The present application is related to the following copending applications filed concurrently herewith: application Ser. No. 10/680,625, entitled DOWNHOLE FIBER OPTIC WET CONNECT AND GRAVEL PACK COMPLETION; and application Ser. No. 10/680,053, entitled GRAVEL PACK COMPLETION WITH FLUID LOSS CONTROL AND FIBER OPTIC WET CONNECT. The entire disclosures of these related applications are incorporated herein by this reference.
The present invention relates generally to equipment utilized and operations performed in conjunction with subterranean wells and, in an embodiment described herein, more particularly provides a gravel pack completion with fiber optic monitoring.
It would be very desirable to be able to use a fiber optic line to monitor production from a well, for example, to monitor water encroachment, identify production sources, evaluate stimulation treatments, gravel packing effectiveness and completion practices, etc. It is known to use fiber optic lines to transmit indications from downhole sensors, to communicate in the downhole environment and to use a fiber optic line as a sensor.
However, fiber optic lines may be damaged in operations such as gravel packing, expanding tubulars downhole, etc. For this reason, it would be beneficial to be able to install a fiber optic line in a completion, for example, after a completion assembly has been installed in a well and gravel packing operations are completed, or after an assembly has been expanded, etc.
Furthermore, it is sometimes desirable to complete a well in sections or intervals, for example, where a horizontal well is gravel packed in sections, or where zones intersected by a vertical well are separately gravel packed. In these cases, it would be beneficial to be able to conveniently install a fiber optic line in each of the gravel packed sections.
In carrying out the principles of the present invention, in accordance with described embodiments thereof, systems and methods are provided which permit a fiber optic line to be conveniently installed in an assembly previously installed in a well.
In one aspect of the invention, a method for completing a subterranean well is provided. The method includes the steps of: positioning at least one assembly in a wellbore of the well; then inserting a portion of a tubular string into the assembly; and attaching a fiber optic line to the tubular string portion.
In another aspect of the invention, a system for completing a subterranean well is provided. The system includes an assembly positioned in a wellbore of the well. A portion of a tubular string is inserted into the assembly after the assembly is positioned in the wellbore. A fiber optic line is attached to the tubular string portion.
In yet another aspect of the invention, a system for completing a subterranean well includes at least first and second assemblies positioned in a wellbore of the well. A tubular string has a portion thereof inserted into both of the first and second assemblies after the first and second assemblies are positioned in the wellbore. A fiber optic line is attached to the tubular string portion.
These and other features, advantages, benefits and objects of the present invention will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative embodiments of the invention hereinbelow and the accompanying drawings.
Representatively illustrated in
As depicted in
Gravel 20 is flowed into an annulus formed between the screen 18 and the wellbore 14. Fluid in a formation or zone 22 intersected by the wellbore 14 can flow through the gravel 20, through the screen 18 and into an internal flow passage 24 of the assembly 12. A conventional gravel packing service tool (not shown) may be used to flow the gravel 20 into the annulus between the screen 18 and the wellbore 12, in a manner well known to those skilled in the art.
When the service tool is removed from the assembly 12, a fluid loss control device 26 of the assembly prevents fluid in the wellbore 14 above the assembly from flowing into the formation 22 via the passage 24. The fluid loss control device 26 may be a Model FSO device available from Halliburton Energy Services of Houston, Tex., in which case the device may prevent flow therethrough in each direction when closed.
As depicted in
Note that the fluid loss control device 26 may be configured other than as shown in
Referring additionally now to
A lower portion 34 of the tubular string 28 extends into the passage 24 of the assembly 12, and the sealing device 32 sealingly engages a seal bore 36, such as a polished bore receptacle, associated with the packer 16. Preferably, the tubular string portion 34 is perforated to permit or enhance flow into the tubular string 28 from the passage 24.
When the lower portion 34 is inserted into the assembly 12, the fluid loss control device 26 may open, permitting flow therethrough in each direction. However, it should be understood that the fluid loss control device 26 may be opened before, during or after the lower portion 34 is inserted into the assembly 12. Of course, if the fluid loss control device 26 is incorporated into the screen 18, insertion of the portion 34 into the assembly 12 may not affect operation of the fluid loss control device.
