Some oil and gas wells are completed in unconsolidated formations that contain loose fines and sand. When fluids are produced from these wells, the loose fines and sand can migrate with the produced fluids and can damage equipment, such as electric submersible pumps (ESP) and other systems. For this reason, completions can require screens for sand control.
Horizontal wells that require sand control are typically open hole completions. In the past, stand-alone sand screens have been used predominately in these horizontal open holes. However, operators have also been using gravel packing in these horizontal open holes to deal with sand control issues. The gravel is a specially sized particulate material, such as graded sand or proppant, which is packed around the sand screen in the annulus of the borehole. When applied, the gravel acts as a filter to keep any fines and sand of the formation from migrating with produced fluids.
In a gravel pack assembly for a horizontal open hole, proper linear spacing of an inner service tool relative to outer components of the assembly can be particularly important. Operators typically run fixed pipe lengths down the assembly and rely on pipe tallies and available pipe lengths to determine the correct space out for the service tool in the assembly. Unfortunately, the lengths of any screens and the service tool in the horizontal open hole can be considerable, and relying on pipe tallies to achieve correct spacing may prove difficult.
Additionally, the service tool for a gravel pack assembly is typically moved to perform various functions during gravel pack operations. Due to well depth, deviation, tubing stretch, friction, and the type of gravel pack completion to be run, determining the position of the service tool downhole in the assembly can be very difficult. This is especially true in long horizontal gravel pack completions. In the end, pumping of sand slurry when the tool is in an incorrect position in the assembly can cause the service tool to stick and can have catastrophic consequences.
Typically, mechanical indicating collets have been used in the prior art to locate the service tool in the assembly. Additionally, “smart” collets have been used, which reciprocate between a relaxed position and a propped position for positive identification of the service tool's location. Unfortunately, mechanical indication may not always work due to high drag forces and other issues involved in moving the service tool in the downhole assembly.
The subject matter of the present disclosure is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
As noted above, proper linear spacing of an inner service tool relative to outer components of a downhole assembly can be particularly important. To deal with this issue, an adjustment device is used to adjust a length of an inner string deployed in a downhole assembly, such as a toe-to-heel gravel pack assembly. The device has first and second (tubular) members telescopically coupled together. The first member is coupled to one portion of the inner string, while the second member is coupled to another portion of the inner string. A ratchet disposed on the first member can engage a catch on the second member to fix the length of the adjustment device. The ratchet can include a dog having a plurality of chamfered teeth. The catch, which is movable relative to the ratchet, can include a plurality of grooves defined around the outside of the second member to engage the teeth of the ratchet dog.
The inner string and device are deployed in the downhole assembly to determine proper space out of the inner string for subsequent operation, such as gravel packing. When deployed, the first and second members of the device are in an extended condition. When the inner string eventually bottoms out in the assembly, the ratchet allows the second member to move in one direction relative to the first member so the device can collapse and shorten the length of the inner string. A key between the two members can ride in a slot, which allows the two members to slide relative to one another but not rotate.
When the inner string is then pulled up from the downhole assembly, the ratchet engages the catch (i.e., the teeth on the dog engages in the grooves) to prevent the second member from moving in an opposite direction relative to the first member. In this way, the device does not extend again as the inner string is pulled uphole so the device is maintained in one fixed length.
When the device is brought to the surface, operators can permanently maintain the adjustment device in its fixed length determined downhole by installing a locking element between first and second telescoping members. For example, operators can replace the ratchet dogs with chamfered teeth with locking dogs having unchamfered teeth. Engaged in the grooves of the catch, the locking dog will prevent movement of the second member in either direction inside the first member.
As noted previously, knowing the location of a downhole inner string in a downhole assembly can facilitate operations. To deal with this issue, a downhole assembly, such as a gravel pack assembly, has a body defining a body passage therethrough. First sealing surfaces or seats disposed in the body passage separate a sealable space in the body passage. For example, these seats can be polished surfaces in the body passage having a smaller diameter than the rest of the passage.
An inner string, such as an inner string of a gravel pack assembly, is movably disposed in the body passage and defines a bore for communicating fluid from a surface pump to an outlet port on the inner string. A valve in the bore can divert the pumped fluid out the outlet port.
First seals disposed on the inner string selectively seal with the first seats when the inner string is moved in the body. When this occurs, the outlet port communicates the pumped fluid into the sealable space of the body, which produces a measurable pressure buildup. Using the pressure buildup as an indication, a first position of the inner string can then be correlated to the known location of the sealable space in the downhole assembly. A second position for the inner string in the body can then be calculated based on a known distance in the downhole assembly from the first location to a second location of another feature, such as a port in the assembly. Being able to determine positions for the inner string allows operators to more properly position the inner string to desired locations in the downhole assembly during gravel pack or other operations.
