded structure shall be known herein as H-PAN/GO molded structure. The H-PAN/GO molded structure can be heated in three processing steps: i) stabilization, ii) carbonization, and iii) graphitization. The stabilization processing step is heated to 200-300° C. in an oxygen-containing atmosphere. The heating of the H-PAN/GO molded structure 200-300° C. in oxygen can stabilize the PAN molecular structure for subsequent processing stems at higher temperatures. This also reduces mass loss that occurs when a H-PAN/GO molded structure is heated in an inert atmosphere. The carbonization of PAN in the H-PAN/GO molded structure occurs when it is at 500° C. to 800° C., in an inert atmosphere or vacuum.


A carbonized H-PAN/GO molded structure will be sufficient for many commercial applications without graphitization. The graphitization processing step for the H-PAN/GO molded structure requires 1500° C., in an inert atmosphere or vacuum. Graphitization is required for forming strong chemical and mechanical bonds within the H-PAN/GO molded structure mainly for mechanical and strength applications. The heating profile may also be accomplished in a mechanical press to further improve the physical properties.


In some embodiments, the GO flakes are 5 to 50 micron across; e.g. 5 to 20 micron across; 0.05 to 5 micron across; or 5 to 14 micron across.


In some embodiments the H-PAN/GO suspension in DMF is pressed through a stylist, or spinneret to form a fiber.


It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.


All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.


As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.


The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context. In certain embodiments, the present invention may also include methods and compositions in which the transition phrase “consisting essentially of” or “consisting of” may also be used.


As used herein, words of approximation such as, without limitation, “about”, “substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skilled in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “about” may vary from the stated value by at least ±1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.


All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Claims
  • 1. A method of making an electrical and thermal conductor, comprising: providing microcrystalline graphite;producing flat graphene oxide (GO) flakes 5 to 50 microns across by simultaneously (1) treating the microcrystalline graphite with one or more oxidizing chemicals and (2) milling the microcrystalline graphite;preparing a co-suspension of the flat GO flakes and polyacrylonitrile (PAN) in a solvent consisting of dimethylformamide (DMF), wherein the co-suspension comprises between 1% and 25% PAN by mass and between 75% and 90% flat GO flakes by mass;casting or extruding the co-suspension into a water-containing fluid or into water, wherein the PAN is hydrolyzed, forming a gel that envelops the GO flakes, resulting in a H-PAN/GO material;injecting the H-PAN/GO material into a mold, resulting in a H-PAN/GO molded structure; andgraphitizing the H-PAN/GO molded structure by heating at 1,500° C. in a mechanical press in an inert atmosphere or a vacuum.
  • 2. The method of claim 1, wherein the flat GO flakes are 5 to 20 microns across.
  • 3. The method of claim 1, wherein the flat GO flakes are 5 to 14 microns across.
  • 4. The method of claim 1, further comprising the step of pressing the H-PAN/GO material through a stylist, or spinneret to form a fiber.
  • 5. A method of fabricating an electronic device comprising a high surface area electrode for an energy storage device by: providing microcrystalline graphite;producing flat graphene oxide (GO) flakes 5 to 50 microns across by simultaneously (1) treating the microcrystalline graphite with one or more oxidizing chemicals and (2) milling the microcrystalline graphite;preparing a co-suspension of the flat GO flakes and polyacrylonitrile (PAN) in a solvent consisting of dimethylformamide (DMF), wherein the co-suspension comprises between 1% and 25% PAN by mass and between 75% and 90% flat GO flakes by mass;casting or extruding the co-suspension into a water-containing fluid or into water, wherein the PAN is hydrolyzed, forming a gel that envelops the GO flakes, resulting in a H-PAN/GO material;injecting the H-PAN/GO material into a mold, resulting in a H-PAN/GO molded electrode structure; andgraphitizing the H-PAN/GO molded electrode structure by heating at 1,500° C. in a mechanical press in an inert atmosphere or a vacuum.