Attached to the tubular string 28 is a fiber optic line 38. The fiber optic line 38 may, for example, be encased in a cable, or it may be in a conduit as described in further detail below. Any means of attaching the fiber optic line 38 to the tubular string 28 may be used, in keeping with the principles of the invention.
The fiber optic line 38 extends longitudinally through the packer 30, and also extends longitudinally through the sealing device 32. If the fiber optic line 38 is contained in a conduit, portions of the conduit may be formed in the packer 30 and sealing device 32, and then the fiber optic line may be passed through the conduit in these elements before, during or after the tubular string 28 is run into the wellbore 14.
Note that the fiber optic line 38 extends longitudinally in the passage 24 within the screen 18. In this manner, the fiber optic line 38 may be used to monitor well parameters, such as temperature, pressure, flow rate, water cut, fluid identification, etc. For this purpose, the fiber optic line 38 may have appropriate sensors connected thereto and/or the fiber optic line may itself serve as a sensor, for example, using Bragg gratings on the fiber optic line.
As depicted in
It may now be fully appreciated that the system 10 permits the fiber optic line 38 to be conveniently installed in the assembly 12 after the gravel packing operation is completed. This helps to prevent damage to the fiber optic line 38. Convenient installation of the fiber optic line 38 (or at least the conduit therefor) is provided by installing it along with the tubular string 28, which would normally be run subsequent to the gravel packing operation.
Referring additionally now to
As depicted in
Preferably, the lower assembly 42 is installed first, a gravel pack packer 52 of the assembly is set in the wellbore 46, and a gravel packing operation is performed to place gravel 48 between a screen 50 of the assembly and the wellbore. Fluid from a formation or zone 56 intersected by the wellbore 46 can now flow through the gravel 48, inward through the screen 50 and into an interior flow passage 58 extending through the screen.
When a service tool (not shown) is retrieved from the assembly 42 after the gravel packing operation, a fluid loss control device 54 of the assembly is closed. The fluid loss control device 54 may be similar to the fluid loss control device 26 described above, and the fluid loss control device may be incorporated into the screen 50, in which case retrieval of the service tool may not affect operation of the device.
The upper gravel packing assembly 44 is then installed in the wellbore 46. The gravel packing assembly 44 is similar to the gravel packing assembly 42, in that it includes a gravel pack packer 60, a screen 62 and a fluid loss control device 64. A sealing device 66 carried at a lower end of the assembly 44 sealingly engages a seal bore 68 associated with the packer 52.
When the upper assembly 44 engages the lower assembly 42, the lower fluid loss control device 54 can be opened. This provides unimpeded communication between the passage 58 and another interior flow passage 70 formed longitudinally through the screen 62. Thus, the flow passages 58, 70 at this point can form a continuous flow passage extending through the assemblies 42, 44. Note that the fluid loss control device 54 may be opened before, during or after engagement between the assemblies 42, 44.
The packer 60 is set in the wellbore 46, and a gravel packing operation is performed to place gravel 72 between the screen 62 and the wellbore. Fluid from a formation or zone 74 intersected by the wellbore 46 can now flow through the gravel 72, inward through the screen 62 and into the flow passage 70.
When the gravel packing operation is completed and the service tool is retrieved from the assembly 44, the fluid loss control device 64 is preferably closed to prevent fluid flow from the wellbore 46 above the assemblies 42, 44 into either of the formations 56, 74. The fluid loss control device 64 may be similar to the fluid loss control device 26 described above, and the fluid loss control device may be incorporated into the screen 62, in which case retrieval of the service tool may not affect operation of the device.
Referring additionally now to
Engagement between the tubular string 76 and the upper assembly 44 may open the fluid loss control device 64, permitting flow therethrough in each direction. The fluid loss control device 64 may be opened before, during or after engagement between the tubular string 76 and the upper assembly 44. Of course, if the fluid loss control device 64 is incorporated in the screen 62, such engagement may not affect operation of the device.
