Grasping for tissue repair

Information

  • Patent Grant
  • 12137909
  • Patent Number
    12,137,909
  • Date Filed
    Friday, December 17, 2021
    3 years ago
  • Date Issued
    Tuesday, November 12, 2024
    a month ago
Abstract
The invention provides improved devices, systems, and methods for tissue approximation and repair at treatment sites. The invention provides devices, systems, and methods that may more successfully approximate and repair tissue by improving the capture of tissue into the devices. The invention may be a one-way mechanism that allows tissue to enter the mechanism but not easily exit, such as a leaf-spring, a protrusion, a pivoting arm and one or more frictional elements.
Description
BACKGROUND

The present invention relates generally to medical methods, devices, and systems. In particular, the present invention relates to methods, devices, and systems for the endovascular, percutaneous, or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present invention relates to repairing heart valves and venous valves, and devices and methods for removing or disabling mitral valve repair components through minimally invasive procedures.


Surgical repair of bodily tissues often involves tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets. Such coaptation can be used to treat regurgitation which most commonly occurs in the mitral valve.


Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent oxygenated blood from flowing back into the left atrium. In this way, oxygenated blood is pumped into the aorta through the aortic valve. Mitral valve regurgitation can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.


Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles themselves, or the left ventricular wall may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened, limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.


The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. One technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.


In some patients, a fixation device can be installed into the heart using minimally invasive techniques. The fixation device can hold the adjacent segments of the opposed valve leaflets together and may reduce mitral valve regurgitation. One such device used to clip the anterior and posterior leaflets of the mitral valve together is the MitraClip® fixation device, sold by Abbott Vascular, Santa Clara, California, USA.


DESCRIPTION OF THE BACKGROUND ART

Many techniques exist for approximating and repairing tissues and organs at treatment sites. For example, minimally invasive and percutaneous techniques for coapting and modifying mitral valve leaflets to treat mitral valve regurgitation are described in PCT Publication Nos. WO 98/35638; WO 99/00059; WO 99/01377; and WO 00/03759; WO 2000/060995; WO 2004/103162. Maisano et al. (1998) Eur. J. Cardiothorac. Surg. 13:240-246; Fucci et al. (1995) Eur. J. Cardiothorac. Surg. 9:621-627; and Umana et al. (1998) Ann. Thorac. Surg. 66:1640-1646, describe open surgical procedures for performing “edge-to-edge” or “bow-tie” mitral valve repair where edges of the opposed valve leaflets are sutured together to lessen regurgitation. Dec and Fuster (1994) N. Engl. J. Med. 331:1564-1575 and Alvarez et al. (1996) J. Thorac. Cardiovasc. Surg. 112:238-247 are review articles discussing the nature of and treatments for dilated cardiomyopathy.


Mitral valve annuloplasty is described in the following publications: Bach and Bolling (1996) Am. J. Cardiol. 78:966-969; Kameda et al. (1996) Ann. Thorac. Surg. 61:1829-1832; Bach and Bolling (1995) Am. Heart J. 129:1165-1170; and Bolling et al. (1995) 109:676-683. Linear segmental annuloplasty for mitral valve repair is described in Ricchi et al. (1997) Ann. Thorac. Surg. 63:1805-1806. Tricuspid valve annuloplasty is described in McCarthy and Cosgrove (1997) Ann. Thorac. Surg. 64:267-268; Tager et al. (1998) Am. J. Cardiol. 81:1013-1016; and Abe et al. (1989) Ann. Thorac. Surg. 48:670-676.


Percutaneous transluminal cardiac repair procedures are described in Park et al. (1978) Circulation 58:600-608; Uchida et al. (1991) Am. Heart J. 121: 1221-1224; and Ali Khan et al. (1991) Cathet. Cardiovasc. Diagn. 23:257-262. Endovascular cardiac valve replacement is described in U.S. Pat. Nos. 5,840,081; 5,411,552; 5,554,185; 5,332,402; 4,994,077; and 4,056,854. U.S. Pat. No. 3,671,979 describes a catheter for temporary placement of an artificial heart valve.


Other percutaneous and endovascular cardiac repair procedures are described in U.S. Pat. Nos. 4,917,089; 4,484,579; and 3,874,338; and PCT Publication No. WO 91/01689. Thoracoscopic and other minimally invasive heart valve repair and replacement procedures are described in U.S. Pat. Nos. 5,855,614; 5,829,447; 5,823,956; 5,797,960; 5,769,812; and 5,718,725.


BRIEF SUMMARY

The present disclosure describes devices intended for intravascular delivery and for use in treating mitral valve defects in human patients. The mitral valve of a human heart has an atrial side, a ventricular side, an anterior leaflet, a posterior leaflet, and an opening between the leaflets.


In one embodiment, the device can include a body, a pair of proximal elements, and a pair of distal elements. Each proximal element is coupled at a first end to the body on opposite sides of the body, and has a free second end. Each proximal element has a proximal engagement surface between its first and second ends. Each proximal engagement surface is configured to approximate and engage a portion of the leaflets adjacent the mitral valve on the atrial side. Each proximal engagement surface also has a proximal retaining element configured to permit tissue to move toward the first end of the proximal element and to resist movement of the tissue away from the first end of the proximal element.


Each distal element is pivotally coupled at a first end to the body on opposite sides of the body, and has a free second end. Each distal element has a distal engagement surface between its first and second ends. Each distal engagement surface is configured to approximate and engage a portion of the leaflets adjacent the mitral valve on the ventricular side.


A first one of the proximal elements cooperates with a first one of the distal elements to form a space for receiving a portion of the anterior leaflet therebetween. A second one of the proximal elements cooperates with a second one of the distal elements to form a space for receiving a portion of the posterior leaflet therebetween. Each such space has an open end and a closed end, and the closed end forms an apex.


The device includes an actuator for selectively moving the distal elements between a first position in which the distal elements are in a collapsed, low profile configuration for delivery of the device, a second position in which the distal elements are in an expanded configuration for positioning the device relative to the mitral valve, and a third position in which the distal elements are secured in position against a portion of the leaflets adjacent the mitral valve on the ventricular side.


The device also includes an actuator for selectively moving the proximal elements between a first position in which the proximal elements are in a collapsed, low profile configuration for delivery of the device and a second position in which the proximal elements are in an expanded configuration for engaging a portion of the leaflets adjacent the mitral valve on the atrial side. Each distal element can also include a distal retaining element positioned along the distal engagement surface. Each distal retaining element is configured to cooperate with a corresponding proximal retaining element to capture a free edge of the mitral valve leaflet as the device is positioned relative to the mitral valve. Each retaining element can be configured to cooperate with a frictional element to allow a leading free edge of the leaflets to move in a first direction toward the body with little or no resistance or restriction and to resist or prevent movement of the free edge of the leaflets in an opposite direction away from the body. These and other objects and features of the present disclosure will become more fully apparent from the following description and appended claims, or may be learned by the practice of the embodiments of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present disclosure, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the invention and are therefore not to be considered limiting of its scope. Embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates free edges of leaflets of the mitral valve in normal coaptation, and



FIG. 2 illustrates the free edges in regurgitative coaptation.



FIGS. 3A-3C illustrate grasping of the leaflets with a fixation device, inversion of the distal elements of the fixation device and removal of the fixation device, respectively.



FIG. 4 illustrates the fixation device in a desired orientation relative to the leaflets.



FIG. 5 illustrates an exemplary fixation device coupled to a shaft.



FIGS. 6A-6B, 7A-7B, and 8 illustrate a fixation device in various possible positions during introduction and placement of the device within the body to perform a therapeutic procedure.



FIGS. 9A-9B illustrate a fixation device embodiment with a leaf spring.



FIG. 10 illustrates a close-up of a portion of another embodiment of a fixation device.



FIG. 11A illustrates a close-up of a portion of another embodiment of a fixation device.



FIGS. 11B and 11C each illustrate a close-up cross-sectional side view of a portion of another embodiment of a fixation device.



FIGS. 11D and 11E each illustrate a close-up cross-sectional transverse view of a portion of another embodiment of a fixation device.



FIG. 12 illustrates a close-up of a portion of another embodiment of a fixation device.





DETAILED DESCRIPTION
I. Introduction

A. Cardiac Physiology


As shown in FIG. 1, the mitral valve (MV) comprises a pair of leaflets (LF) having free edges (FE) which, in patients with normal heart structure and function, meet evenly to close along a line of coaptation (C). The leaflets (LF) attach to the surrounding heart structure along an annular region called the annulus (AN). The free edges (FE) of the leaflets (LF) are secured to the lower portions of the left ventricle LV through chordae tendinae (or “chordae”). As the left ventricle of a heart contracts (which is called “systole”), blood flow from the left ventricle to the left atrium through the mitral valve (MV) (called “mitral regurgitation”) is usually prevented by the mitral valve.


Regurgitation occurs when the valve leaflets do not close properly and allow leakage from the left ventricle into the left atrium. A number of heart structural defects can cause mitral regurgitation. FIG. 2 shows a mitral valve with a defect causing regurgitation through a gap (G).


II. General Overview of Mitral Valve Fixation Technology

Several methods for repairing or replacing a defective mitral valve exist. Some defects in the mitral valve can be treated through intravascular procedures, where interventional tools and devices are introduced and removed from the heart through the blood vessels. One method of repairing certain mitral valve defects includes intravascular delivery of a fixation device to hold portions of the mitral valve tissues in a certain position. One or more interventional catheters may be used to deliver a fixation device to the mitral valve and install it there as an implant to treat mitral regurgitation.



FIG. 3A illustrates a schematic of an interventional tool 10 with a delivery shaft 12 and a fixation device 14. The tool 10 has approached the mitral valve MV from the atrial side and grasped the leaflets LF.


The fixation device 14 is releasably attached to the shaft 12 of the interventional tool 10 at the distal end of the shaft 12. In this application, when describing devices, “proximal” means the direction toward the end of the device to be manipulated by the user outside the patient's body, and “distal” means the direction toward the working end of the device that is positioned at the treatment site and away from the user. When describing the mitral valve, proximal means the atrial side of the leaflets and distal means the ventricular side of the leaflets.


The fixation device 14 comprises proximal elements 16 and distal elements 18 which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween. The fixation device 14 is coupleable to the shaft 12 by a coupling mechanism 17.



FIG. 3B illustrates that the distal elements 18 may be moved in the direction of arrows 40 to an inverted position. The proximal elements 16 may be raised as shown in FIG. 3C. In the inverted position, the device 14 may be repositioned and then be reverted to a grasping position against the leaflets as in FIG. 3A. Or, the fixation device 14 may be withdrawn (indicated by arrow 42) from the leaflets as shown in FIG. 3C. Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues.



FIG. 4 illustrates the fixation device 14 in a desired orientation in relation to the leaflets LF. The mitral valve MV is viewed from the atrial side, so the proximal elements 16 are shown in solid line and the distal elements 18 are shown in dashed line. The proximal and distal elements 16, 18 are positioned to be substantially perpendicular to the line of coaptation C. During diastole (when blood is flowing from the left atrium to the left ventricle), fixation device 14 holds the leaflets LF in position between the elements 16, 18 surrounded by openings or orifices O which result from the diastolic pressure gradient, as shown in FIG. 4.