  • 6. The method of claim 5, wherein the GO flakes are 5 to 20 microns across.
  • 7. The method of claim 5, wherein the GO flakes are 5 to 14 microns across.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/US2016/025338, filed on Mar. 31, 2016 claiming the priority to U.S. Provisional Application No. 62/173,041 filed on Jun. 9, 2015, the contents of each of which are incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/025338 3/31/2016 WO
Publishing Document Publishing Date Country Kind
WO2016/200469 12/15/2016 WO A
US Referenced Citations (115)
Number Name Date Kind
2459520 Greenshields Jan 1949 A
4046863 Kobayashi Sep 1977 A
5057370 Krieg et al. Oct 1991 A
5360582 Boyd et al. Nov 1994 A
5501934 Sukata et al. Mar 1996 A
5506061 Kindl et al. Apr 1996 A
5509993 Hirschvogel Apr 1996 A
5583176 Haberle Dec 1996 A
5883176 Gerroir et al. Mar 1999 A
6004712 Barbetta et al. Dec 1999 A
6172163 Rein et al. Jan 2001 B1
6348279 Saito et al. Feb 2002 B1
6436567 Saito et al. Aug 2002 B1
7005205 Gyoten et al. Feb 2006 B1
7231084 Tang et al. Jun 2007 B2
7329698 Noguchi et al. Feb 2008 B2
7623340 Song et al. Nov 2009 B1
8168964 Hiura et al. May 2012 B2
8216541 Jang et al. Jul 2012 B2
8580132 Lin et al. Nov 2013 B2
9758379 Blair Sep 2017 B2
10138969 Hattori et al. Nov 2018 B2
10287167 Blair May 2019 B2
20020008031 Barsukov et al. Jan 2002 A1
20020119358 Rock Aug 2002 A1
20020182387 Mercuri et al. Dec 2002 A1
20040000735 Gilbert, Sr. et al. Jan 2004 A1
20040033189 Kaschak et al. Feb 2004 A1
20040071896 Kang Apr 2004 A1
20040209150 Rock et al. Oct 2004 A1
20050041373 Pruss Feb 2005 A1
20050191471 Haggquist Sep 2005 A1
20050196636 Kawakami et al. Sep 2005 A1
20050208319 Finley et al. Sep 2005 A1
20050266220 La Forest Dec 2005 A1
20070219336 Ito Sep 2007 A1
20070284557 Gruner et al. Dec 2007 A1
20080048152 Jang et al. Feb 2008 A1
20080206124 Jang et al. Aug 2008 A1
20080279710 Zhamu Nov 2008 A1
20080318110 Budinski et al. Dec 2008 A1
20090017211 Cruner et al. Jan 2009 A1
20090092747 Zhamu et al. Apr 2009 A1
20090140801 Ozyilmaz et al. Jun 2009 A1
20090215953 Hwang Aug 2009 A1
20090224420 Wilkinson Sep 2009 A1
20090241496 Pintault et al. Oct 2009 A1
20100006445 Tomatschger Jan 2010 A1
20100028681 Dai et al. Feb 2010 A1
20100055025 Jang et al. Mar 2010 A1
20100055458 Jang et al. Mar 2010 A1
20100056819 Jang et al. Mar 2010 A1
20100092809 Drzal et al. Apr 2010 A1
20100143732 Swift et al. Jun 2010 A1
20100147188 Mamak et al. Jun 2010 A1
20100151318 Lopatin et al. Jun 2010 A1
20100209731 Humano Aug 2010 A1
20100239870 Bowen Sep 2010 A1
20100296253 Miyamoto et al. Nov 2010 A1
20100317790 Jang et al. Dec 2010 A1
20110017585 Zhamo et al. Jan 2011 A1
20110041980 Kim et al. Feb 2011 A1
20110049437 Crain et al. Mar 2011 A1
20110088931 Lettow et al. Apr 2011 A1
20110120347 Chung et al. May 2011 A1
20110143018 Peng et al. Jun 2011 A1
20110143107 Steinig-Nowakowski Jun 2011 A1
20110159372 Zhamu et al. Jun 2011 A1
20110223405 Compton et al. Sep 2011 A1