The foregoing summary is not intended to summarize each potential embodiment or every aspect of the present disclosure.
A. Downhole Assembly
The gravel pack assembly 100 has multiple gravel pack sections 102A-B, but the assembly 100 can generally have one or more sections. With multiple sections 102A-B, however, the assembly 100 segments compartmentalized reservoir zones so that multiple gravel pack and frac pack operations can be performed in the borehole 10. Isolating elements 104, such as packers, can dispose between these gravel pack sections 102A-B to isolate them from one another.
In any event, the gravel pack assembly 100 can be similar to the gravel pack assemblies disclosed in incorporated U.S. application Ser. No. 12/913,981. As such, the gravel pack assembly 100 is a toe-to-heel gravel pack system that allows operators to pack the borehole 10 from the toe to heel in each section 102A-B. In the depicted configuration, each gravel pack section 102A-B has two screens 140A-B, alternate path devices or shunts 150, and ported housings 130A-B with ports 132A-B, although any of the other disclosed variations can be used.
Briefly, gravel pack operations with the assembly 100 involve initially deploying an inner string 110 into the first gravel pack section 102A. A conveyance 20 manipulates the inner string 110 and can use any of the conveyance methods known in the art. During operations, a pumping system 22 can pump fluid and/or slurry for a gravel or frac pack operation down the inner string 110 as needed, and a pressure sensor 24 can detect a buildup of pressure caused by the pumped fluid. Many of these features are conventional components and are not described in detail here.
Once the inner string 110 is deployed in the assembly 100, the uphole packer 14 on a liner hanger and other packers 104 along the assembly 100 remain unset. Operators pump washdown fluid through the inner string 110, and the circulated fluid leaves the string's outlet ports 112 and passes through a float shoe 122 of a shoe track 120 at the end of the first section 102A. In washing down the borehole 10, the circulated fluid passes through the annulus and uphole so the fluid can enter the casing 12 and return to the surface.
After washdown and setting of the packers 14 and 104, the assembly 100 can commence with gravel pack operations. The string's outlet ports 112 with its seals 114 isolate in fluid communication with the lower flow ports 132A in the first housing 130A of the first section 102A. Positioning the string's ports 112 with the flow ports 132A requires operators to calculate distances and determine the string's position in the assembly 100 relative to the ports' locations. To help with these procedures, the assembly 100 uses a hydraulic locating device 160 as discussed in detail below. As shown, the device 160 is preferably located between the shoe track 120 and the ported housing 130A.
With the string's ports 112 communicating with the first ports 132A, slurry can then be pumped down the inner string 110 to gravel and frac pack the surrounding zone of the borehole 10. As the slurry enters the surrounding borehole annulus, gravel packing of the first section 102A occurs in a toe-to-heel arrangement as discussed in detail in incorporated U.S. application Ser. No. 12/913,981.
Once sandout occurs at this port 132A, the inner string 110 can again be moved so that the outlet ports 112 isolate to upper flow ports 1328 connected to the shunts 150 in this first section 102A. Slurry pumped down the inner string 110 can then fill the borehole annulus around the lower end of the shoe track 120, which can be done to further pack the borehole 10 or to dispose of excess slurry from the string 110.
Operations can then proceed with similar steps being repeated up the borehole 10 for each of the subsequent gravel pack sections (e.g., 102B) separated by the intervening packers 104. Again, additional details and steps in the operation of the toe-to-heel gravel pack system 100 of
B. Adjustment Device
As noted previously, proper linear spacing of a service tool relative to outer assembly components can be important, especially in a horizontal open hole. Rather than running fixed pipe lengths and relying on a pipe tally and available pipe lengths to achieve correct space out for the inner string 110, operators make up the adjustment device 30 on the inner string 110 above the outlet ports 112 and seals 114. The device 30 allows operators to achieve proper spacing, which is even more critical in the toe-to-heel assembly 100 of the present disclosure.
Notably, the inner string 110 in this toe-to-heel assembly 100 first locates at the bottom of the shoe track 120 to communicate washdown fluid out the float shoe 122 as described above. The gravel pack operation then proceeds with the inner string 110 being moved to a number of flow ports 132 along the assembly 100. If the inner string 110 is not run or spaced out properly, then operations will not proceed effecting, and the assembly 100 may become damaged.