Once the leaflets are coapted in the desired arrangement, the fixation device 14 is detached from the shaft 12 and left behind as an implant.


A. Exemplary Fixation Device



FIG. 5 illustrates an exemplary fixation device 14. The fixation device 14 is shown coupled to a shaft 12 to form an interventional tool 10. The fixation device 14 includes a coupling member 19, a pair of opposed proximal elements 16, and a pair of opposed distal elements 18. The distal elements 18 comprise elongate arms 53, each arm having a proximal end 52 rotatably connected to the coupling member 19 and a free end 54. Preferably, each free end 54 defines a curvature about two axes, axis 66 perpendicular to longitudinal axis of arms 53, and axis 67 perpendicular to axis 66 or the longitudinal axis of arms 53.


Arms 53 have engagement surfaces 50. Arms 53 and engagement surfaces 50 are configured to engage about 4-10 mm of tissue, and preferably about 6-8 mm along the longitudinal axis of arms 53. Arms 53 further include a plurality of openings.


The proximal elements 16 are preferably resiliently biased toward the distal elements 18. When the fixation device 14 is in the open position, each proximal element 16 is separated from the engagement surface 50 near the proximal end 52 of arm 53 and slopes toward the engagement surface 50 near the free end 54 with the free end of the proximal element 16 contacting engagement surface 50, as illustrated in FIG. 5.


Proximal elements 16 include a plurality of openings 63 and scalloped side edges 61 to increase their grip on tissue. The proximal elements 16 optionally include a frictional element or multiple frictional elements to assist in grasping the leaflets. The frictional elements may comprise barbs 60 having tapering pointed tips extending toward engagement surfaces 50. Any suitable frictional elements may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these.


The proximal elements 16 may be covered with a fabric or other flexible material. Preferably, when fabrics or coverings are used in combination with barbs or other frictional features, such features will protrude through such fabric or other covering so as to contact any tissue engaged by proximal elements 16.


The fixation device 14 also includes an actuator or actuation mechanism 58. The actuation mechanism 58 comprises two link members or legs 68, each leg 68 having a first end 70 which is rotatably joined with one of the distal elements 18 at a riveted joint 76 and a second end 72 which is rotatably joined with a stud 74. The actuation mechanism 58 comprises two legs 68 which are each movably coupled to a base 69. Or, each leg 68 may be individually attached to the stud 74 by a separate rivet or pin. The stud 74 is joinable with an actuator rod which extends through the shaft 12 and is axially extendable and retractable to move the stud 74 and therefore the legs 68 which rotate the distal elements 18 between closed, open and inverted positions. Immobilization of the stud 74 holds the legs 68 in place and therefore holds the distal elements 18 in a desired position. The stud 74 may also be locked in place by a locking feature. This actuator rod and stud assembly may be considered a first means for selectively moving the distal elements between a first position in which the distal elements are in a collapsed, low profile configuration for delivery of the device, a second position in which the distal elements are in an expanded configuration for positioning the device relative to the mitral valve, and a third position in which the distal elements are secured in position against a portion of the leaflets adjacent the mitral valve on the ventricular side.



FIGS. 6A-6B, 7A-7B, and 8 illustrate various possible positions of the fixation device 14 of FIG. 5. FIG. 6A illustrates an interventional tool 10 delivered through a catheter 86. The catheter 86 may take the form of a guide catheter or sheath. The interventional tool 10 comprises a fixation device 14 coupled to a shaft 12 and the fixation device 14 is shown in the closed position.



FIG. 6B illustrates a device similar to the device of FIG. 6A in a larger view. In the closed position, the opposed pair of distal elements 18 are positioned so that the engagement surfaces 50 face each other. Each distal element 18 comprises an elongate arm 53 having a cupped or concave shape so that together the arms 53 surround the shaft 12. This provides a low profile for the fixation device 14.



FIGS. 7A-7B illustrate the fixation device 14 in the open position. In the open position, the distal elements 18 are rotated so that the engagement surfaces 50 face a first direction. Distal advancement of the actuator rod relative to shaft 12, and thus distal advancement of the stud 74 relative to coupling member 19, applies force to the distal elements 18 which begin to rotate around joints 76. Such rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are directed slightly outwards. The stud 74 may be advanced to any desired distance correlating to a desired separation of the distal elements 18. In the open position, engagement surfaces 50 are disposed at an acute angle relative to shaft 12, and are preferably at an angle of between 90 and 180 degrees relative to each other. In the open position, the free ends 54 of arms 53 may have a span therebetween of about 10-20 mm, usually about 12-18 mm, and preferably about 14-16 mm.


Proximal elements 16 are typically biased outwardly toward arms 53. The proximal elements 16 may be moved inwardly toward the shaft 12 and held against the shaft 12 with the aid of proximal element lines 90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures. The proximal element lines 90 extend through the shaft 302 of the delivery catheter 300 and connect with the proximal elements 16. The proximal elements 16 are raised and lowered by manipulation of the proximal element lines 90. Once the device is properly positioned and deployed, the proximal element lines can be removed by withdrawing them through the catheter and out the proximal end of the device 10. The proximal element lines 90 may be considered a second means for selectively moving the proximal elements between a first position in which the proximal elements are in a collapsed, low profile configuration for delivery of the device and a second position in which the proximal elements are in an expanded configuration for engaging a portion of the leaflets adjacent the mitral valve on the atrial side.


In the open position, the fixation device 14 can engage the tissue which is to be approximated or treated. The interventional tool 10 is advanced through the mitral valve from the left atrium to the left ventricle. The distal elements 18 are then deployed by advancing actuator rod relative to shaft 12 to thereby reorient distal elements 18 to be perpendicular to the line of coaptation. The entire assembly is then withdrawn proximally and positioned so that the engagement surfaces 50 contact the ventricular surface of the valve leaflets, thereby engaging the left ventricle side surfaces of the leaflets. The proximal elements 16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements. The interventional tool 10 may be repeatedly manipulated to reposition the fixation device 14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while the device 14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved.


It may also be desired to invert distal elements 18 of the fixation device 14 to aid in repositioning or removal of the fixation device 14. FIG. 8 illustrates the fixation device 14 in the inverted position. By further advancement of actuator rod relative to shaft 12, and thus stud 74 relative to coupling member 19, the distal elements 18 are further rotated so that the engagement surfaces 50 face outwardly and free ends 54 point distally, with each arm 53 forming an obtuse angle relative to shaft 12.


The angle between arms 53 when the device is inverted is preferably in the range of about 270 to 360 degrees. Further advancement of the stud 74 further rotates the distal elements 18 around joints 76. This rotation and movement of the distal elements 18 radially outward causes rotation of the legs 68 about joints 80 so that the legs 68 are returned toward their initial position, generally parallel to each other. The stud 74 may be advanced to any desired distance correlating to a desired inversion of the distal elements 18. Preferably, in the fully inverted position, the span between free ends 54 is no more than about 20 mm, usually less than about 16 mm, and preferably about 12-14 mm. Barbs 60 are angled slightly in the distal direction (away from the free ends of the proximal elements 16), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn.


Once the distal elements 18 of the fixation device 14 have been positioned in a desired location against the left ventricle side surfaces of the valve leaflets, the leaflets may then be captured between the proximal elements 16 and the distal elements 18. The proximal elements 16 are lowered toward the engagement surfaces 50 by releasing tension from proximal element lines 90, thereby releasing proximal elements 16 so that they are then free to move, in response to the internal spring bias force formed into proximal elements 16, from a constrained, collapsed position to an expanded, deployed position and so that the leaflets are held between the proximal elements 16 and the distal elements 18. If regurgitation is not sufficiently reduced, the proximal elements 16 may be raised and the distal elements 18 adjusted or inverted to reposition the fixation device 14.


After the leaflets have been captured between the proximal and distal elements 16, 18 in a desired arrangement, the distal elements 18 may be locked to hold the leaflets LF in this position or the fixation device 14 may be returned to or toward a closed position. This is achieved by retraction of the stud 74 proximally relative to coupling member 19 so that the legs 68 of the actuation mechanism 58 apply an upwards force to the distal elements 18 which in turn rotate the distal elements 18 so that the engagement surfaces 50 again face one another. The released proximal elements 16 which are biased outwardly toward distal elements 18 are concurrently urged inwardly by the distal elements 18. The fixation device 14 may then be locked to hold the leaflets in this closed position. The fixation device 14 may then be released from the shaft 12. The fixation device 14 optionally includes a locking mechanism for locking the device 14 in a particular position, such as an open, closed or inverted position or any position therebetween. The locking mechanism may include a release harness. Applying tension to the release harness may unlock the locking mechanism.


The lock lines 92 engage the release harnesses 108 of the locking mechanism 106 to lock and unlock the locking mechanism 106. The lock lines 92 extend through the shaft 302 of the delivery catheter 300. A handle attached to the proximal end of the shaft is used to manipulate and decouple the fixation device 14.


Additional disclosure regarding such fixation devices 14 may be found in PCT Publication No. WO 2004/103162 and U.S. patent application Ser. No. 14/216,787, the disclosures of both of which are incorporated herein in their entirety.


B. Improved Grasping Mechanisms


Sometimes it can be difficult to capture or retain tissue within fixation device 14 so that fixation device 14 approximates or repairs the tissue as desired. Leaflet insertion may be assessed throughout the process of installing a fixation device 14, but it can be difficult to differentiate good and poor leaflet insertion and retention. For example, when fixation device 14 is used in endovascular or minimally invasive procedures, visualization of the capturing or retention of tissue may be difficult.


At times during the process of installing a fixation device 14, the tissue desired to be captured or retained between proximal elements 16 and distal elements 18 may seem to be securely captured or retained when it is actually only partially captured or insecurely captured. As a result, the free edges FE of leaflet tissue LF may later disassociate from the fixation device 14 and the fixation device 14 may then not properly coapt, approximate, or repair the tissue. Even if imaging methods make it possible to visualize when tissue is captured in the fixation device, they may not allow for a viewer to distinguish between securely and insecurely captured tissue. For example, color Doppler echo may show that regurgitation has been reduced, but it may not provide precise specifics on where along the leaflets LF fixation device 14 has captured the tissue, and whether the capturing is secure.


If a leaflet is poorly grasped between proximal elements 16 and distal elements 18, eventually that leaflet LF may separate from the fixation device 14. This may result in the fixation device 14 being attached to only one of the leaflets LF, or separating from both leaflets LF, and no longer functioning as desired.


In addition to difficulties arising from the imaging or visualization of the device 14 as it is installed, difficulty in capturing or retaining tissue within fixation device 14 may also result from the nature of tissue desired to be captured or retained. For example, when using fixation device 14 to fix mitral valve leaflets LF to each other to stop or reduce mitral valve regurgitation, the leaflets LF are constantly moving as the heart beats.



