1. Field of the Invention
The present invention generally relates to a grating structure.
2. Description of Related Art
Various grating structures have been introduced in industry. Gratings typically have rows of grating lines that diffract light. The diffracted light is generally distributed into a diffraction pattern forming a number of modes. One type of diffraction grating is a transmission grating. Typically, transmission gratings comprise grooves etched into a transparent material. As the elements of light in the incident spectrum strike the grooves at a certain angle, they are diffracted and, therefore, separated to various degrees. In many optical applications, light sources generate diffuse light with randomized polarizations. In these applications, typical gratings waste much of the light and, therefore, are not efficient in many beam conditioning applications.
In view of the above, it is apparent that there exists a need for an improved grating structure.
In satisfying the above need, as well as overcoming the enumerated drawbacks and other limitations of the related art, the present invention provides an improved grating structure.
In one configuration, the grating structure has a fused silica base. The fused silica base includes alternating ridges and grooves that may be etched into the base. The ridges and grooves form a fused silica to air interface. The ridges and grooves are configured such that the grating has a ratio of the effective refractive index difference between s-polarization and p-polarization of about 1/3. As such, for non-polarized light with an incident angle θin of between 40° and 90° and a wavelength λ=350-1600 nm the grating directs both s-polarization and p-polarization components of incident light to the −1st order diffraction mode.
Further objects, features and advantages of this invention will become readily apparent to persons skilled in the art after a review of the following description, with reference to the drawings and claims that are appended to and form a part of this specification.
a and 4b are a graphs illustrating the relationship of the effective refractive index difference between p-polarized light and s-polarized light relative to the fill factor of the grating;
a is a graph illustrating the relationship of the effective refractive index difference relative to angle of incidence;
b is a graph illustrating the relationship of the height relative to angle of incidence;
c is a graph illustrating the relationship of the fill factor relative to angle of incidence;
d is a graph illustrating the relationship of the aspect ratio relative to angle of incidence;
a and 6b are a graphs illustrating the relationship of the diffraction efficiency relative to the height of the grating;
a and 9b are graphs illustrating the relationship of the diffraction efficiency relative to the change in incident angle and normalized wavelength.
Referring to
Protrusions 18 extend from and are integral with the base 16. Being integral with the base 16 the protrusions 18 are also formed of fused silica. The protrusions 18 form grooves 20 located between each protrusion 18. The grooves 20 may be filled with air 14, thereby providing an air fused silica interface across the grating layer 22. The grating layer 22 diffracts light directed towards the transmission grating 11 from a light source into various diffraction modes. Each of the protrusions 18 may form a ridge 38 that extends to provide a uniform line structure, as denoted by lines 40 in
Referring again to
The reflective components may form a diffraction pattern comprised of a plurality of modes. For example, the 0 order mode of the reflective component Rn=0 is denoted by arrow 32. Similarly, the −1st order mode of the reflective component Rn=−1 is denoted by arrow 34. In addition, the transmission grating 11 is mounted in the Littrow mounting condition. Littrow mounting is the condition that produces the same angle of diffraction for both the −1st and 0th order modes, but in opposite directions. The angle for the −1st order mode is θr,−1, while the angle for the 0th order mode is θr,0.
The transmissive components may also form a diffraction pattern comprised of a plurality of modes. For example, the 0 order mode of the transmissive component Tn=0 is denoted by arrow 36. Similarly, the −1st order mode of the transmissive component Tn=−1 is denoted by line 38. Again, the Littrow mounting produces the same angle of diffraction for both the −1st and 0th order modes, but in opposite directions. The angle for the −1st order mode is θt,−1, while the angle for the 0th order mode is θt,0.
The resulting characteristics of the reflective and transmissive components are a factor of the refractive index (n) of the material, the period (p) of the grating, the fill factor (r) of the grating, and the height (h) of the grating. The period of the grating is the distance from the start of one groove to the start of the next groove. The period of the transmission grating 11 is denoted by reference numeral 24. The fill factor (r) can be defined as the ratio of the protrusion width or groove width to the period of the grating, which is denoted by reference numeral 26. The height (h) of the grating is the distance from the top of the protrusion 18 to the bottom of the groove 20, which is denoted by reference numeral 28 in
A Littrow mounting condition of the transmission grating 11 having an interface of air/fused silica may be analyzed by modal analysis, and can be derived to provide simultaneously a −1st order diffraction for both p-polarization and s-polarization. The analysis points out that the effective refractive index difference of two propagation modes in the grating has a ratio of 1/3 with an incident angle above 40° to select the minimum aspect ratio of the groove height to the ridge width or groove height to groove width. The grating structure fulfilling this condition exhibits a transmittance of more than 90% and an aspect ratio from 6.6 to 16.8 free space wavelengths for an incident angle from 30° to 50°. A 90° coupler is presented as one application for incoherent light.