To help space out the inner string 110, the adjustment device 30 has an upper member 40 with a distal member 60 telescopically disposed therein. Thus, the distal member 60 is linearly expandable and collapsible relative to the upper member 40. Before actually commencing gravel pack operations, operators make up the device 30 in its extended condition on the inner string 110 and then run the inner string 110 and the expanded adjustment device 30 downhole. Eventually, the inner string 110 tags against the bottom of the gravel pack assembly 100, and the adjustment device 30 collapses until the upper member 40 of the adjustment device 30 (or some other portion of the inner string 110) shoulders out. At this point, the inner string 110 has obtained its proper space out length in the assembly 100.
At the surface, operators mark the exposed pipe to indicate the extent of pipe used during run-in, and operators then raise the adjustment device 30 and inner string 110 back out of the well. As the adjustment device 30 is pulled uphole, the device 30 at least temporarily locks in position so the adjustment device 30 maintains a fixed length. At the surface, operators then fix the current length of the adjustment device 30 to prevent further adjustment. Finally, operators run the inner string 110 and fixed device 30 back downhole into the assembly 100, and the determined space out will put the bottom of the inner string 110 in the desired location in the first gravel pack section 102A, as needed.
At its uphole end, the upper member 40 has a coupling 42 that couples to uphole components (not shown), such as an uphole portion of the inner string (110). The distal member 60 extends from the upper member's downhole end, and the two members 40 and 60 may be initially held in an extended condition by shear pins 46 or the like. Ratchet dogs 50 are disposed in slots 45 around the outside of the upper member 40, and a retaining sleeve 44 disposed on the upper member 40 helps hold the ratchet dogs 50 in place. Seals 62 on the distal member 60 engage inside the upper member 40 to inhibit fluid flow between the members 40 and 60.
The outside of the distal member 60 has catches or grooves 65 spaced apart from one another along most of the member's length. The actual length of the members 40 and 60 can be much greater than depicted in
In
Springs 52 disposed behind the ratchet dogs 50 bias them toward the surface of the distal member 60 so the teeth 55 can engage in the catch grooves 65. The springs 52 can be leaf springs or other types of biasing elements. Preferably, the catch grooves 65 are arranged in sets to engage the multiple teeth 55 on the ratchet dogs 50, but it will be appreciated that a number of ratcheting mechanisms can be used, including those conventionally used in downhole tools for packers or sliding sleeves.
As the inner string 110 is disposed in the assembly 100 and engages bottom, the members 40 and 60 collapse together until the upper member 40 (or some other part of the inner string 110) shoulders out in the assembly 100. Shouldering can be achieved in a number of ways. For example, the assembly 100 can have a restricted passage that allows the distal member 60 to pass therethrough when bottoming out in the assembly 100, but the restricted passage engages the upper member 40 when moved against it.
Once the device 30 is collapsed and shoulders out, operators pull up the inner string 110 to the surface. Operators remove the retaining sleeve 44 and replace the ratchet dogs 50 with locking dogs (not shown) in the slots 45. These locking dogs (not shown) can be similar to the ratchet dogs 50, but they lack ratcheting chamfers so the locking dogs will not ratchet in the distal member's catch grooves 65. Operators then make up the sleeve 44 so the locking dogs are held and distal member 40 is permanently locked in position. At this point, operators can redeploy the inner string 110 with the device 30 in its fixed length downhole to proceed with gravel pack operations.
C. Locating Device
As can be seen in the toe-to-heel gravel pack assembly 100 of
To that end, the gravel pack assembly 100 includes one or more locating device 160 disposed thereon for locating the inner string 110 at different positions in the assembly 100. As shown in
Knowing this one location of the device 160 at the distal extent and knowing the details and dimensions of the assembly 100 disposed downhole, operators can then calculate distances to other locations (i.e., ports 132A-B) on the assembly 100 so other positions for the placement of the inner string 110 can be determined. If desired, the locating device 160 could be located elsewhere on the assembly 100.
Moreover, more than one locating device 160 can be used on the assembly 100 so several locations can be determined along the assembly 100 during operations. For example, each section 102A-B of the assembly 100 can have a comparable locating device 160 so positions for the inner string 110 can be determined at multiple locations when performing operations. In the end, this can help operators find the various ports 132A-B individually in the sections 102A-B.
Rather than using mechanical techniques for location, which can be unreliable, the locating device 160 uses hydraulic techniques for locating the position of the inner string 110 in the assembly 100. Turning to
Rather than using separate couplings 162, 163 as shown, the device 160 can be an integral component as shown in
The inner string 110 has external seals 114 disposed one each side of outlet ports 112. The seals 114 are adapted to engage the inner polished seats 164 of the couplings 161, 163 as discussed below. (A reverse arrangement may also be used in which the couplings 161, 163 have internal seals for engaging polished seats on the inner string 110.) As shown here, the inner string 110 also includes a valve (i.e., seat 116 and dropped ball 118) that can close off fluid flow down the string 110 and divert the flow out the outlet ports 112. Other valve arrangements could also be used, or the distal end of the inner string 110 can be permanently closed off.