FIGS. 9-12 illustrate various embodiments that are intended to help a fixation device 14′ capture and retain the free edges FE of leaflets LF during placement of the fixation device 14′. To do so, these embodiments include the addition of a retaining element 400 positioned on the proximal side of each distal element 18′. The retaining element 400 combines with frictional elements such as barbs 410 at the lower end of the proximal element 16′ to capture the free edge FE of the leaflet upon its initial insertion and help retain it there until the proximal and distal elements are fully deployed. The lower end of the proximal element 16′ is the end closest to the stud 74′.


The retaining element 400 and barbs 410 are configured to cooperate to allow the free edge FE of the leaflets LF to easily or freely move in a first direction toward the apex 430 formed between each proximal element 16′ and the corresponding distal element 18′, but at the same time to resist or prevent movement of the free edge FE of the leaflet tissue LF in the opposite direction away from apex 430. In this way, retaining element 400, in cooperation with the barbs 410, help to retain the leaflets LF in the device 14′ while the device is being positioned relative to the leaflets LF and before the proximal elements 16′ and distal elements 18′ are fully deployed.


The retaining element 400 may serve as a passive capture mechanism that retains leaflet tissue LF without needing to be activated. For example, the retaining element 400 may retain leaflet tissue LF in the device 14′ when a length of tissue of about 4-10 mm, and preferably about 6-8 mm, is located along the longitudinal axis of the distal elements 18′. A retaining element 400 may be located on the distal elements 18′, as shown in the illustrated embodiments, or the retaining element 400 may be located on the proximal elements 16′, or it may be located on both the distal elements 18′ and the proximal elements 16′. A retaining element 400 may hold a leaflet LF in place without closing the fixation element 18′ and gripping element 16′.


As shown in FIGS. 9A-9B, in one embodiment, a retaining element 400 may be a spring element 402 that retains leaflets LF inserted into the fixation device 14′. The spring element 402 may help capture or hold any leaflet LF that inserts past a given point along the distal elements 18′ which is determined to be sufficient insertion depth.


Referring again to FIGS. 9A-B, the spring element 402 is on a distal element 18′. Each distal element 18′ has a spring element 402 incorporated into or attached to the distal element 18′. The spring element 402 may be incorporated into or attached to the distal element 18′ at a midpoint 414 between a first end 404 of the distal element 18′ that attaches to a stud 74′ and the free end 406 of the distal element 18′. It may also be incorporated into or attached to the distal element 18′ closer to the free end 406 of each distal element 18′ or to the first end 404 of each distal element 18′. As shown in FIGS. 9A-B, the fixed end 412 of the spring element 402 is located between the midpoint 414 and free end 406 of the distal element 18′. In addition, the spring element 402 of the retaining element 400 is elongate and can extend in an elongate fashion along substantially an entire length of the distal element 18′ and associated distal engagement surface. Alternatively, the retaining element 400 can extend in an elongate fashion from a location near or adjacent first end 404 to a location distal a midpoint of the distal engagement surface of the distal element 18′ or from a location near or adjacent second end 406 to a location distal a midpoint of the distal engagement surface of the distal element 18′.


The spring element 402 may comprise a low-force leaf spring 408 biased to push the spring element 402 towards the leaflet LF and encourage frictional elements or barbs 410 to be deeply inserted into the leaflet LF, so the leaflet LF remains in a fully seated state until distal elements 18′ are further closed. As illustrated, barbs 410 are orientated at an angle pointing toward apex 430. With barbs 410 oriented in that direction, the leading edge LE of the leaflet tissue LF is allowed to move in a first direction toward apex 430 with little or no restriction or resistance. As the leading edge LE of the leaflet tissue moves toward apex 430, spring element 402 directs or urges the leaflet tissue LF toward and into contact with barbs 410. Once the leaflet tissue LF comes into contact with and engages the barbs 410, the angled orientation of the barbs 410 causes barbs 410 to penetrate into the leaflet tissue LF and then restricts or prevents movement of the leaflet tissue LF in the opposite direction away from apex 430. Thus, the combination of the retaining element 400 and the barbs 410 effectively function as a directional trap that permits the leaflet tissue LF to move in a first direction toward apex 430 with little or no resistance, while restricting or preventing movement of the leaflet tissue LF in a second or opposite direction away from apex 430.


The leaf spring 408 may have one or more lobes or a partial lobe. The leaf spring 408 may be biased to allow for little to no resistance to a leaflet LF as it inserts. It may have surface features, a pointed edge, or other elements that create resistance to make it difficult for the leaflet LF to retract out. Such surface features may include, for example, dimples, bumps, ridges, or indents. For example, as shown in FIG. 9A-B, the free end 416 of the spring element 402 may be configured to curve toward the distal elements 18′ (as shown in FIG. 9A) when tissue LF is being trapped, and curve away from the distal element 18′ (as shown in FIG. 9B) when tissue LF is being released. When the leaflet is entrapped between the distal elements 18′ and the proximal elements 16′, the free end 416 of the spring element 402 may be configured to lie flat against the distal element 18′.


The retaining element 400 helps the fixation device 14 capture tissue when proximal elements 16′ are raised and distal elements 18′ are still partially open. The retaining element 400 may be configured to urge the leaflet tissue against the barbs 410 on the proximal elements 16. The retaining element 400 may be a one-way mechanism that allows tissue to enter but not exit, such as a ratchet or something similar to a ratchet.


Because repositioning and regrasping the fixation device 14′ is sometimes required, the one-way mechanism should have a way for the leaflet tissue LF to be permitted to escape. The retaining element can be designed to allow tissue to exit under certain circumstances, such as when the distal elements 18′ are opened to approximately 180°, as shown in FIG. 9B, or are opened even further in an inverted position, as shown in FIG. 8. Or, when the proximal elements 16′ are raised, the leaflet tissue LF may be released to allow regrasping.


To ensure that the leaflets LF are properly grasped in a fixation device 14′, one method of using a device with a retaining element 400 such as a spring element 402 located near each set of distal elements 18′ and proximal elements 16′ is to first capture one or both leaflets LF in the spring element 402. The spring element urges the leaflets LF against the barbs 410 at the lower end of the proximal element 16′ to capture the free edge FE of the leaflet LF upon its initial insertion and help retain it there until the proximal and distal elements 16, 18 are fully deployed. It may be possible to confirm that one or more leaflets LF is captured based on imaging methods such as color Doppler echo. When leaflets LF are trapped between the spring element 402 and the barbs 410, then the proximal elements 16′ may be lowered toward the surfaces 50′ of the distal elements 18′, so that the leaflets LF are held therebetween and the distal elements 18′ may be locked to hold the leaflets LF in this position or the fixation device 14′ may be returned to or toward a closed position.


In another embodiment, as shown in FIG. 10, a retaining element 400 comprises an arm 417. Each distal element 18′ has an arm 417 incorporated into or attached to the distal element 18′. The arm 417 may be incorporated into or attached at a fixed end 415 to the distal element 18′ at a midpoint 414 between a first end 404 of the distal element 18′ that attaches to a stud 74′ and the free end 406 of the distal element 18′. It may also be incorporated into or attached to the distal element 18′ closer to the free end 406 of each distal element 18′ or to the first end 404 of each distal element 18′. As shown in FIG. 10, the fixed end 415 of the arm 417 is located between the midpoint 414 and free end 406 of the distal element 18′.


The arm 417 has a projection or projections 418 of a suitable shape and size to assist in retaining the leaflets LF in position. These projections 418 may have sharp tips located opposite to the arm 417, or sharp edges between their tips and the arm 417. They may comprise barbs having tapering pointed tips, scalloped edges, prongs, windings, bands, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these. As shown in FIG. 10, these projections may be oriented away from the surface 50′ and angled away from the free ends 406 of the distal element 18′. They may also orient toward the free ends 406, or be perpendicular to the surface 50′. The projections may flex or collapse toward the distal element 18′ when the fixation device 14′ is closed and flex out to a fixed angle when the fixation device 14′ is open. For example, the projections 418 may bias toward a fixed angle from the engagement surfaces 50′, but may be pushed flat against the distal element 18′ when the distal elements 18′ close around the shaft 12.


The fixation device should be configured with enough space between the proximal elements 16′ and the distal elements 18′ for a leaflet LF to be easily inserted past the projections 418 on the distal elements 18′. The chordal tethered leaflets LF may be tensioned lightly upon the fixation device 14′ just prior to closing the distal elements 18′ and proximal elements 16′. They may also be securely affixed to the device 14′ prior to closing the distal elements 18′ and proximal elements 16′.


In one embodiment, the arm 417 may be a flexible leaf-spring that pivots at a fixed end 415 and is positioned between the proximal element 16′ and distal elements 18′. It may also include a system of projections 418 angled to allow entry of the tissue between the distal element 18′ and proximal element 16′, but to prevent retraction of the tissue LF. As shown, the projection 418 and leaf spring 417 may be combined in the same structure. In addition, the arm 417 of the retaining element 400 is elongate and can extend in an elongate fashion along substantially an entire length of the distal element 18′ and associated distal engagement surface. Alternatively, the retaining element 400 can extend in an elongate fashion from a location near or adjacent first end 404 to a location distal a midpoint of the distal engagement surface of the distal element 18′ or from a location near or adjacent second end 406 to a location distal a midpoint of the distal engagement surface of the distal element 18′.


As shown in FIG. 11, in another embodiment the retaining element 400 may comprise one or more protrusions 420. One or more protrusions 420 may be positioned close to the hinge point of the distal elements 18′ on the engagement surface 50′. When a leaflet LF is inserted past the protrusion 420, the protrusion 420 may reduce leaflet detachment upon deployment of the fixation device 14′ by directing or urging the leaflet LF into contact with the gripping surfaces or barbs 410 located on the opposing proximal element 16′. The protruding feature 420 may be located near a midpoint 414 between a first end 404 of the distal element 18′ that attaches to a stud 74′ and the free end 406 of the distal element 18′. It may also be incorporated into or attached to the distal element 18′ closer to the free end 406 of each distal element 18′ or to the first end 404 of each distal element 18′. A protruding feature 420 may be a rigid piece of material that is affixed to the engagement surface 50′ of distal elements 18′ and may be atraumatic to aid with directing or urging the leaflet LF while causing minimal damage to the leaflet LF, such as not penetrating or puncturing the leaflet LF. The protruding feature may be comprised of any biocompatible material or materials, such as a polymer, nitinol, or other alloys, or bioabsorbable materials.


The protruding feature 420 of the distal elements 18′ may passively engage the leaflet tissue LF when leaflet tissue LF is sufficiently inserted into the device 14′. Or, the protruding feature 420 may be configured to help engage leaflet tissue and secure it into position when the proximal elements 16′ are lowered and also secure the leaflet tissue LF. The protruding feature 420 may help entrap tissue between the protruding feature 420 and the gripping surfaces of the proximal elements 16′. The feature 420 may urge the tissue LF against the barbs 410.


While the protruding feature 420 is illustrated as including a generally curved or domed outer surface, it will be understood that various other surface orientations are appropriate while maintaining the atraumatic nature and ability to aid with directing or urging the leaflet LF. For instance, as illustrated in FIGS. 11B-11E, the protruding feature 420 can have a curved surface that is symmetric or asymmetric in (i) a direction from first end 404 towards the second end 406. (ii) a direction cross-wise, transverse, or oblique to the direction from first end 404 towards the second end 406, or (iii) both. So the protruding feature 420 can be symmetric in at least one axis, at least two axes, or in all three axes. Alternatively, the protruding feature 420 can be asymmetric in at least one axis, at least two axes, or in all three axes.