With regard to analysis methods, rigorous coupled-wave analysis has an advantage of accommodating various groove shapes. Several shapes of grooves such as semi-circle, rectangular, triangular, and curved surfaces can be used. Coupled-wave analysis is typically used for designing gratings, but due to various assumptions this method would not identify the described parameters. Coupled-wave analysis is a numerical analysis and does anticipate propagation mode and evanescent mode integration. On the other hand, a modal analysis can provide a physical insight of diffraction phenomena, although it has less flexibility to adapt for various groove shapes.
When gratings are used for unpolarized light such as light emitting diodes (LEDs), both p-polarization and s-polarization should be simultaneously taken into account in the design. Particularly, the use of −1st order diffraction extends the design degrees of freedom for optical devices, components, and assembled systems due to large bending of light. P-polarization and s-polarized −1st order diffraction can be achieved with incident angle from 30° to 45° by computer optimization using coupled-wave analysis. However, it was thought that a grating needed a larger height and ridge width to accommodate increasing incident angles.
However according to the method described herein, a Littrow mounting condition of rectangular grating at the interface of air/fused silica may be derived through a modal analysis to provide simultaneously a −1st order diffraction for both p-polarization and s-polarization. The analysis can identify that the ratio of the effective refractive index difference of two propagation modes in the grating for p-polarization and s-polarization depends on incident angle, resulting in different ratios to select the minimum aspect ratio of the grating height to the ridge width of fused silica or the groove width of air.
In the modal analysis, effective index, neff, of excited modes in the grating satisfies the eigenvalue equation.
α, β, and t are parameters in equation (1), and defined by equations (2a)-(3b), k is the wave number, and εα and εβ are permittivity of air and fused silica. In Littrow mounting, the right part of equation (1) equals minus unity. Excited modes are numbered from the largest value of the square of the effective refractive index, neef2. Within an incident angle θin from 30° to 90°, the lowest two modes, m=0 and 1, are propagation modes with positive neef2, while other modes, m≧2, are evanescent modes with negative neef2. Here, m=0 and 1 are considered with an incident angle θin from 30° to 85°. Also, the grating may provide the highest diffraction efficiency with the −1st order when the grating height, h, is set so as to have a phase difference of 180° between the lowest two modes, satisfying equations (4a), (4b).
where effective refractive index difference, nd, is written with
nd=nm=0−nm=1 (4b)
where λ is free space wavelength, and nm=0 and nm=1 are effective refractive index of modes m=0 and 1.
A method for producing a grating according to one embodiment is provided in process 300. In block 310, the wavelength range of light is defined. In block 312, the incident angle of the light is defined. In block 314, the period of the grating is defined based on a Littrow mounting condition. In block 316, the relationship between the effective refractive index difference and the fill factor is determined. effective refractive index difference can be graphed with respect to the fill factor for both s-polarization and p-polarization, as shown in the graph in
The methodology of designing a p-polarized and s-polarized −1st order diffraction grating, may be accomplished by extending equations (1)-(4). Since the relationship between p-polarizations and s-polarizations is considered, a more general expression is introduced. When grating height, hp, for p-polarization or hs for s-polarization satisfies (5), each polarization enhances diffraction efficiency of the −1st order.
The −1st order diffraction of p-polarization and s-polarizations is simultaneously enhanced when required each height has the same physical height, h, as is given by
h=hp=hs (6)
The p-polarization and s-polarized −1st order condition is written with the ratio of effective refractive index differences, nd,p, for p-polarization to nd,s for s-polarization.
Then, the grating height, h, is determined by equations (5)-(7).
One element of this design methodology is that the expression of the ratio nd,p/nd,s allows appropriate grating parameters to be found easily according to the variation of fill factor for p-polarizations and s-polarizations. In this design methodology, infinite numbered combinations of (i,j) fulfill equation (7). In practice, an appropriate dimension of the grating may be effectively selected in view of fabrication constraints.
Now referring to
All points on the curves of p-polarization or s-polarization provide the maximum diffraction efficiency of the −1st order when the grating height is set to fulfill equations (5). From the view point of fabrication, the minimum aspect ratio of the grating height to the edge width of fused silica or air may be desired. Although infinite numbered combinations (i,j) may satisfy equation (7), the two combinations, (i,j)=(1,1) and (1,3) are considered here. Those correspond to nd,p/nd,s=1 and 1/3.