A lowermost portion 78 of the tubular string 76 extends into the passage 58 of the lower assembly 42, opening the fluid loss control device 54, if not previously opened. Another portion 80 of the tubular string 76 extends through the passage 70 of the upper assembly 44. Preferably, the portion 78 is perforated to enhance flow of fluid (indicated by arrows 82) into the tubular string 76 from the passage 58, and the portion 80 is not perforated to exclude flow of fluid (indicated by arrows 84) from the formation 74 into the portion 80.
A sealing device 86 carried on the tubular string 76 between the portions 78, 80 engages a seal bore 88 at a lower end of the assembly 44 and isolates the passages 58, 70 from each other in the assemblies 42, 44. Thus, the fluid 82 from the formation 56 flows inwardly through the screen 50, into the passage 58, and into the tubular string portion 78, which communicates with an interior portion 92 of the tubular string 76 above the assemblies 42, 44. Fluid 84 from the formation 74 flows inwardly through the screen 62, into the passage 70, and then into an annulus 94 formed between the tubular string 76 and the wellbore 46 above the assemblies 42, 44.
Flow between the annulus 94 and another interior portion 96 of the tubular string 76 is controlled by a remotely operable flow control device 98 interconnected in the tubular string. Flow between the lower interior tubular string portion 92 and the upper interior tubular string portion 96 is controlled by another remotely operable flow control device 100 interconnected in the tubular string. The flow control devices 98, 100 may be Interval Control Valves available from WellDynamics of Spring, Tex., or they may be any type of flow control devices, such as valves, chokes, etc.
With both of the flow control devices 98, 100 partially or completely open, the fluids 82, 84 are commingled (indicated by arrow 102) in the upper interior tubular string portion 96. The device 98 may be closed to prevent flow of the fluid 84 into the upper interior portion 96, and the device 100 may be closed to prevent flow of the fluid 82 into the upper interior portion of the tubular string 76. The devices 98, 100 may also be partially opened or closed (in the manner of a choke) to regulate the relative proportions of the fluid 102 contributed by each of the fluids 82, 84.
The flow control devices 98, 100 may be remotely operated by means of one or more hydraulic and/or electric lines or conduits 104 connected thereto, attached to the tubular string 76 and extending to a remote location, such as the earth's surface or another location in the well. In addition, a fiber optic line 106 is attached to the tubular string 76 and extends into the assemblies 42, 44. The fiber optic line 106 may be installed in a conduit attached to the tubular string 76, as described below.
The fiber optic line 106 extends longitudinally from a remote location, through the packer 90, through a telescoping travel joint 108 interconnected in the tubular string 76, through the passage 70, through the sealing device 86 and into the passage 58. For monitoring well parameters in the passages 58, 70, the fiber optic line 106 may have sensors connected thereto, or the fiber optic line may itself serve as a sensor, as described above.
Referring additionally now to
When initially installed in the well, the tubular string 116 has the conduit 114 attached thereto. The conduit 114 may be positioned internal or external to the tubular string 116. The conduit 114 may extend through a sealing device 118, such as a packer or a packing stack or seal assembly, etc., or through any other well tool interconnected in the tubular string 116. The conduit 114 may be continuous, or it may be segmented, and portions of the conduit may be integrally formed in well tools, such as the device 118, interconnected in the tubular string 116.