In another embodiment, shown in FIG. 12, the retaining element 400 may comprise a hinge 422 that is attached to the surface 50′ of the distal elements 18′. The hinge 422 connects to an arm 424 that can swing toward and away from the distal element 18′. As shown in FIG. 12, the arm 424 may bias toward the first end 404 of each distal element 18′. The arm 424 may be capable of laying parallel to or flat against the surface 50′ while being oriented toward the first end 404 of the distal element 18′. It also may be capable of laying parallel to or flat against the surface 50′ while being oriented toward the free end 406 of the distal element 18′, and therefore capable of rotating 180° . The hinge 422 may restrict the movement of the arm 424 so that it can, for example, only lie parallel to the surface 50′ while being oriented toward the first end 404 of the distal element 18′ and be rotated about 90°, so that the angle formed between the arm 424 and the portion of the distal element 18′ below the hinge 422 can be no greater than 90°. The hinge 422 may also be a pivoting element.


There may also be multiple arms 424 on the distal element 18′. For example, there may be two arms, each located the same distance between the ends 404 and 406, and positioned next to each other on the engagement surface 50′. If there are multiple retaining elements 400, such as multiple arms 424 or multiple spring elements 402, they may be configured to be positioned on either side of the barbs 410 on the proximal element. Retaining element or elements 400 may also be positioned to be located between barbs 410 on the proximal element 16′, if there are multiple barbs 410 on the proximal element 16′. In addition, the arm 424 of the retaining element 400 is elongate and can extend in an elongate fashion along substantially an entire length of the distal element 18′ and associated distal engagement surface. Alternatively, the retaining element 400, and associated arm 424, can extend in an elongate fashion from a location near or adjacent first end 404 to a location distal a midpoint of the distal engagement surface of the distal element 18′ or from a location near or adjacent second end 406 to a location distal a midpoint of the distal engagement surface of the distal element 18′.


The distal elements 18 may be covered with a fabric or other flexible material. Preferably, when fabrics or coverings are used in combination with projections 418, such features will protrude through such fabric or other covering so as to contact the leaflet tissue LF.


Analogous to a mechanical pawl, the bias, angle, and direction of a retaining element 400 may allow the leaflet to fall or slide deeper towards the stud 74′ without much resistance but may restrict the ability of the leaflet LF to move back out. By permitting the leaflet LF to easily enter but not permitting it to easily be removed from the fixation device 14′, this may help entrap the leaflet LF in a fully inserted state.


In the embodiments described above, the retaining element 400 is a passive element. However, retaining element 400 may also include an active element such that, when a piece of leaflet tissue LF proceeds beyond or next to a portion of the retaining element 400, the retaining element 400 may automatically spring or deploy in such a way as to retain tissue LF in place.


In another embodiment, a fixation device 14 or 14′ may comprise a mechanical or physical sensor or some visual indicator of when a leaflet is properly inserted into the device prior to closing the distal elements 18′ and deployment of the fixation device 14 or 14′. For example, a tactile sensor may be embedded near the first end 404 of each distal element. Each tactile sensor may provide a signal or indication when the leaflet LF touches the sensor, and the sensor may be located so that the leaflet LF will be unable or unlikely to touch the sensor unless the leaflet is adequately captured.


Yet another mechanism for enhancing the placement and retention of the leaflet tissue LF in the fixation device 14 or 14′ is to facilitate actuation of each proximal element 16 or 16′ and each distal element 18 or 18′ independent from one another. When the proximal elements 16 or 16′ for both leaflets LF are activated simultaneously, and the distal elements 18 or 18′ for each leaflet LF are also activated simultaneously, it can be hard to capture both leaflets, because it is necessary to capture both at the same time. In other words, when the activation of both proximal elements 16 or 16′ is symmetric, and the activation of both distal elements 18 or 18′ is symmetric, the fixation device 14 or 14′ is not able to grasp one leaflet first and then the other. If a catheter or the fixation device 14 or 14′ is not properly positioned, or if either leaflet LF has redundant or loose length, the fixation device 14 or 14′ may not fully seat the leaflets between each distal fixation element 18 or 18′ and proximal gripping element 16 or 16′.


In one embodiment, each proximal element 16 or 16′ and/or each distal element 18 or 18′ may be activated independently from each other. For example, there may be a separate proximal element line for each proximal element 16 or 16′. Similarly, there may be two actuator rods 64 which extend through the shaft 12, each of which may be configured to activate one distal element 18 or 18′.


In addition to being used to repair mitral valves, these devices can be used in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including abdominal, thoracic, cardiovascular, intestinal, digestive, respiratory, and urinary systems, and other systems and tissues. The invention provides devices, systems, and methods that may more successfully approximate and repair tissue by improving the capture of tissue into the devices.


The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A fixation implant for fixation of leaflets of a heart valve comprising: first and second distal elements each extending outwardly from a center of the fixation implant and being moveable between an open position and a closed position, each distal element having a concave shape;a first retaining element coupled to the first distal element such that the first retaining element is disposed within the concave shape of the first distal element when in the closed position; wherein the first retaining element having a first end attached to the first distal element and a second end that is a free end;a second retaining element coupled to the second distal element such that the second retaining element is disposed within the concave shape of the second distal element when in the closed position;wherein the second retaining element having a first end attached to the second distal element and a second end that is a free end;a first proximal element opposing the first retaining element and being moveable towards the first retaining element so as to capture a first leaflet of a heart valve between the first proximal element and the first retaining element; anda second proximal element opposing the second retaining element and being moveable towards the second distal element so as to capture a second leaflet of a heart valve between the second proximal element and the second retaining element.
  • 2. The fixation implant of claim 1, wherein the first and second retaining elements are each a leaf spring.
  • 3. The fixation implant of claim 2, wherein the first and second retaining elements each include one or more lobes.
  • 4. The fixation implant of claim 1, wherein: the second end of the first retaining element has a first configuration in which the second end of the first retaining element is curved toward the first distal element and a second configuration in which the second end of the first retaining element is curved away from the first distal element, andthe second end of the second retaining element has a first configuration in which the second end of the second retaining element is curved toward the second distal element and a second configuration in which the second end of the second retaining element is curved away from the second distal element.
  • 5. The fixation implant of claim 1, wherein: the second end of the first retaining element has a first configuration in which the second end of the first retaining element is curved toward the first distal element and a second configuration in which the second end of the first retaining element lies flat against the first distal element, andthe second end of the second retaining element has a first configuration in which the second end of the second retaining element is curved toward the second distal element and a second configuration in which in which the second end lies flat against the second distal element.
  • 6. The fixation implant of claim 5, wherein the first and second retaining elements each extend toward the center of the fixation implant such that the respective second end thereof is positioned closer to the center of the fixation implant than the respective first end thereof when the first and second distal elements are in the open position, respectively.
  • 7. The fixation implant of claim 1, further comprising a first fabric cover covering at least a portion of the first distal element, and a second fabric cover covering at least a portion of the second distal element.
  • 8. The fixation implant of claim 1, wherein the first and second proximal elements and first and second distal elements are coupled to the center of the fixation implant.
  • 9. A fixation implant for fixation of leaflets of a heart valve comprising: first and second distal elements each extending outwardly from a center of the fixation implant and being moveable between an open position and a closed position;a first retaining element attached to the first distal element and extending along at least a portion of a length thereof, the first retaining element having a first end attached to the first distal element and a second end that is a free end;a second retaining element attached to the second distal element and extending along at least a portion of a length thereof, the second retaining element having a first end attached to the second distal element and a second end that is a free end;a first proximal element extending outwardly relative to the center of the fixation implant and movable to capture a first leaflet of the heart valve between the first proximal element and the first retaining element; anda second proximal element extending outwardly relative to the center of the fixation implant and moveable to capture second leaflet of the heart valve between the second proximal element and the second retaining element,wherein the first and second distal elements are configured to cover the first and second retaining elements, respectively, in the closed position.
  • 10. The fixation implant of claim 9, wherein: the second end of the first retaining element has a first configuration in which the second end of the first retaining element is curved toward the first distal element and a second configuration in which the second end of the first retaining element lies flat against the first distal element or curves away from the first distal element, andthe second end of the second retaining element has a first configuration in which the second end of the second retaining element is curved toward the second distal element and a second configuration in which the second end of the second retaining element lies flat against the first distal element or curves away from the second distal element.
  • 11. The fixation implant of claim 9, further comprising a first fabric cover covering at least a portion of the first distal element, and a second fabric cover covering at least a portion of the second distal element.
  • 12. The fixation implant of claim 9, wherein each of the first and second proximal elements include a first end, a second end, and a plurality of frictional elements, the first end being a free end, the second end being positioned closer to the center of the fixation implant than the first end, and the frictional elements extending at an orientation pointing toward the second end.
  • 13. The fixation implant of claim 12, wherein the first retaining element is a leaf spring configured to cooperate with the frictional elements of the first proximal element to form a directional trap that that permits the first leaflet to move in a direction toward the center of the fixation implant, while restricting or preventing movement of the first leaflet tissue in an opposite direction away from the center of the fixation implant, andthe second retaining element is a leaf spring configured to cooperate with the frictional elements of the second proximal element to form a directional trap that that permits the second leaflet to move in a direction toward the center of the fixation implant, while restricting or preventing movement of the leaflet tissue in an opposite direction away from the center of the fixation implant.
  • 14. The fixation implant of claim 9, wherein the center of the fixation implant is releasably connectable to an interventional catheter for delivery of the fixation implant to the heart valve.
  • 15. A fixation implant for fixation of leaflets of a heart valve comprising: first and second distal elements each extending outwardly from a center of the fixation implant and being moveable between an open position and a closed position, each of the first and second distal elements having an engagement surface extending along a length thereof;a first retaining element extending from the engagement surface of the first distal element toward the center of the fixation implant when the first distal element is in the open position to preliminarily engage a first leaflet of the heart valve;a second retaining element extending from the engagement surface of the second distal element and toward the center of the fixation implant when the second distal element is in the open position to preliminarily engage a second leaflet of the heart valve;a first proximal element opposing the first retaining element and moveable to capture the first leaflet of the heart valve between the first proximal element and the first retaining element; anda second proximal element opposing the second retaining element and moveable to capture the second leaflet of the heart valve between the second proximal element and the second retaining element,wherein the first retaining element is located between the first distal element and the first proximal element in the closed position, and the second retaining element is located between the second distal element and the second proximal element in the closed position, andfurther wherein the first and second retaining elements are at least partially surrounded by the engagement surface of the first and second distal elements, respectively, in the closed position.
  • 16. The fixation implant of claim 15, wherein the first retaining element has a first end attached to the first distal element and a second end that is a free end, the second end having a first configuration in which the second end is curved toward the engagement surface of the first distal element and a second configuration in which the second end lies flat against the engagement surface of the first distal element or curves away from the engagement surface of the first distal element, and the second retaining element has a first end attached to the second distal element and a second end that is a free end, the second end of the second retaining element having a first configuration in which the second end of the second retaining element is curved toward the engagement surface of the second distal element and a second configuration in which the second end of the second retaining element lies flat against the engagement surface of the second distal element or curves away from the engagement surface of the second distal element.
  • 17. The fixation implant of claim 16, wherein the engagement surface of each of the first and second distal elements is concave.
  • 18. The fixation implant of claim 16, further comprising a first fabric cover covering at least a portion of the first distal element and the engagement surface thereof, and a second fabric cover covering at least a portion of the second distal element and the engagement surface thereof.
  • 19. The fixation implant of claim 16, wherein the first end of the first retaining element is positioned farther from the center of the fixation implant than the second end of the first retaining element when the first distal element is in the open position, and the first end of the second retaining element is positioned father from the center of the fixation implant than the second end of the second retaining element when the second distal element is in the open position.
  • 20. The fixation implant of claim 16, wherein the first and second proximal elements each include a plurality of frictional elements extending therefrom, and the first and second retaining elements, while in the first configuration thereof, urge the respective first and second leaflets against the frictional elements of the respective first and second proximal elements.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/241,647, filed on Jan. 7, 2019, which claims priority to U.S. patent application Ser. No. 14/577,852, filed on Dec. 19, 2014, now U.S. Pat. No. 10,188,392, the entire contents of which are incorporated herein by reference.