As shown in
As it is pumped, the circulated fluid can flow downhole in the annulus between the string 110 and assembly 100 (i.e., shoe track 120 and other downhole component). Eventually as shown in
With further uphole movement of the string 110 as shown in
As the string 110 reaches this sealable space of the passage 165, fluid pumped slowly down the inner string 110 to the string's outlet ports 112 creates a measurable buildup in pressure, which can be detected by the pressure sensor (24) at the surface or elsewhere on the assembly 100. Further movement of the string 110 uphole eventually moves the seals 114 out of the device 160 as shown in
When the pressure buildup occurs with the string's ports 112 sealed at the locating device 160, operators can identify this buildup and can associate the string's current position with the location of the device 160 on the assembly 100. From this known location and the known dimensions and configuration of the assembly 100 deployed downhole, other position for positioning the inner string 110 can be calculated for other desired locations on the assembly 100. Movement to these other positions can be easily achieved by further moving the inner string 110 the calculated distances to the other locations of the assembly 100.
The locating device 160 works regardless of the amount of pipe and drag in the inner string 110 when manipulated in the assembly 100. Therefore, at any time during operations, this known location of the device 160 can be found by movement of the string 110 and slow pumping until indication is observed so calculations to other locations can be determined.
Movement of the inner string 110 in the assembly 100 of
The foregoing description of preferred and other embodiments is not intended to limit or restrict the scope or applicability of the inventive concepts conceived of by the Applicants. It will be appreciated with the benefit of the present disclosure that features described above in accordance with any embodiment or aspect of the disclosed subject matter can be utilized, either alone or in combination, with any other described feature, in any other embodiment or aspect of the disclosed subject matter.
In exchange for disclosing the inventive concepts contained herein, the Applicants desire all patent rights afforded by the appended claims. Therefore, it is intended that the appended claims include all modifications and alterations to the full extent that they come within the scope of the following claims or the equivalents thereof.
This is a continuation-in-part of U.S. application Ser. No. 12/913,981, filed 28 Oct. 2010, which is incorporated herein by reference in its entirety and to which priority is claimed. This application is filed concurrently with U.S. patent application Ser. No. 13/345,418 and entitled “One Trip Toe-to-Heel Gravel Pack and Liner Cementing Assembly,” U.S. patent application Ser. No. 13/345,476 and entitled “Gravel Pack Inner String Adjustment Device,” and U.S. patent application Ser. No. 13/345,500 and entitled “Gravel Pack Bypass Assembly,” which are also incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3134439 | Shields | May 1964 | A |
4105069 | Baker | Aug 1978 | A |
4440218 | Farley | Apr 1984 | A |
4474239 | Colomb et al. | Oct 1984 | A |
5269375 | Schroeder, Jr. | Dec 1993 | A |
5934376 | Nguyen et al. | Aug 1999 | A |
6003600 | Nguyen et al. | Dec 1999 | A |
6176307 | Danos et al. | Jan 2001 | B1 |
6230801 | Hill et al. | May 2001 | B1 |
6253851 | Schroeder, Jr. et al. | Jul 2001 | B1 |
6371210 | Bode et al. | Apr 2002 | B1 |
6446722 | Nguyen et al. | Sep 2002 | B2 |
6588507 | Dusterhoft et al. | Jul 2003 | B2 |
6601646 | Streich et al. | Aug 2003 | B2 |
6675891 | Hailey, Jr. et al. | Jan 2004 | B2 |
6749023 | Nguyen et al. | Jun 2004 | B2 |
6857476 | Richards | Feb 2005 | B2 |
6983795 | Zuklic et al. | Jan 2006 | B2 |
7017664 | Walker et al. | Mar 2006 | B2 |
7284606 | Coronado | Oct 2007 | B2 |
7331388 | Vilela et al. | Feb 2008 | B2 |
7367395 | Vidrine et al. | May 2008 | B2 |
7373979 | Coronado et al. | May 2008 | B2 |