After the tubular string 116 is positioned in the well, the fiber optic line 112 is extended through the conduit 114, for example, by pumping the fiber optic line through the conduit. A check valve 120 at a lower end of the conduit 114 permits fluid in the conduit to exit from the lower end of the conduit during the pumping operation. In this manner, the fiber optic line 112 is not subject to damage during installation of the tubular string 116 in the well.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the invention, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to these specific embodiments, and such changes are contemplated by the principles of the present invention. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4134455 | Read | Jan 1979 | A |
4375237 | Churchman | Mar 1983 | A |
4442893 | Foust | Apr 1984 | A |
4483584 | Gresty | Nov 1984 | A |
4624309 | Schnatzmeyer | Nov 1986 | A |
4690212 | Termohlen | Sep 1987 | A |
4756595 | Braun et al. | Jul 1988 | A |
4757859 | Schnatzmeyer | Jul 1988 | A |
4825946 | Schnatzmeyer | May 1989 | A |
4828027 | Schnatzmeyer | May 1989 | A |
4846269 | Schnatzmeyer | Jul 1989 | A |
4887883 | Darbut et al. | Dec 1989 | A |
4921438 | Godfrey et al. | May 1990 | A |
5048610 | Ross et al. | Sep 1991 | A |
5251708 | Perry et al. | Oct 1993 | A |
5435351 | Head | Jul 1995 | A |
5505260 | Andersen et al. | Apr 1996 | A |
5577925 | Schnatzmeyer et al. | Nov 1996 | A |
5645438 | Cairns | Jul 1997 | A |
5727630 | Brammer | Mar 1998 | A |
5778978 | Crow | Jul 1998 | A |
5803167 | Bussear et al. | Sep 1998 | A |
5831156 | Mullins | Nov 1998 | A |
5947198 | McKee et al. | Sep 1999 | A |
6006828 | Kluth et al. | Dec 1999 | A |
6017227 | Cairns et al. | Jan 2000 | A |
6062073 | Patton et al. | May 2000 | A |
6152608 | Ghara et al. | Nov 2000 | A |
6186229 | Martin et al. | Feb 2001 | B1 |
6281489 | Tubel et al. | Aug 2001 | B1 |
6302203 | Rayssiguier et al. | Oct 2001 | B1 |
6325146 | Ringgenberg et al. | Dec 2001 | B1 |
6332787 | Barlow et al. | Dec 2001 | B1 |
6349770 | Brooks et al. | Feb 2002 | B1 |
6378610 | Rayssiguier et al. | Apr 2002 | B2 |
6439778 | Cairns | Aug 2002 | B1 |
6464405 | Cairns et al. | Oct 2002 | B2 |
6478091 | Gano | Nov 2002 | B1 |
6527052 | Ringgenberg et al. | Mar 2003 | B2 |
6568481 | Koehler et al. | May 2003 | B2 |
6666274 | Hughes | Dec 2003 | B2 |
6684950 | Patel | Feb 2004 | B2 |
6736545 | Cairns et al. | May 2004 | B2 |
6758271 | Smith | Jul 2004 | B1 |
6758272 | Bixenman et al. | Jul 2004 | B2 |
6766853 | Restarick et al. | Jul 2004 | B2 |
6776636 | Cameron et al. | Aug 2004 | B1 |
6837310 | Martin | Jan 2005 | B2 |
6874361 | Meltz et al. | Apr 2005 | B1 |
6933491 | Maida et al. | Aug 2005 | B2 |
6951252 | Restarick et al. | Oct 2005 | B2 |
6983796 | Bayne et al. | Jan 2006 | B2 |
20020014340 | Johnson | Feb 2002 | A1 |
20020125008 | Wetzel et al. | Sep 2002 | A1 |
20020162666 | Koehler et al. | Nov 2002 | A1 |
20030141075 | Bixenman et al. | Jul 2003 | A1 |
20030192708 | Koehler et al. | Oct 2003 | A1 |
20030196820 | Patel | Oct 2003 | A1 |
20030213598 | Hughes | Nov 2003 | A1 |
20040065439 | Tubel et al. | Apr 2004 | A1 |
20040173350 | Wetzel et al. | Sep 2004 | A1 |
20040256127 | Brenner et al. | Dec 2004 | A1 |
20050072564 | Grigsby et al. | Apr 2005 | A1 |
20050092501 | Chavers et al. | May 2005 | A1 |
20050109518 | Blacklaw | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2318397 | Apr 1998 | GB |
WO 8602173 | Apr 1986 | WO |
WO 03046428 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050074196 A1 | Apr 2005 | US |