US Referenced Citations (563)
Number Name Date Kind
2097018 Chamberlain Oct 1937 A
2108206 Meeker Feb 1938 A
3296668 Aiken Jan 1967 A
3378010 Codling et al. Apr 1968 A
3557780 Sato Jan 1971 A
3671979 Moulopoulos Jun 1972 A
3675639 Cimber Jul 1972 A
3874338 Happel Apr 1975 A
3874388 King et al. Apr 1975 A
4007743 Blake Feb 1977 A
4055861 Carpentier et al. Nov 1977 A
4056854 Boretos et al. Nov 1977 A
4064881 Meredith Dec 1977 A
4091815 Larsen May 1978 A
4112951 Hulka et al. Sep 1978 A
4235238 Ogiu et al. Nov 1980 A
4297749 Davis et al. Nov 1981 A
4327736 Inoue May 1982 A
4340091 Skelton et al. Jul 1982 A
4425908 Simon Jan 1984 A
4458682 Cerwin Jul 1984 A
4484579 Meno et al. Nov 1984 A
4487205 Di Giovanni et al. Dec 1984 A
4498476 Cerwin et al. Feb 1985 A
4510934 Batra Apr 1985 A
4531522 Bedi et al. Jul 1985 A
4578061 Lemelson Mar 1986 A
4641366 Yokoyama et al. Feb 1987 A
4657024 Coneys Apr 1987 A
4686965 Bonnet et al. Aug 1987 A
4693248 Failla Sep 1987 A
4716886 Schulman et al. Jan 1988 A
4777951 Cribier et al. Oct 1988 A
4795458 Regan Jan 1989 A
4809695 Gwathmey et al. Mar 1989 A
4917089 Sideris Apr 1990 A
4930674 Barak Jun 1990 A
4944295 Gwathmey et al. Jul 1990 A
4969890 Sugita et al. Nov 1990 A
4994077 Dobben Feb 1991 A
5002562 Oberlander Mar 1991 A
5015249 Nakao et al. May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5042707 Taheri Aug 1991 A
5047041 Samuels Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5061277 Carpentier et al. Oct 1991 A
5069679 Taheri Dec 1991 A
5098440 Hillstead Mar 1992 A
5108368 Hammerslag et al. Apr 1992 A
5125758 DeWan Jun 1992 A
5125895 Buchbinder et al. Jun 1992 A
5147370 McNamara et al. Sep 1992 A
5171252 Friedland Dec 1992 A
5171259 Inoue Dec 1992 A
5190554 Coddington et al. Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5209756 Seedhom et al. May 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5226429 Kuzmak Jul 1993 A
5226911 Chee et al. Jul 1993 A
5234437 Sepetka Aug 1993 A
5242456 Nash et al. Sep 1993 A
5250071 Palermo Oct 1993 A
5251611 Zehel et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5271381 Ailinger et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275578 Adams Jan 1994 A
5282845 Bush et al. Feb 1994 A
5304131 Paskar Apr 1994 A
5306283 Conners Apr 1994 A
5306286 Stack et al. Apr 1994 A
5312415 Palermo May 1994 A
5314424 Nicholas May 1994 A
5318525 West et al. Jun 1994 A
5320632 Heidmueller Jun 1994 A
5325845 Adair Jul 1994 A
5327905 Avitall Jul 1994 A
5330442 Green et al. Jul 1994 A
5330501 Tovey et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5334217 Das Aug 1994 A
5342393 Stack Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5359994 Krauter et al. Nov 1994 A
5363861 Edwards et al. Nov 1994 A
5368564 Savage Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5383886 Kensey et al. Jan 1995 A
5389077 Melinyshyn et al. Feb 1995 A
5391182 Chin Feb 1995 A
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5411552 Andersen et al. May 1995 A
5417699 Klein et al. May 1995 A
5417700 Egan May 1995 A
5423857 Rosenman et al. Jun 1995 A
5423858 Bolanos et al. Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5425744 Fagan et al. Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5437551 Chalifoux Aug 1995 A
5437681 Meade et al. Aug 1995 A
5447966 Hermes et al. Sep 1995 A
5450860 O'Connor Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456400 Shichman et al. Oct 1995 A
5456674 Bos et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5462527 Stevens-Wright et al. Oct 1995 A
5472044 Hall et al. Dec 1995 A
5476470 Fitzgibbons, Jr. Dec 1995 A
5477856 Lundquist Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478353 Yoon Dec 1995 A
5487746 Yu et al. Jan 1996 A
5496332 Sierra et al. Mar 1996 A
5507725 Savage et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5507757 Sauer et al. Apr 1996 A
5520701 Lerch May 1996 A
5522873 Jackman et al. Jun 1996 A
5527313 Scott et al. Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5527322 Klein et al. Jun 1996 A
5536251 Evard et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5554185 Block et al. Sep 1996 A
5562678 Booker Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5571085 Accisano, III Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5575802 McQuilkin et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5593424 Northrup III Jan 1997 A
5593435 Carpentier et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5607462 Imran Mar 1997 A
5607471 Seguin et al. Mar 1997 A
5609598 Laufer et al. Mar 1997 A
5611794 Sauer et al. Mar 1997 A
5618306 Roth et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626588 Sauer et al. May 1997 A
5634932 Schmidt Jun 1997 A
5636634 Kordis et al. Jun 1997 A
5639277 Mariant et al. Jun 1997 A
5640955 Ockuly et al. Jun 1997 A
5649937 Bito et al. Jul 1997 A
5662681 Nash et al. Sep 1997 A
5669917 Sauer et al. Sep 1997 A
5690671 McGurk et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5702825 Keital et al. Dec 1997 A
5706824 Whittier Jan 1998 A
5709707 Lock et al. Jan 1998 A
5713910 Gordon et al. Feb 1998 A
5713911 Racenet et al. Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716367 Koike et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5718725 Sterman et al. Feb 1998 A
5719725 Nakao Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725542 Yoon Mar 1998 A
5725556 Moser et al. Mar 1998 A
5738649 Macoviak Apr 1998 A
5741280 Fleenor Apr 1998 A
5741297 Simon Apr 1998 A
5749828 Solomon et al. May 1998 A
5755778 Kleshinski May 1998 A
5759193 Burbank et al. Jun 1998 A
5769812 Stevens et al. Jun 1998 A
5769863 Garrison Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5782239 Webster, Jr. Jul 1998 A
5782845 Shewchuk Jul 1998 A
5797927 Yoon Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810847 Laufer et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810853 Yoon Sep 1998 A
5810876 Kelleher Sep 1998 A
5814029 Hassett Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5820592 Hammerslag Oct 1998 A
5820631 Nobles Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5824065 Gross Oct 1998 A
5827237 Macoviak et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5833671 Macoviak et al. Nov 1998 A
5836955 Buelna et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5843178 Vanney et al. Dec 1998 A
5849019 Yoon Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855271 Eubanks et al. Jan 1999 A
5855590 Malecki et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855614 Stevens et al. Jan 1999 A
5860990 Nobles et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5868733 Ockuly et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879307 Chio et al. Mar 1999 A
5885271 Hamilton et al. Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5916147 Boury Jun 1999 A
5928224 Laufer Jul 1999 A
5944733 Engelson Aug 1999 A
5947363 Bolduc et al. Sep 1999 A
5954732 Hart et al. Sep 1999 A
5957949 Leonhard et al. Sep 1999 A
5972020 Carpentier et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5980455 Daniel et al. Nov 1999 A
5989284 Laufer Nov 1999 A
6015417 Reynolds, Jr. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6019722 Spence et al. Feb 2000 A
6022360 Reimels et al. Feb 2000 A
6033378 Lundquist et al. Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6056769 Epstein et al. May 2000 A
6059757 Macoviak et al. May 2000 A
6060628 Aoyama et al. May 2000 A
6060629 Pham et al. May 2000 A
6063106 Gibson May 2000 A
6066146 Carroll et al. May 2000 A
6068628 Fanton et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6077214 Mortier et al. Jun 2000 A
6079414 Roth Jun 2000 A
6086600 Kortenbach Jul 2000 A
6088889 Luther et al. Jul 2000 A
6099505 Ryan et al. Aug 2000 A
6099553 Hart et al. Aug 2000 A
6110145 Macoviak Aug 2000 A
6117144 Nobles et al. Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6120496 Whayne et al. Sep 2000 A
6123699 Webster, Jr. Sep 2000 A
6126658 Baker Oct 2000 A
6132447 Dorsey Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6149658 Gardiner et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6165164 Hill et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171320 Monassevitch Jan 2001 B1
6182664 Cosgrove Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190408 Melvin Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6200315 Gaiser et al. Mar 2001 B1
6203531 Ockuly et al. Mar 2001 B1
6203553 Robertson et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6210419 Mayenberger et al. Apr 2001 B1
6210432 Solem et al. Apr 2001 B1
6217528 Koblish et al. Apr 2001 B1
6245079 Nobles et al. Jun 2001 B1
6267746 Bumbalough Jul 2001 B1
6267781 Tu Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6283127 Sterman et al. Sep 2001 B1
6283962 Tu et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6306133 Tu et al. Oct 2001 B1
6312447 Grimes Nov 2001 B1
6319250 Falwell et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6332880 Yang et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6355030 Aldrich et al. Mar 2002 B1
6358277 Duran Mar 2002 B1
6368326 Dakin et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6402780 Williamson et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6461366 Seguin Oct 2002 B1
6464707 Bjerken Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6508828 Akerfeldt et al. Jan 2003 B1
6533796 Sauer et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540755 Ockuly et al. Apr 2003 B2
6544215 Bencini et al. Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551331 Nobles et al. Apr 2003 B2
6562037 Paton et al. May 2003 B2
6562052 Nobles et al. May 2003 B2
6575971 Hauck et al. Jun 2003 B2
6585761 Taheri Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6641592 Sauer et al. Nov 2003 B1
6656221 Taylor et al. Dec 2003 B2
6669687 Saadat Dec 2003 B1
6685648 Flaherty et al. Feb 2004 B2
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6701929 Hussein Mar 2004 B2
6702825 Frazier et al. Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6709382 Horner Mar 2004 B1
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6740107 Loeb et al. May 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770083 Seguin Aug 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6837867 Kortelling Jan 2005 B2
6855137 Bon Feb 2005 B2
6860179 Hopper et al. Mar 2005 B2