7472750 | Walker et al. | Jan 2009 | B2 |
7543641 | Contant | Jun 2009 | B2 |
8528641 | Clem et al. | Sep 2013 | B2 |
8770290 | van Petegem et al. | Jul 2014 | B2 |
20030000702 | Streich | Jan 2003 | A1 |
20030037925 | Walker et al. | Feb 2003 | A1 |
20040134656 | Richards | Jul 2004 | A1 |
20040211559 | Nguyen et al. | Oct 2004 | A1 |
20050103495 | Corbett | May 2005 | A1 |
20050139355 | Corodado | Jun 2005 | A1 |
20060060352 | Vidrine et al. | Mar 2006 | A1 |
20060225878 | Coronado | Oct 2006 | A1 |
20070187095 | Walker et al. | Aug 2007 | A1 |
20070227731 | Contant | Oct 2007 | A1 |
20080099194 | Clem | May 2008 | A1 |
20090095471 | Guignard et al. | Apr 2009 | A1 |
20090133875 | Tibbles et al. | May 2009 | A1 |
20100096130 | Parlar et al. | Apr 2010 | A1 |
20100263864 | Chay et al. | Oct 2010 | A1 |
20110048705 | Clem | Mar 2011 | A1 |
20120103603 | Broussard et al. | May 2012 | A1 |
20130000899 | Broussard et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2387401 | Oct 2003 | GB |
2374431 | Aug 2008 | RU |
1191563 | Nov 1985 | SU |
2005049954 | Jun 2005 | WO |
2007126496 | Nov 2007 | WO |
Entry |
---|
First Office Action in counterpart Russian Appl. No. 2011143515, dated Nov. 26, 2012. |
Search Report and Written Opinion in counterpart PCT Appl. PCT/US2013/020249, dated Jan. 22, 2014. |
Decision on Grant in counterpart Russian Appl. No. 2011143515, dated Mar. 7, 2013. |
First Office Action received in counterpart Canadian Appl. No. 2,755,623, dated Jun. 14, 2013. |
First Office Action received in counterpart Australian Appl. No. 2011236063, dated May 21, 2013. |
First Office Action received in counterpart U.S. Appl. No. 12/913,981, dated May 6, 2013. |
Response to First Office Action received in counterpart U.S. Appl. No. 12/913,981, dated May 6, 2013. |
Extended Search Report received in counterpart European Appl. No. 12184724.8, dated Jan. 9, 2013. |
Schlumberger, “Alternate Path Screens,” obtained from www.slb.com/oilfield, dated Jan. 2004, 4 pages. |
Schlumberger, “FloRite—Inflow control device,” obtained from www.slb.com/transcend, (c) 2009, 2 pages. |
Halliburton, “Sand Control: Horizon Low Density, Lightweight Gravel,” obtained from www.halliburton.com, (c) 2006, 2 pages. |
Edment, Brian, et al., “Improvements in Horizontal Gravel Packing,” Oilfield Review, Spring 2005, pp. 50-60. |
Synopsis of SPE 38640 by Jones, L.G., et al., “Shunts Help Gravel Pack Horizontal Wellbores with Leakoff Problems,” Journal of Petroleum Technology, Mar. 1998, pp. 68-69. |
Coronado, Martin, et al., “Completing extended-reach, open-hole, horizontal well,” obtained from http://www.offshore-mag.com/index/article-tools-template, generated on May 12, 2010, 5 pages. |
Schlumberger, “ResFlow Inflow Control Devices and MudSolv Filtercake Removal Equalize Inflow and Restart Wells,” obtained from www.slb.com/sandcontrol, (c) 2010, 2 pages. |
Jensen, Rene, et al., “World's First Reverse-Port Uphill Openhole Gravel Pack with Swellable Packers,” SPE 122765, 15 pages. |
Weatherford, “Model 4P Retrievable Seal-Bore Packer Gravel-Pack System,” obtained from www.weatherford.com, (c) 2005-2009, 2 pages. |
Brannon, D.H., et al., “A Single-Trip, Dual-Zone Gravel Pack System Successfully Gravel Packs Green Canyon Area Wells, Gulf of Mexico,” SPE 21670, (c) 1991, 7 pages. |
Weatherford, “Hydraulic-Release Hookup Nipple Circulating Gravel-Pack System,” obtained from www.weatherford.com, (c) 2005, 2 pages. |
Weatherford, “Conventional Well Screens,” obtained from www.weatherford.com, (c) 2004-2009, 16 pages. |
Weatherford, “Model WFX Setting Tools,” obtained from www.weatherford.com, (c) 2007-2008, 2 pages. |
Weatherford, “Model WFX Crossover Tool,” obtained from www.weatherford.com, (c) 2007-2008, 2 pages. |
Weatherford, “Real Results: Completion Package Eliminates Sand Production, Enhances Reliability in Siberian Oil-Production Well,” obtained from www.weatherford.com, (c) 2009, 1 page. |
Number | Date | Country | |
---|---|---|---|
20120103603 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12913981 | Oct 2010 | US |
Child | 13345544 | US |