20110256376 Compton et al. Oct 2011 A1
20110267673 Agrawal et al. Nov 2011 A1
20110274610 Paquette et al. Nov 2011 A1
20110281034 Lee et al. Nov 2011 A1
20120021224 Everett Jan 2012 A1
20120025131 Forero Feb 2012 A1
20120025420 Utashiro et al. Feb 2012 A1
20120055612 Ahmed et al. Mar 2012 A1
20120065309 Agrawal et al. Mar 2012 A1
20120077017 Buresch Mar 2012 A1
20120107562 Bolotin et al. Mar 2012 A1
20120129736 Tour et al. May 2012 A1
20120184065 Gharib Jul 2012 A1
20120220198 Peukert et al. Aug 2012 A1
20120228555 Cheng et al. Sep 2012 A1
20120282419 Ahn et al. Nov 2012 A1
20120298396 Hong et al. Nov 2012 A1
20120298620 Jiang et al. Nov 2012 A1
20130015409 Fugetsu Jan 2013 A1
20130018204 Jeon et al. Jan 2013 A1
20130114367 Heusinger et al. May 2013 A1
20130156678 Banerjee et al. Jun 2013 A1
20130217222 Johnson et al. Aug 2013 A1
20130236715 Zhamu Sep 2013 A1
20130240033 Jeon et al. Sep 2013 A1
20130264041 Zhamu et al. Oct 2013 A1
20130272950 Yun et al. Oct 2013 A1
20130330833 Ruiz Dec 2013 A1
20140000751 Kagumba Jan 2014 A1
20140018480 Lee et al. Jan 2014 A1
20140030590 Wang et al. Jan 2014 A1
20140117745 Wilke et al. May 2014 A1
20140134092 Shankman May 2014 A1
20140143018 Nies et al. May 2014 A1
20140227211 Shankman Aug 2014 A1
20140272199 Lin et al. Sep 2014 A1
20140299475 Bullington et al. Oct 2014 A1
20150266739 Zhamu et al. Sep 2015 A1
20150284253 Zhamu et al. Oct 2015 A1
20160016803 Stoltz et al. Jan 2016 A1
20160083552 Nosker et al. Mar 2016 A1
20160144339 Kim et al. May 2016 A1
20160216629 Grinwald Jul 2016 A1
20170166722 Zhamu et al. Jun 2017 A1
20170233290 Christiansen et al. Aug 2017 A1
20190051903 Manabe et al. Feb 2019 A1
Foreign Referenced Citations (53)
Number Date Country
101462889 Jun 2009 CN
102021633 Apr 2011 CN
103058541 Apr 2013 CN
103130436 Jun 2013 CN
103215693 Jul 2013 CN
103215693 Jul 2013 CN
103408880 Nov 2013 CN
103569997 Feb 2014 CN
103757823 Apr 2014 CN
103819915 May 2014 CN
103962102 Aug 2014 CN
104319372 Jan 2015 CN
104446176 Mar 2015 CN
106700356 May 2017 CN
108276576 Jul 2018 CN
0949704 Oct 1999 EP
1227531 Jul 2002 EP
2560228 Feb 2013 EP
723598 Feb 1955 GB
S6169853 Apr 1986 JP
64-009808 Jan 1989 JP
2012007224 Jan 2012 JP
2012136567 Jul 2012 JP
20110119429 Nov 2011 KR
20130048741 Apr 2013 KR
20130090979 Aug 2013 KR
1020150026092 Mar 2015 KR
1020170019802 Feb 2017 KR
2456361 Jul 2012 RU
2009032069 Mar 2009 WO
2009059193 May 2009 WO
2010089326 Aug 2010 WO
2010091352 Aug 2010 WO
2011014242 Feb 2011 WO
2011074125 Jun 2011 WO
2011078639 Jun 2011 WO
2011086391 Jul 2011 WO
2011087301 Jul 2011 WO
2011099761 Aug 2011 WO
2011162727 Dec 2011 WO
2012058553 May 2012 WO
2012148880 Nov 2012 WO
2013001266 Jan 2013 WO
2013096990 Jul 2013 WO
2014062226 Apr 2014 WO
2014138587 Sep 2014 WO
2015065893 May 2015 WO
2016040612 Mar 2016 WO
2016123080 Aug 2016 WO
2016154057 Sep 2016 WO
2016200469 Dec 2016 WO
2017053204 Mar 2017 WO
2018008143 May 2018 WO
Non-Patent Literature Citations (77)
Entry
CN 103757823 A, Google Patents.