6875224 Grimes Apr 2005 B2
6908481 Cribier Jun 2005 B2
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6945978 Hyde Sep 2005 B1
6949122 Adams et al. Sep 2005 B2
6966914 Abe Nov 2005 B2
6986775 Morales et al. Jan 2006 B2
7004970 Cauthen III et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7048754 Martin et al. May 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7226467 Lucatero et al. Jun 2007 B2
7288097 Seguin Oct 2007 B2
7381210 Zarbatany et al. Jun 2008 B2
7464712 Oz et al. Dec 2008 B2
7497822 Kugler et al. Mar 2009 B1
7533790 Knodel et al. May 2009 B1
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7604646 Goldfarb et al. Oct 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
7651502 Jackson Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7798953 Wilk Sep 2010 B1
7972323 Bencini et al. Jul 2011 B1
8062313 Kimblad Nov 2011 B2
8118822 Schaller et al. Feb 2012 B2
8500761 Goldfarb et al. Aug 2013 B2
10188392 Wei Jan 2019 B2
11229435 Wei Jan 2022 B2
20010004715 Duran et al. Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010010005 Kammerer et al. Jul 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010022872 Marui Sep 2001 A1
20010037084 Nardeo Nov 2001 A1
20010039411 Johansson et al. Nov 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020022848 Garrison et al. Feb 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020055767 Forde et al. May 2002 A1
20020055774 Liddicoat May 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020058910 Hermann et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020077687 Ahn Jun 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020107534 Schaefer et al. Aug 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020158528 Tsuzaki et al. Oct 2002 A1
20020161378 Downing Oct 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20030005797 Hopper et al. Jan 2003 A1
20030045778 Ohline et al. Mar 2003 A1
20030050693 Quijano et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078654 Taylor et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030130669 Damarati Jul 2003 A1
20030130730 Cohn et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171776 Adams et al. Sep 2003 A1
20030187467 Schreck Oct 2003 A1
20030195562 Collier et al. Oct 2003 A1
20030208231 Williamson, IV et al. Nov 2003 A1
20030229395 Cox Dec 2003 A1
20030233038 Hassett Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040034365 Lentz et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078053 Berg et al. Apr 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040088047 Spence et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040097878 Anderson et al. May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127981 Rahdert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133062 Pai et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040133082 Abraham-Fuchs et al. Jul 2004 A1
20040133192 Houser et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133240 Adams et al. Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040152847 Emri et al. Aug 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040153144 Seguin Aug 2004 A1
20040158123 Jayaraman Aug 2004 A1
20040162610 Laiska et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040186486 Roue et al. Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220593 Greenhalgh Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040249452 Adams et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004665 Aklog Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050021056 St. Goer et al. Jan 2005 A1
20050021057 St. Goer et al. Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038508 Gabbay Feb 2005 A1
20050049698 Bolling et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050059351 Cauwels et al. Mar 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050251001 Hassett Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050287493 Novak et al. Dec 2005 A1
20060004247 Kute et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060030866 Schreck Feb 2006 A1
20060030867 Zadno Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060089711 Dolan Apr 2006 A1
20060135993 Seguin Jun 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060252984 Randert et al. Nov 2006 A1
20070038293 St. Goar et al. Feb 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070197858 Goldfarb Aug 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080051807 St. Goar et al. Feb 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080167714 St. Goer et al. Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20090105816 Olsen Apr 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr. et al. Jun 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090198322 Deem et al. Aug 2009 A1
20090270858 Hauck et al. Oct 2009 A1
20090326567 Goldfarb et al. Dec 2009 A1
20100016958 St. Goer et al. Jan 2010 A1
20100022823 Goldfarb et al. Jan 2010 A1
20100324585 Miles et al. Dec 2010 A1
20120083803 Patel Apr 2012 A1
20120089176 Sigmon, Jr. Apr 2012 A1
20120203336 Annest Aug 2012 A1
20130066342 Dell et al. Mar 2013 A1
20140249553 Kimura et al. Sep 2014 A1
20190133581 Wei May 2019 A1
Foreign Referenced Citations (135)
Number Date Country
2296317 Jan 2009 CA
1142351 Feb 1997 CN
102438552 May 2012 CN
104220027 Dec 2014 CN
3504292 Jul 1986 DE
101 16 168 Nov 2001 DE
0 179 562 Jul 1989 EP
0 558 031 Feb 1993 EP
0 558 031 Sep 1993 EP
0 684 012 Nov 1995 EP
0 727 239 Aug 1996 EP
0 782 836 Jul 1997 EP
1 230 899 Aug 2002 EP
1383448 Jan 2004 EP
1 674 040 Jun 2006 EP
2 768 324 Mar 1999 FR
1 598 111 Sep 1981 GB
2 151 142 Jul 1985 GB
09-253030 Sep 1997 JP
11-089937 Apr 1999 JP
2000-283130 Oct 2000 JP
2002520125 Jul 2002 JP
2008514307 May 2008 JP
2008517732 May 2008 JP
2015-502548 Jan 2015 JP
WO 8100668 Mar 1981 WO
WO 9101689 Feb 1991 WO
WO 9118881 Dec 1991 WO
WO 9212690 Aug 1992 WO
WO 9418881 Sep 1994 WO
WO 9418893 Sep 1994 WO
WO 9511620 May 1995 WO
WO 9515715 Jun 1995 WO
WO 9614032 May 1996 WO
WO 9620655 Jul 1996 WO
WO 9622735 Aug 1996 WO
WO 9630072 Oct 1996 WO
WO 9632882 Oct 1996 WO
WO 9718746 May 1997 WO
WO 9725927 Jul 1997 WO
WO 9726034 Jul 1997 WO
WO 9727807 Aug 1997 WO
WO 9738748 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9748436 Dec 1997 WO
WO 9807375 Feb 1998 WO
WO 9824372 Jun 1998 WO
WO 9830153 Jul 1998 WO
WO 9832382 Jul 1998 WO
WO 9835638 Aug 1998 WO
WO 9900059 Jan 1999 WO
WO 9901377 Jan 1999 WO
WO 9907354 Feb 1999 WO
WO 9913777 Mar 1999 WO
WO 9915223 Apr 1999 WO
WO 9966967 Dec 1999 WO
WO 0002489 Jan 2000 WO
WO 0003651 Jan 2000 WO
WO 0003759 Jan 2000 WO
WO 0012168 Mar 2000 WO
WO 0044313 Aug 2000 WO
WO 0059382 Oct 2000 WO
WO 0060995 Oct 2000 WO
WO 0100111 Jan 2001 WO
WO 0100114 Jan 2001 WO
WO 0103651 Jan 2001 WO
WO 0126557 Apr 2001 WO
WO 0126586 Apr 2001 WO
WO 0126587 Apr 2001 WO
WO 0126588 Apr 2001 WO
WO 0126703 Apr 2001 WO
WO 0128432 Apr 2001 WO
WO 0128455 Apr 2001 WO
WO 0147438 Jul 2001 WO
WO 0149213 Jul 2001 WO
WO 0150985 Jul 2001 WO
WO 0154618 Aug 2001 WO
WO 0156512 Aug 2001 WO
WO 0166001 Sep 2001 WO
WO 0170320 Sep 2001 WO
WO 0189440 Nov 2001 WO
WO 0195831 Dec 2001 WO
WO 0195832 Dec 2001 WO
WO 0197741 Dec 2001 WO
WO 0200099 Jan 2002 WO
WO 0201999 Jan 2002 WO
WO 0203892 Jan 2002 WO
WO 0234167 May 2002 WO
WO 02060352 Aug 2002 WO
WO 02062263 Aug 2002 WO
WO 02062270 Aug 2002 WO
WO 02062408 Aug 2002 WO
WO 03001893 Jan 2003 WO
WO 03003930 Jan 2003 WO
WO 03020179 Mar 2003 WO
WO 03028558 Apr 2003 WO
WO 03037171 May 2003 WO
WO 03047467 Jun 2003 WO
WO 03049619 Jun 2003 WO
WO 03073910 Sep 2003 WO
WO 03073913 Sep 2003 WO
WO 03082129 Oct 2003 WO
WO 03105667 Dec 2003 WO
WO 2004004607 Jan 2004 WO
WO 2004012583 Feb 2004 WO
WO 2004012789 Feb 2004 WO
WO 2004014282 Feb 2004 WO
WO 2004019811 Mar 2004 WO
WO 2004030570 Apr 2004 WO
WO 2004037317 May 2004 WO
WO 2004045370 Jun 2004 WO
WO 2004045378 Jun 2004 WO
WO 2004045463 Jun 2004 WO
WO 2004047679 Jun 2004 WO
WO 2004062725 Jul 2004 WO
WO 2004082523 Sep 2004 WO
WO 2004082538 Sep 2004 WO
WO 2004093730 Nov 2004 WO
WO 04103162 Dec 2004 WO
WO 2004103162 Dec 2004 WO
WO 2004112585 Dec 2004 WO
WO 2004112651 Dec 2004 WO
WO 2005002424 Jan 2005 WO
WO 2005018507 Mar 2005 WO
WO 2005027797 Mar 2005 WO
WO 2005032421 Apr 2005 WO
WO 2005062931 Jul 2005 WO
WO 2005112792 Dec 2005 WO
WO 2006037073 Apr 2006 WO
WO 2006105008 Oct 2006 WO
WO 2006105009 Oct 2006 WO
2006116558 Nov 2006 WO
WO 2006115875 Nov 2006 WO
WO 2006115876 Nov 2006 WO
WO 2010128502 Nov 2010 WO
Non-Patent Literature Citations (204)
Entry
U.S. Appl. No. 16/748,450, filed Jan. 21, 2020.
U.S. Appl. No. 16/813,566 (US 2020/0205830) Wei, filed Mar. 9, 2020 (Jul. 2, 2020).
U.S. Appl. No. 60/051,078 filed Filed Jun. 27, 1997, Oz et al.
U.S. Appl. No. 60/128,690 filed Filed Apr. 9, 1999, Deem et al.
U.S. Appl. No. 14/216,787, filed Mar. 17, 2014, Basude et al.
U.S. Appl. No. 14/577,852 (U.S. Pat. No. 10,188,392) filed Dec. 19, 2014 (Jan. 29, 2019).
U.S. Appl. No. 14/698,470 (US 2015/0223793) filed Apr. 28, 2015 (Aug. 13, 2015).
U.S. Appl. No. 15/483,523 (US 2017/0239048) filed Apr. 10, 2017 (Aug. 24, 2017).
U.S. Appl. No. 16/241,647 (U.S. Pat. No. 11,229,435) filed Jan. 7, 2019 (Jan. 25, 2022).
U.S. Appl. No. 16/276,357 (US 2019/0175182) filed Feb. 14, 2019 (Jun. 13, 2019).
U.S. Appl. No. 16/406,476 (U.S. Pat. No. 10,646,229) filed May 8, 2019 (May 12, 2020).
U.S. Appl. No. 16/406,530 (U.S. Pat. No. 10,667,823) filed May 8, 2019 (Jun. 2, 2020).
U.S. Appl. No. 16/406,583 (U.S. Pat. No. 10,631,871) filed May 8, 2019 (Apr. 28, 2020).
U.S. Appl. No. 16/408,018 (U.S. Pat. No. 10,653,427) filed May 9, 2019 (May 19, 2020).
U.S. Appl. No. 14/577,852, filed Dec. 13, 2018, Issue Fee Payment.
U.S. Appl. No. 14/577,852, filed Sep. 28, 2018, Notice of Allowance.
U.S. Appl. No. 14/577,852, filed Sep. 14, 2018, Notice of Allowance.
U.S. Appl. No. 14/577,852, filed Jul. 25, 2018, Request for Continued Examination (RCE).
U.S. Appl. No. 14/577,852, filed May 15, 2018, Notice of Allowance.
U.S. Appl. No. 14/577,852, filed Apr. 25, 2018, Notice of Allowance.
U.S. Appl. No. 14/577,852, filed Mar. 6, 2018, Response to Non-Final Office Action.
U.S. Appl. No. 14/577,852, filed Sep. 7, 2017, Non-Final Office Action.
U.S. Appl. No. 14/577,852, filed Aug. 16, 2017, Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 14/577,852, filed May 16, 2017, Final Office Action.
