1. Field of the Invention
The present invention relates to drainage system grate assemblies. More particularly, the present invention relates to a drainage system grate assembly including a drainage system grate that can be secured over a drainage system without deforming the grate or causing a tripping hazard.
2. Description of the Prior Art
Drainage system grates are typically comprised of several tread bars and two or more crossbars that drop into frames to cover drainage systems. The frames are typically secured over or within a drainage system, while it is being constructed. The frames not only support the grates, but also provide a convenient platform to which the grates may be secured.
Drainage system grates are typically secured to their frames by grate locking assemblies to prevent theft by vandals or thieves and to ensure that the grates don't become unseated by heavy use. Stolen or unseated grates are hazardous, because a removed or unseated grate cannot prevent a person or a vehicle from falling into a drainage system.
Common grate locking assemblies typically include a grate bar affixed either above or below a few tread bars of a grate. A bolt is used to secure the grate bar to a locking bar, which is located within the drainage system and contacts the grate's frame to prevent the grate from being removed or unseated.
There are two main problems with these assemblies. One is that the grate bar must be added to an otherwise ready-to-install grate. This complicates the installation and can result in an aesthetically unappealing grate.
Another problem is that the grate bar is typically only affixed to some tread bars. This stresses those tread bars and not others. The stressed tread bars can bend and cause an uneven surface. The uneven surface is aesthetically unappealing and can present a tripping hazard.
Another common grate locking assembly uses a recessed area in two adjacent tread bars of a grate. The recessed area includes a hole through which a bolt penetrates, such that a head of the bolt rests in the recessed area. The bolt is attached to a locking bar below the grate allowing the locking bar to be rotated, such that ends of the locking bar seat within grooves in a frame. The grooves prevent the locking bar and the grate from being removed or unseated. A disadvantage of this construction is that only two tread bars are stressed, which can cause an uneven surface as discussed above.
Accordingly, there is a need for an improved drainage system grate assembly that overcomes the limitations of the prior art.
The drainage system grate assembly of the present invention overcomes the above-identified problems and provides a distinct advance in the art. More particularly, the present invention relates to a drainage system grate assembly including a drainage system grate that can be secured over a drainage system without deforming the grate or causing a tripping hazard.
The preferred drainage system grate assembly broadly comprises a grate, a frame to support the grate, and a locking device to hold the grate within the frame. The grate comprises two or more crossbars and a plurality of tread bars. Each crossbar spans a watercourse of a drainage system and is supported by the frame at both ends of the crossbar. The crossbar includes an integral flange. The flange protrudes from the crossbar substantially horizontally and includes at least one hole centered within the flange.
Each tread bar spans the watercourse perpendicularly from and is supported by the crossbars. Each tread bar seats in a channel in each crossbar and includes a course upper surface to ensure good traction and prevent a person or vehicle from slipping as they traverse over the watercourse.
The frame is typically formed or set into the watercourse during construction of the drainage system. The frame includes ledges which support the crossbars and sidewalls which prevent the grate from moving laterally. The frame also typically includes shelves.
The locking device comprises a substantially horizontal member, a nut retaining member, and two substantially vertical members. The substantially horizontal member includes a penetration where a bolt is inserted through the hole in the flange to engage a nut in the nut retaining member.
As the bolt is turned, the locking device is raised until one of the substantially vertical members contacts one of the shelves in the frame. The substantially vertical member contacting one of the shelves of the frame secures the grate within the frame.
A locking bar may be used as an alternative to the locking device. The locking bar is used similarly to the locking device except that it spans the watercourse and contacts shelves of the frame on either edge of the watercourse.
In use, an installer prepares the grate assembly by inserting the bolt through the hole in the flange and the penetration to engage the nut slightly. The installer then positions the locking device or the locking bar so that it will not contact the frame on the way down. Then, the installer seats the grate within the frame and repositions the locking device or locking bar so that it will contact the frame on the way up. When the locking device or locking bar is in position, the installer turns the bolt until the locking device or the locking bar contacts the shelves of the frame, thereby securing the grate within the frame.
A preferred embodiment of the present invention is described in detail below with reference to the attached drawing figures, wherein:
Referring to
Also referring to
The frame 14 is typically formed or set into the watercourse 20 during construction of the drainage system 21. The frame 14 can completely circumvent the watercourse 20 or only reside on two opposing edges of the watercourse 20. The frame 14 includes substantially horizontal ledges 28 which support the crossbars 16 and substantially vertical sidewalls 30 which prevent the grate 12 from moving laterally. The frame 14 also includes one or more shelves 32. The frame 14 is preferably constructed of extruded aluminum, but may be any rigid material.