CN 102560746 A, Google Patents.
CN103215693A—Google Patent, English translated (Year: 2013).
“The effect of residence time on the physical characteristics of PAN-based fibers produced using a solvent-free coagulation process”, M.A. Rahman, A.F. Ismail, A. Mustafa, Materials Science and Engineering A 448 (2007) 275-280 (Year: 2007).
“Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning”, Qingqing Wang, Yuanzhi Du, Quan Feng, Fenglin Huang, Keyu Lu, Jingyan Liu, Qufu Wei, J. Appl. Polym. Sci. 2013, DOI: 10.1002/APP.38273. (Year: 2013).
CN102586952A (Year: 2012).
CN102586952A—Google Patents (Year: 2012).
CN103545536A—(Year: 2014).
CN103545536A—Google Patents (Year: 2014).
CN-103569997-A, Google Patents (Year: 2014).
Extended European Search Report and Opinion for EPO 17185605.7 dated Nov. 29, 2017, 7 pp.
International Search Report and Written Opinion for PCT/US2017/058512 from KIPO dated Feb. 7, 2018, 14 pp.
Academic Press Dictionary of Science and Technology (“Flake”, p. 1, obtained online Aug. 19, 2016).
Bourlinos, A.B., et al., “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir 2003, vol. 19, pp. 6050-6055.
Ebinezar, et al., “Analysis of hardness test for aluminum carbon nanotube metal matrix and graphene,” Indian Journal of Engineering, vol. 10, No. 21, 2014, pp. 33-39.
Extended European Search Report and Opinion for EPO 12844344.7 dated Oct. 22, 2015, 8 pp.
Extended European Search Report and Opinion for EPO 14759787.6 dated Oct. 6, 2016, 13 pp.
Extended European Search Report and Opinion for EPO 14760912.7 dated May 11, 2016, 8 pp.
Fang, M., et al., ““Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites”” Journal of Materials Chemistry, 2009, vol. 19, No. 38, pp. 7098-7105.
Feng, H., et al., “A low-temperature method to produce highly reduced graphene oxide,” Nature Communications, Feb. 26, 2013, 8 pp.
FMC, Persulfates Technical Information, (http://ww.peroxychem.com/media/90826/aod_brochure_persulfate.pdf, downloaded on Jan. 19, 2017) 16 pp.
Herman, A., et al., “Bipolar plates for PEM fuel cells: a review.” International Journal of Hydrogen Energy, 2005, vol. 30, No. 12, pp. 1297-1302.
Hwang, T., et al., “One-step metal electroplating and patterning on a plastic substrate using an electrically-conductive layer of few-layer graphene,” Carbon, Sep. 17, 2011, vol. 50, No. 2, pp. 612-621.
International Search Report and Written Opinion for PCT/US2012/061457 from KIPO dated Mar. 15, 2013, 10 pp.
International Search Report and Written Opinion for PCT/US2014/021765 from KIPO dated Jul. 24, 2014, 11 pp.
International Search Report and Written Opinion for PCT/US2014/021810 from KIPO dated Jul. 14, 2014, 10 pp.
International Search Report and Written Opinion for PCT/US2014/062371 from KIPO dated Feb. 11, 2015, 12 pp.