U.S. Appl. No. 14/577,852, filed Jan. 20, 2017, Response to Non-Final Office Action.
U.S. Appl. No. 14/577,852, filed Oct. 20, 2016, Non-Final Office Action.
U.S. Appl. No. 14/577,852, filed Sep. 14, 2016, Response to Restriction Requirement.
U.S. Appl. No. 14/577,852, filed Jul. 14, 2016, Restriction Requirement.
U.S. Appl. No. 14/698,470, filed Jun. 7, 2019, Notice of Allowance.
U.S. Appl. No. 14/698,470, filed May 13, 2019, Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 14/698,470, filed Feb. 15, 2019, Final Office Action.
U.S. Appl. No. 14/698,470, filed Jan. 23, 2019, Response to Non-Final Office Action.
U.S. Appl. No. 14/698,470, filed Oct. 23, 2018, Non-Final Office Action.
U.S. Appl. No. 14/698,470, filed Oct. 5, 2018, Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 14/698,470, filed Apr. 6, 2018, Final Office Action.
U.S. Appl. No. 14/698,470, filed Feb. 26, 2018, Response to Non-Final Office Action.
U.S. Appl. No. 14/698,470, filed Aug. 31, 2017, Non-Final Office Action.
U.S. Appl. No. 14/698,470, filed Jul. 19, 2017, Response to Restriction Requirement.
U.S. Appl. No. 14/698,470, filed Apr. 20, 2017, Restriction Requirement.
U.S. Appl. No. 15/483,523, filed Mar. 20, 2019, Non-Final Office Action.
U.S. Appl. No. 16/241,647, filed Dec. 9, 2021, Issue Fee Payment.
U.S. Appl. No. 16/241,647, filed Sep. 10, 2021, Notice of Allowance.
U.S. Appl. No. 16/241,647, filed May 21, 2021, Response to Non-Final Office Action.
U.S. Appl. No. 16/241,647, filed Mar. 3, 2021, Non-Final Office Action.
U.S. Appl. No. 16/241,647, filed Dec. 21, 2020, Response to Restriction Requirement.
U.S. Appl. No. 16/241,647, filed Sep. 21, 2020, Restriciton Requirement.
U.S. Appl. No. 16/406,476, filed Mar. 16, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,476, filed Mar. 13, 2020, Issue Fee Payment.
U.S. Appl. No. 16/406,476, filed Feb. 12, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,476, filed Dec. 30, 2019, Notice of Allowance.
U.S. Appl. No. 16/406,476, filed Dec. 30, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,476, filed Nov. 1, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,476, filed Sep. 20, 2019, Response to Non-Final Office Action.
U.S. Appl. No. 16/406,476, filed Aug. 29, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,476, filed Jun. 20, 2019, Non-Final Office Action.
U.S. Appl. No. 16/406,530, filed Mar. 18, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,530, filed Mar. 10, 2020, Issue Fee Payment.
U.S. Appl. No. 16/406,530, filed Feb. 18, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,530, filed Feb. 13, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,530, filed Dec. 13, 2019, Notice of Allowance.
U.S. Appl. No. 16/406,530, filed Nov. 1, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,530, filed Oct. 4, 2019, Response to Non-Final Office Action.
U.S. Appl. No. 16/406,530, filed Aug. 29, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,530, filed Jul. 5, 2019, Non-Final Office Action.
U.S. Appl. No. 16/406,583, filed Mar. 13, 2020, Issue Fee Payment.
U.S. Appl. No. 16/406,583, filed Mar. 11, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,583, filed Feb. 12, 2020, Notice of Allowance.
U.S. Appl. No. 16/406,583, filed Dec. 26, 2019, Notice of Allowance.
U.S. Appl. No. 16/406,583, filed Dec. 26, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,583, filed Nov. 1, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,583, filed Oct. 25, 2019, Response to Non-Final Office Action.
U.S. Appl. No. 16/406,583, filed Aug. 29, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/406,583, filed Jul. 25, 2019, Non-Final Office Action.
U.S. Appl. No. 16/408,018, filed Mar. 13, 2020, Issue Fee Payment.
U.S. Appl. No. 16/408,018, filed Mar. 11, 2020, Notice of Allowance.
U.S. Appl. No. 16/408,018, filed Feb. 20, 2020, Notice of Allowance.
U.S. Appl. No. 16/408,018, filed Dec. 20, 2019, Notice of Allowance.
U.S. Appl. No. 16/408,018, filed Nov. 5, 2019, Response to Non-Final Office Action.
U.S. Appl. No. 16/408,018, filed Nov. 1, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/408,018, filed Aug. 29, 2019, Applicant Initiated Interview Summary.
U.S. Appl. No. 16/408,018, filed Aug. 6, 2019, Non-Final Office Action.
Abe et al., “De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients,” Ann. Thorac. Surg. 62:1876-1877 (1996).
Abe et al., De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients, Ann. Thorac. Surg., Jan. 1989, pp. 670-676, vol. 48.
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,” Journal of Heart Valve Disease, 11(5):637-643 (2002).
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999).
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001).
Alfieri et al., “The Edge to Edge Technique,” The European Association For Cardio-Thoracic Surgery, 14th Annual Meeting, Frankfurt / Germany, Oct. 7-11, 2000, Post Graduate Courses, Book of Proceedings.
Alfieri, “The Edge-to-Edge Repair of the Mitral Valve,” [Abstract] 6th Annual New Era Cardiac Care: Innovation & Technology, Heart Surgery Forum, (Jan. 2003) pp. 103.
Alfieri, O., et al., “Novel Suture Device for Beating-Heart Mitral Leaflet Approximation,” Ann Thorac Surg 74:1488-93 (2002).
Alfieri, O., et al., “The Double-orifice Technique in Mitral Valve Repair: A Simple Solution for Complex Problems,” Journal of Thoracic and Cardiovascular Surgery 122(4): 674-681 (2001).
Alt Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23.
Alvarez et al., Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, J. Thorac. Cardiovasc. Surg., Aug. 1996, pp. 238-247, vol. 112.
Arisi et al., “Mitral Valve Repair with Alfieri Technique in Mitral Regurgitation of Diverse Etiology: Early Echocardiographic Results,” Circulation Supplement II, 104(17):3240 (2001).
Arthur C. Beall et al., Clinical Experience with a Dacron Velour-Covered Teflon-Disc Mitral Valve Prosthesis, 5 Ann. Thorac. Surg. 402-10 (1968).
Bach et al., Early Improvement in Congestive Heart Failure After Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy, Am. Heart J., Jun. 1995, pp. 1165-1170, vol. 129.
Bach et al., Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy with Mitral Annuloplasty, Am. J. Cardiol., Oct. 15, 1996, pp. 966-969, vol. 78.
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955).
Bernal et al., “The Valve Racket': a new and different concept of atrioventricular valve repair,” Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006).
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004).
Bhudia et al., “Edge-to-edge Mitral Repair: A Versatile Mitral Repair,” http://www.sts.org/doc/7007 accessed on Sep. 24, 2008.
Bhudia, #58 Edge-to-edge mitral repair: a versatile mitral repair technique, 2003 STS Presentation, [Abstract Only], 2004.
Bolling et al., Surgery for Acquired Heart Disease: Early Outcome of Mitral Valve Reconstruction in Patients with End-stage Cardiomyopathy, J. Thor. And Cardiovasc. Surg., Apr. 1995, pp. 676-683, vol. 109.
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair,” European Journal of Cardio-thoracic Surgery, 20:262-269 (2001).
C. Fucci et al., Improved Results with Mitral Valve Repair Using New Surgical Techniques, 9 Eur. J. Cardiothorac. Surg. 621-27 (1995).
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,” Ann Thora Surg., 75:605-606 (2003).
Chinese Office Action dated Sep. 9, 2013 in Application No. 200980158707.2 (with English translation).
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application No. 04752603.3.
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2.
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2.
Communication dated May 8, 2017, from the European Patent Office in counterpart European Application No. 04752714.8.
Copelan, “How Dr. Oz Kick-Started a Groundbreaking Device for Patients with Heart Failure,” Parade (Sep. 26, 2018).
Cribier et al., “Percutaneous Mechanical Mitral Commissurotomy With a Newly Designed Metallic Valvulotome: Immediate Results of the Initial Experience in 153 Patients,” Circulation 99:793-799 (1999).
Cribier, A., et al., “Percutaneous Mitral Valvotomy with a Metal Dilatator,” The Lancet 349:1667 (1997).
Dec et al., Idiopathic Dilated Cardiomyopathy, N. Engl. J. Med., Dec. 8, 1994, pp. 1564-1575, vol. 331.
Derwent citing German language patent, EP 684012 published Nov. 12, 1995, for: “Thread for constructing surgical seam—has flexible section with two ends, with lower fastening part on thread first end having hollow cylinder with continuous hole through which surgical needle threads”. (Copy not available).
Derwent citing Japanese language patent, JP 11089937 published Jun. 4, 1999, for: “Catheter for mitral regurgitation test—includes jet nozzles provided on rear side of large diametered spindle shaped portion attached to end of narrow diametered tube”. (Copy not available).
Dias de Azeredo Bastos et al., “Percutaneous Mechanical Mitral Commissurotomy Performed With a Cribier's Metallic Valvulotome. Initial Results,” Arq Bras Cardiol, 77:126-131 (2001).
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,” Ital. Heart J., 2(4):319-320 (2001).
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,” Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002).
Extended European Search Report dated Jan. 13, 2020 in Application No. EP 19209511.
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1.
F. Maisano et al., The Edge-to-Edge Technique: A Simplified Method to Correct Mitral Insufficiency, 13 J. Cardio-thoracic Surgery 240-46 (1998).
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,” Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999).
Feldman, T., et al., “Technique of Percutaneous Transvenous Mitral Commissurotomy Using the Inoue Balloon Catheter,” Catheterization and Cardiovascular Diagnosis Supplement 2:26-34 (1994).
Filsoufi et al., “Restoring Optimal Surface of Coaptation With a Mini Leaflet Prosthesis: A New Surgical Concept for the Correction of Mitral Valve Prolapse,” Intl. Soc. for Minimally Invasive Cardiothoracic Surgery 1(4):186-87 (2006).
Frazier et al., “Early Clinical Experience with an Implantable, Intracardiac Circulatory Support Device: Operative Considerations and Physiologic Implications,” http://www.sts.org/doc/7007 accessed on Sep. 24, 2008.