It can be seen in
Effective refractive index differences fulfilling nd,p/nd,s=1 and 3 were calculated in θin from 30° to 85° and plotted in
The angular step width was basically 5° and further more angles were added at discontinuity points. It can be seen by line 520 that nd,p and nd,s exist within θin from 30° to 58° for the ratio of unity. On the other hand, in case of nd,p/nd,s=1/3, nd,p and nd,s have a first set numbered by 1/3a, in θin from 30° to 48.5°, and two sets by 1/3a and b, with the further increase of θin.
The grating height was calculated from
As illustrated, the grating height increases sharply for nd,p/nd,s=1 when increasing θin beyond 30°. Alternatively, nd,p/nd,s=1/3 provides a lower height than nd,p/nd,s=1 when θin is larger than 43° with the further increase of θin.
Accordingly,
In view of fabrication, the aspect ratio of the grating height to the edge width of fused silica or groove is taken to be smaller of the fused silica or groove width. The aspect ratio, APopt, is given by
where hl and rl are the grating height and fill factor that fulfill equations (5)-(7). When the fill factor is less than 0.5, the edge width of fused silica is used, and when the fill factor is greater than 0.5 the groove width is selected. In
a and 6b illustrate the diffraction efficiency with respect to a variation in height. In
In
For the instance where θin=30° in
Consistent with this method other specific implementations may be particularly useful. In one embodiment, the incident angle θin is about 40° and the alternating ridges and grooves have a grating period p=0.75λ-0.81λ, a fill factor r=0.32-0.42, a grating height h=4.1λ-4.7λ. In another embodiment, the incident angle θin is about 50° and the alternating ridges and grooves have a grating period p=0.62λ-0.68λ, a fill factor r=0.49-0.59, a grating height h=4.1λ-4.7λ. In another embodiment, the incident angle θin is about 60° and the alternating ridges and grooves have a grating period p=0.55λ-0.61λ, a fill factor r=0.63-0.73, a grating height h=5.1λ-5.7λ. In yet another embodiment, the incident angle θin is about 70° and the alternating ridges and grooves have a grating period p=0.5λ-0.56λ, a fill factor r=0.34-0.44, a grating height h=2.8λ-3.4λ.
One application based on the design methodology is presented in
Light that travels through two different media, such as air and silica, has a bend angle of |θin−θr,0|, and the angle is generally larger than 90° when the 0th order diffraction is used. On the other hand, the −1st order diffraction has the light bend angle of θin+θr,−1, and can provide a light bend angle less than 90°. Thus, a 90° coupler could be built to direct light without additional materials rather than using a traditional 45° inclined mirror. Unpolarized light is directed upon the grating with an incident angle of 55.4°. When the grating is designed according the methodology described, it redirects to the transmitted light to the −1st order mode with an angle of 34.6°, resulting in a 90° bend of the light.
Potential ranges for the incident angle and wavelength of a 90° coupler are shown in
a illustrates that the wavelength bandwidths of s-polarization are wider than those of p-polarization. This is due to the fact that the effective refractive index difference for s-polarization is larger than that for p-polarization in the grating. In
As such, the angular bandwidth for a transmittance larger than 50% is 9.40 for p-polarization and 18.60 for s-polarization. Wavelength bandwidth for a transmittance larger than 50% is 0.088λ for p-polarization and 0.212λ for s-polarization.
As a person skilled in the art will readily appreciate, the above description is meant as an illustration of the principles this application. This description is not intended to limit the scope or application of the invention in that the invention is susceptible to modification, variation and change, without departing from spirit of the invention, as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6219478 | Parriaux et al. | Apr 2001 | B1 |
6762880 | Holm et al. | Jul 2004 | B2 |
7139128 | Smith et al. | Nov 2006 | B2 |
7268946 | Wang | Sep 2007 | B2 |
7319559 | Nakama et al. | Jan 2008 | B2 |
7369186 | Momoki | May 2008 | B2 |
20020135876 | Holm et al. | Sep 2002 | A1 |
20030174945 | Fried et al. | Sep 2003 | A1 |
20060039072 | Ruoff et al. | Feb 2006 | A1 |
20060127829 | Deng et al. | Jun 2006 | A1 |
20060127830 | Deng et al. | Jun 2006 | A1 |
20060153023 | Hikichi et al. | Jul 2006 | A1 |
20070165307 | Perkins | Jul 2007 | A1 |
20070297053 | Wang | Dec 2007 | A1 |
20080055719 | Perkins et al. | Mar 2008 | A1 |
20080055723 | Gardner et al. | Mar 2008 | A1 |
20080074748 | Kittaka et al. | Mar 2008 | A1 |
20080106789 | Hirai et al. | May 2008 | A1 |
20080266662 | Perkins | Oct 2008 | A1 |
20080316599 | Wang | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
2007-317266 | Dec 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20100277937 A1 | Nov 2010 | US |