International Search Report and Written Opinion for PCT/US2015/045657 from KIPO dated Oct. 27, 2015, 6 pp.
International Search Report and Written Opinion for PCT/US2015/049398 from KIPO dated Dec. 16, 2015, 13 pp.
International Search Report and Written Opinion for PCT/US2016/014873 from KIPO dated May 13, 2016, 15 pp.
International Search Report and Written Opinion for PCT/US2016/022229 from KIPO dated Jun. 27, 2016, 15 pp.
International Search Report and Written Opinion for PCT/US2016/023273 from KIPO dated Jul. 12, 2016.
International Search Report and Written Opinion for PCT/US2016/023435 from KIPO dated May 30, 2016, 13 pp.
International Search Report and Written Opinion for PCT/US2016/025307 from KIPO dated Sep. 12, 2016, 11 pp.
International Search Report and Written Opinion for PCT/US2016/025338 from KIPO dated Jul. 25, 2016, 12 pp.
International Search Report and Written Opinion for PCT/US2016/052292 from KIPO dated Nov. 21, 2016, 14 pp.
International Search Report and Written Opinion for PCT/US2017/027231 from KIPO dated Jul. 11, 2017, 18 pp.
Jeon, I., et al., ““Edge-carboxylated graphene nanosheets via ball milling.”” Proceedings of the National Academy of Sciences of the United States of AmericaPNAS, Apr. 10, 2012, vol. 109, No. 15, pp. 5588-5593.
Liu, Y. B., et al., “Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques,” Journal of Materials Science, vol. 29, No. 8, 1994, pp. 1999-2007.
McQuarrie (2011, General Chemistry (4th Edition). University Science Books, Appendix G Standard Reduction Voltages for Aqueous Solutions at 25C, p. A-34 to A-37 and also p. 949, Table 25.3. Online version available at:http://app.knovel.com/hotlink!loc/id:kpGCE00013/general-chemistry-4th/general-chemistry-4th).
Merriam-Webster (“Definition of Flake” p. 1-9, obtained online Aug. 19, 2016).
Mohajerani, E., et al., “Morphological and thickness analysis for PMMA spin coated films,” Journal of Optoelectronics and Advanced Materials, vol. 9:12, Dec. 2007, p. 3901-3906.
Moustafa, S.F., et al., “Copper matrix SiC and A1203 particulate composites by powder metallurgy technique,” Materials Letters, 2002, vol. 53, No. 4, pp. 244-249.
Ong, T. S., et al., “Effect of atmosphere on the mechanical milling of natural graphite,” Carbon, 2000, vol. 38, No. 15, pp. 2077-285.
Rafiee, M. et al., “Fracture and fatigue in graphene nanocomposites.” Small, 2010, vol. 6, No. 2, pp. 179-183.
Steurer, P., et al., ““Functionalized graphenes and thermoplasticnanocomposites based upon expanded graphite oxide.”” Macromolecular Rapid Communications, 2009, vol. 30, Nos. 4-5, pp. 316-327.
Szabo, T., et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater., vol. 18, Mar. 29, 2006, pp. 2740-2749.
Taeseon, H., et al.,“One-step metal electroplating and patterning on a plastic substrate using an electrically conductive layer of few-layer graphene,” Carbon, Elsevier, Oxford, GB, vol. 50, No. 2, Sep. 8, 2011, pp. 612-621.
USP Technologies, “What is the pH of H2O2 solutions?,” http://www.h2o2.com/faqs/FaqDetail.aspx?fld=26, accessed Jan. 19, 2017, 2 pp.
Wang, X. et al., ““In situ polymerization of graphene nanosheets andpolyurethane with enhanced mechanical and thermal properties.”” Journal of materials Chemistry, 2011, vol. 21, No. 12, pp. 4222-4227.
Wang, Y., et al., “Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst,” ACS Nano, vol. 5, No. 12, Oct. 30, 2011, pp. 9927-9933.