Freeny et al., “Subselective Diagnostic and Interventional Arteriography Using a Simple Coaxial Catheter System,” Cardiovasc. Intervent. Radiol. 7:209-213 (1984).
Fucci et al., Improved Results with Mitral Valve Repair Using New Surgical Techniques, Eur. J. Cardiothorac. Surg., Nov. 1995, pp. 621-627, vol. 9.
Fundaro et al., “Chordal Plication and Free Edge Remodeling for Mitral Anterior Leaflet Prolapse Repair: 8-Year Follow-up,” Annals of Thoracic Surgery, 72:1515-1519 (2001).
Garcia-Rinaldi et al., “Left Ventricular Volume Reduction and Reconstruction is Ischemic Cardiomyopathy,” Journal of Cardiac Surgery, 14:199-210 (1999).
Gateliene et al., “Early and late postoperative results of mitral and tricuspid valve insufficiency surgical treatment using edge-to-edge central coaptation procedure,” Medicina (Kaunas) 38(Suppl. 2):172-175 (2002).
Gatti et al., “The edge to edge technique as a trick to rescue an imperfect mitral valve repair,” Eur. J. Cardiothorac Surg, 22:817-820 (2002).
Gillinov et al., “Is Minimally Invasive Heart Valve Surgery a Paradigm for the Future?” Current Cardiology Reports, 1:318-322 (1999).
Glazier, J. and Turi, Z., “Percutaneous Balloon Mitral Valvuloplasty,” Progress in Cardiovascular Diseases 40(1):5-26 (1997).
Gregg W. Stone et al., Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles: A Consensus Document from the Mitral Valve Academic Research Consortium, 66 J. Am. Coll. Cardiol. 278-307 (2015).
Gundry et al., “Facile Mitral Valve Repair Utilizing Leaflet Edge Approximation: Midterm Results of the Alfieri Figure of Eight Repair,” The Western Thoracic Surgical Association, Scientific Session (May 1999).
Gupta et al., “Influence of Older Donor Grafts On Heart Transplant Survival: Lack Of Recipient Effects,” http://www.sts.org/doc/7007 accessed on Sep. 24, 2008.
Hung et al., “Atrial Septal Puncture Technique in Percutaneous Transvenous Mitral Commissurotomy : Mitral Valvuloplasty Using the Inoue Balloon Catheter Technique,” Catheterization and Cardiovascular Diagnosis 26: 275-284 (1992).
Hung et al., “Pitfalls and Tips in Inoue Balloon Mitral Commissurotomy,” Catheterization and Cardiovascular Diagnosis, 37:188-199 (1996).
Ikeda et al., “Batista's Operation with Coronary Artery Bypass Grafting and Mitral Valve Plasty for Ischemic Dilated Cardiomyopathy,” The Japanese Journal of Thoracic and Cardiovascular Surgery, 48:746-749 (2000).
Ing et al., “The Snare-Assisted Technique for Transcatheter Coil Occlusion of Moderate to Large Patent Ductus Arteriosus: Immediate and Intermediate Results,” J. Am. Col. Cardiol. 33(6):1710-1718 (1999).
Inoue, K. and Feldman, T., “Percutaneous Transvenous Mitral Commissurotomy Using the Inoue Balloon Catheter,” Catheterization and Cardiovascular Diagnosis 28:119-125 (1993).
Inoue, K., et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” J Thorac Cardiovasc Surg 87:394-402 (1984).
International Search Report and Written Opinion of PCT Application No. PCT/US2009/068023, mailed Mar. 2, 2010, 10 pages total.
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999).
Juan P. Umaña et al., “Bow-Tie” Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, 66 Annals of Thoracic Surgery 1640-46 (1998).
Kallner et al., “Transaortic Approach for the Alfieri Stitch,” Ann Thorac Surg, 71:378-380 (2001).
Kameda et al., Annuloplasty for Severe Mitral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61.
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,” The Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000).
Kaza et al., “Ventricular Reconstruction Results in Improved Left Ventricular Function and Amelioration of Mitral Insufficiency,” Annals of Surgery, 235(6):828-832 (2002).
Kherani et al., “The Edge-To-Edge Mitral Valve Repair: The Columbia Presbyterian Experience,” Ann. Thorac. Surg., 78:73-76 (2004).
Konertz et al., “Results After Partial Left Ventriculectomy in a European Heart Failure Population,” Journal of Cardiac Surgery, 14:129-135 (1999).
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. Of Thoracic Surgery, 74:600-601 (2002).
Kruger et al., “P73—Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000).
Langer et al., “Posterier mitral leaflet extensions: An adjunctive repair option for ischemic mitral regurgitation?” J Thorac Cardiovasc Surg, 131:868-877 (2006).
Lau, K. and Hung, J., “‘Balloon Impasse’; A Marker for Severe Mitral Subvalvular Disease and a Predictor of Mitral Regurgitation in Inoue-Balloon Percutaneous Transvenous Mitral Commissurotomy,” Catheterization and Cardiovascular Diagnosis 35:310-319 (1995).
Lock et al., “Transcatheter Closure of Atrial Septal Defects: Experimental Studies,” Circulation 79:1091-1099 (1989).
Lorusso et al., “‘Double-Orifice’ Technique to Repair Extensive Mitral Valve Excision Following Acute Endocarditis,” J. Card Surg, 13:24-26 (1998).
Lorusso et al., “The double-orifice technique for mitral valve reconstruction: predictors of postoperative outcome,” Eur J. Cardiothorac Surg, 20:583-589 (2001).
Maisano et al., “The Double Orifice Repair for Barlow Disease: A Simple Solution for Complex Repair,” Circulation 100(18):I94 (1999).
Maisano et al., “The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000).
Maisano et al., “The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model,” European Journal of Cardio-thoracic Surgery, 15:419-425 (1999).
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,” Eur. J. Cardio-thorac Surg, 10:867-873 (1996).
Maisano et al., The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency, Eur. J. Cardiothorac. Surg., Jan. 14, 1998, pp. 240-246, vol. 13.
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000).
McCarthy et al., “Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure,” European Journal of Cardio-thoracic Surgery, 13:337-343 (1998).
McCarthy et al., Tricuspid Valve Repair with the Cosgrove-Edwards Annuloplasty System, Ann. Thorac. Surg., Jan. 16, 1997, pp. 267-268, vol. 64.
McCarthy, P., et al., “Early Results with Partial Left Ventriculectomy,” J Thorac Cardiovasc Surg 114(5):755-765 (1997).
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002).
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999).
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum, 2(2):115-120 (1999).
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,” J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese].
Netter, F. H., et al., “The Ciba Collection of Medical Illustrations,” vol. 5. Royal Victorian Institute for the Blind Tertiary Resource Service, Melbourne (1969).
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. I):I-29-I-35 (2001).
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991).
O'Rourke, R. and Crawford, M., “Mitral Valve Regurgitation,” Year Book Medical Publishers, Inc. 1-52 (1984).
Osawa et al., “Partial Left Ventriculectomy in a 3-Year Old Boy with Dilated Cardiomyopathy,” Japanese Journal of Thoracic and Cardiovascular Surg, 48:590-593 (2000).
Otto, Catherine M., “Timing of Surgery in Mitral Regurgitation,” Heart 89:100-105 (2003).
Park et al., Clinical Use of Blade Atrial Septostomy, Circulation, 1978, pp. 600-608, vol. 58.
Patel et al., “Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation,” http://www.sts.org/doc/7007 accessed on Sep. 23, 2008.
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,” Circulation, 106:e173-e174 (2002).
Rahhal, “Tiny device to ‘zip up’ leaky hearts invented by Dr Oz 20 years ago could save millions, study finds,” Daily Mail (Sep. 26, 2018).
Randas J. V. Batista et al., Partial Left Ventriculectomy to Treat End-Stage Heart Disease, 64 Ann. Thorac. Surg. 634-38 (1997).
Redaelli et al., “A Computational Study of the Hemodynamics After ‘Edge-To-Edge’ Mitral Valve Repair,” Journal of Biomechanical Engineering, 123:565-570 (2001).
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997).
Ricchi et al., Linear Segmental Annuloplasty for Mitral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63.
Robicsek et al., “The Bicuspid Aortic Valve. How Does It Function? Why Does It Fail,” http://www.sts.org/doc/7007 accessed on Sep. 24, 2008.
Ross M. Reul et al., Mitral Valve Reconstruction for Mitral Insufficiency, 39 Progress in Cardiovascular Diseases 567-99 (1997).
Supplemental European Search Report of EP Application No. 02746781, mailed May 13, 2008, 3 pages total.
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total.
Tager et al., Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement with Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81.
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of A Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001).
Tibayan et al., “Annular Geometric Remodeling In Chronic Ischemic Mitral Regurgitation,” http://www.sts.org/doc/7007 accessed on Sep. 24, 2008.
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,” Eur J. of Cardiothoracic Surg., 19:431-437 (2001).
Timek, “Edge-to-Edge Mitral Valve Repair without Annuloplasty Ring in Acute Ischemic Mitral Regurgitation,” [Abstract] Clinical Science, Abstracts from Scientific Sessions, 106(19):2281 (2002).
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up,” European Journal of Cardio-thoracic Surgery, 15:119-126 (1999).
U.S. Appl. No. 60/316,892 to Tremulis et al., filed Aug. 31, 2001.
Uchida et al., Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., Apr. 1991, pp. 1221-1224, vol. 121.
Umana et al., ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., May 12, 1998, pp. 1640-1646, vol. 66.
Umana et al., “‘Bow-tie’ Mitral Valve Repair Successfully Addresses Subvalvular Dysfunction in Ischemic Mitral Regurgitation,” Surgical Forum, XLVIII:279-280 (1997).
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,” Journal of Heart Valve Disease, 11:810-822 (2002).
Waller et al., “Anatomic Basis for and Morphologic Results from Catheter Balloon Valvuloplasty of Stenotic Mitral Valves,” Clin. Cardiol. 13:655-661 (1990).
Werker, P. and Kon M., “Review of Facilitated Approaches to Vascular Anastomosis Surgery,” Ann Thorac Surg 63:122-7 (1997).
Related Publications (1)
Number Date Country
20220104819 A1 Apr 2022 US
Continuations (2)
Number Date Country
Parent 16241647 Jan 2019 US
Child 17554859 US
Parent 14577852 Dec 2014 US
Child 16241647 US