Referring to
During installation of the grate, the bolt 36 supports the locking device 34 below the grate 12. Once the grate 12 is installed, the bolt 36 may be turned to raise the locking device 34 until one of the vertical members 44 contacts one of the shelves 32 of the frame 14. The vertical member 44 contacting one of the shelves 32 secures the grate 12 within the frame 14.
Also referring to
The top surface 48 is approximately 0.15 inches wide. Each slanted side 50,52 is sloped inward at an approximately 23° angle from the vertical. The sidewall 54 is approximately 0.25 inches tall. The flange 56 is approximately 0.305 inches thick and extends substantially horizontally approximately 0.5 inches from where it adjoins the second slanted side 52.
One or more holes 60 are substantially centered in the flange 56 and laterally spaced approximately 0.75 inches on center. Each hole 60 has an approximately 0.25 inch diameter.
Additionally, a slot 62 is cut into the bottom surface 58 along the length of each crossbar 16. The slot 62 is approximately 0.375 inches wide and approximately 0.315 inches deep. The slot 62 is centered below the top surface 48.
Also referring to
The shoulders 26 of the tread bars 18 rest on the top surface 48 of the crossbar 16. The channel portion 42 of the tread bars 18 seats within one of the channels 36 of each crossbar 16. As can be seen by the given dimensions, the slot 62 is of sufficient depth so as to meet each channel 64 and allow the tread bars 18 to be secured to the crossbar 16 by welding a bead along the slot 62.
Also referring to
In use, an installer prepares the grate 12 by inserting the bolt 36 through the hole 60 in the flange 56 and the penetration 46 in either the locking device 34 or the locking bar 70, engaging the nut 38 slightly. The installer then positions the locking device 34 or the locking bar 70 so that it will not contact the frame 14 on the way down. Then, the installer seats the grate 12 within the frame 14 and repositions the locking device 34 or the locking bar 70 in position below the shelves 32 of the frame 14. As the installer turns the bolt 36, the locking device 34 or the locking bar 70 rises to contact the shelves 32 of the frame 14, thereby securing the grate 12 within the frame 14.
Referring to
Referring to
It can be seen that the slanted sides 24,26,152 of both crossbars 16,116 can act to divert water and other debris around the crossbar 16, 116, thus allowing the water to collect in the watercourse 20. While the crossbar 16 of the preferred first embodiment is more stable than the crossbar 116 of the preferred second embodiment, the crossbar 116 of the preferred second embodiment is better suited to be located along the ledges 28 of the frame 14. This is because the sidewall 154 can be seated flush with the frame 14 and the slanted side 152 can divert water into the watercourse 20. If the crossbar 16 of the preferred first embodiment were to be located along the ledges 28 of the frame 14, the first slanted side 50 could trap water against the frame 14. Trapped water may cause corrosion or sanitation problems.
While the present invention has been described above, it is understood that other materials and/or dimensions can be substituted. Additionally, items which have been described as preferably identical to another item may have differences, as a mater of design choice. These and other minor modifications are within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
386768 | Burrows | Jul 1888 | A |
1360630 | Fairtrace | Nov 1920 | A |
1561120 | Smith | Nov 1925 | A |
3881832 | Maguire | May 1975 | A |
3914911 | Paasch | Oct 1975 | A |
4046482 | Paasch | Sep 1977 | A |
4126404 | Ferns | Nov 1978 | A |
4142329 | Williams | Mar 1979 | A |
4257193 | Williams | Mar 1981 | A |
4387882 | Mansour et al. | Jun 1983 | A |
4515498 | Thomann et al. | May 1985 | A |
4553874 | Thomann et al. | Nov 1985 | A |
4630962 | Thomann et al. | Dec 1986 | A |
4943100 | Emberson | Jul 1990 | A |
4955752 | Ferns | Sep 1990 | A |
RE33439 | Thomann et al. | Nov 1990 | E |
5024550 | Mainville | Jun 1991 | A |
5291714 | Wright et al. | Mar 1994 | A |
5318376 | Prescott, Sr. | Jun 1994 | A |
5324135 | Smith | Jun 1994 | A |
5340232 | Spiess et al. | Aug 1994 | A |
5564860 | Amann | Oct 1996 | A |
5611640 | Bowman | Mar 1997 | A |
5628152 | Bowman | May 1997 | A |
5647689 | Gunter | Jul 1997 | A |
5839852 | Mattson | Nov 1998 | A |
6165357 | Cormier | Dec 2000 | A |
6450125 | McElroy | Sep 2002 | B2 |
6537447 | Remon | Mar 2003 | B2 |
6802962 | Browne et al. | Oct 2004 | B1 |
Number | Date | Country |
---|---|---|
0761885 | Mar 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20030147693 A1 | Aug 2003 | US |