Wu, Z-S. et al., “Field Emission of Single-Layer Films Prepared by Electrophoretic Deposition.” Advanced Materials, 21, 2009, pp. 1756-1760.
Zhao, W., et al., “Preparation of graphene by exfoliation of graphite using wet ball milling.” Journal of Materials Chemistry, Jun. 3, 2010, vol. 20, pp. 5817-5819.
Kaur, S., et al., “Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces,” Nature Communications, Jan. 22, 2014, pp. 1-8.
Maguire, J. A., et al., “Efficient low-temperature thermal functionalization of alkanes. Transfer dehydrogenation catalized by Rh(PMe3)2CI(CO) in solution under a high-pressure hydrogen atmosphere,” J. Am. Chem. Soc., Aug. 1, 1991, vol. 113:17, pp. 6706-6708.
Kirschner, M., “Ozone,” Ullmann's Enclyclopedia of Industrial Chemistry, vol. 25, 2012, pp. 637-644.
Minus, M., et al., “The Processing, Properties, and Structure of Carbon Fibers,” JOM, Feb. 2005, pp. 52-58.
Pauling, L., General Chemistry, Chapter 15, “Oxidation-Reduction Reactions. Electrolysis,” Dover Publications, Inc., 1970, 41 pp.
Polymers: A Properties Database, “Poly(ethylene terphthalate)”, Chemnetbase, downloaded from http://poly.chemnetbase.com, Jan. 24, 2016, 5 pp.
Extended European Search Report for EP 16849382.3 dated Apr. 30, 2019, 10 pp.
Extended European Search Report for EP 17865997.5 dated Jul. 22, 2019, 7 pp.
International Search Report and Written Opinion for PCT/US2019/051405 from KIPO dated Jan. 3, 2020, 11 pp.
Xia, et al., “Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate,” Journal of Power Sources, vol. 178, Dec. 5, 2007, pp. 363-367.
Babak, F., et al., “Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites,” The Scientific World Journal, vol. 2014, ID 276323, 10 pp.
Extended European Search Report for EP 15834377.2 dated Mar. 9, 2018, 8 pp.
Extended European Search Report for EP 16780450.9 dated Jul. 13, 2018, 18 pp.
Wu, Q., et al., “Suprecapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films,” ACS Nano (2010), 4(4):1963-1970.
Chemical Book, «https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8295389.htm», year 2017.
Chemical Book, «https://www.chemicalbook.com/ProductChemical PropertiesCB8123794_EN.htm», year 2017.
Gong, et al., “Optimization of the Reinforcement of Polymer-Based Nanocomposites with Graphene,” ECCM 15-15th European Conference on Composite Materials, Venice, Italy, Jun. 24-28, 2012.
Gulotty, R., et al., “Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube—Polymer Nancomposites,” UC Riverside—Polytechnic of Turin (2013), 25 pp.
Porter, Roger S. et al., “Property Opportunities with Polyolefins, A Review Preparations and Applications of High Stiffness and Strength by Uniaxial Draw,” Polymer, 35:23, 1994, pp. 4979-4984.
Song, M., et al., “The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets,” Journal of Nanotechnology, vol. 2012, Art. ID 329318, Mar. 28, 2012, 5 pp.
Extended European Search Report for EP 19862892.7 dated Oct. 12, 2021, 11 pp.
Osicka, et al., “Light-Induced and Sensing Capabilities of SI-ATRP Modified Graphene Oxide particles in Elastomeric Matrix,” Active and Passive Smart Structures and Integrated Systems 2017, vol. 10164, 1016434, doi: 10.1117/12.2260703, 10.pp.
Wang, Y., et al., “Kevlar oligomer functionalized graphene for polymer composites,” Polymer, 52, Jun. 15, 2011, 3661-3670.
Zheng, H., et al., “Graphene oxide-poly (urea-formaldehyde) composites for corrosion protection of mild steel,” Corrosion Science, Apr. 27, 2018, 139, pp. 1-12.
Related Publications (1)
Number Date Country
20180174700 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62173041 Jun 2015 US