The present technology relates to devices for scarifying and levelling gravel roadways, parking lots, and the like. More specifically, the present technology relates to a gravel scarifying and leveling device with an integrated roller device and methods of use thereof.
Gravel roads, gravel shoulders, gravel parking lots, all exemplify the use of gravel in economically facilitating both vehicular and pedestrian traffic over defined areas and routes. For various reasons, the use of gravel in these applications can be very much more attractive than the alternatives afforded by asphalt and concrete paving.
The use of gravel, however, is not without its own complications. Uneven compaction over the travelled surface can lead to the formation of wheel ruts, while turning, accelerating or decelerating traffic can lead to local phenomenon such as potholes and corrugations; and, the aggregate material will itself tend to undergo a sorting, by particle size, attributable to differential compaction effects, the results of all of which are less than attractive. In some cases, these effects represent safety hazards.
One solution to the degradation of such gravel emplacements has been to simply add additional gravel over the surface, as needed. Interestingly, there is only a limited consolidation between the added material and the underlying surface, which tends to leave the upper, relatively unconsolidated material in an easily disturbed layer from which aggregate material tends to be rapidly displaced. Moreover, commercial sources of aggregate depend of naturally occurring gravel deposits, and like most natural resources, their numbers are becoming depleted. Although the existence of many more marginal deposits stave off any likelihood of critical shortages of supply, the costs of harvesting a more marginal deposit is inherently higher, and this is reflected in higher gravel costs.
As a consequence, the historical practice most often adopted to remediate gravel roads, parking lots and the like, have entailed the use of large, powerful road graders, equipped with scarifiers. A grader is, by definition, a machine with a centrally located blade that can be angled to either side. Typically, graders have a reinforced tubular or box-beam “Y” frame supporting the engine at the rear of the vehicle, between the arms of the “Y.” Drive wheels, usually arranged in tandem, are positioned below the engine and transmission, while steering wheels are arranged on an axel system at the point of the “Y” frame. The major attachments for the grader are secured in downwardly hung relation from the overhead portions of the frame, and are pulled by a drawbar reaching back from the front of the frame. These attachments include the blade and the scarifier.
More specifically, the blade is arranged on a toothed ring gear called the “circle,” on which the attachments can be rotated. An arm-type attachment between the “circle” and the frame allow the circle to be controllably lifted, lowered, offset to either side, or even to be placed into a vertical configuration. The scarifier is typically position in front of the blade, and is carried on a pair of arms that reach back from the front end of the graders frame. The scarifier can be raised and lowered to regulate the depth of penetration, relative to the bottom of the graders tires. The number of teeth used on the scarifier is dependent on the hardness of the surface being worked.
Attempts at smaller scale scarifiers have been unsuccessful from a performance point of view, and have not enjoyed commercial acceptance. One such attempt took the form of a towed “box scarifier.” This consisted of a scarifier and a plough blade arranged at opposed ends of a frame which a had a box shaped plan. The device was dragged along by a vehicle with the intention that the scarifier would turn up the underlying aggregate and the plough blade would evenly redistribute it. Unfortunately the device was neither heavy enough to scarify properly, nor did it afford the control necessary to evenly redistribute even such material as was dislodged by the scarifier teeth. The problem is similar to that encountered with very early attempts to use towed road construction rippers, the use of which has now apparently been abandoned. Towed rippers too, proved to be unsatisfactory due to poor penetration. If sufficient weight was added to the towed ripper to insure effective penetration, the ripper became too heavy for any but the largest of commercial tractor vehicles. These towed rippers were also rather unwieldy, and hard to maneuver. Lastly, such rippers were not grading devices, and are simply a battery of teeth mounted on a wheeled vehicle.
Towed graders were also known. These were produced in an attempt to deal with a number of grader-related problems, but are now considered outmoded. Their use required two skilled operators, which was an offset to the presumed advantage of reduced capital and maintenance costs. They were in any case, found to be hard to maneuver even relative to motorized graders, and were never known to be used in scarifying operations. There is the further problem that the tow vehicle tends to compact the material that the towed grader was intended to redistribute in a level manner.
Accordingly, the only known commercially viable practice continues to rely on the use of motorized graders. Graders provide sufficient weight and power to force the scarifier teeth into the ground and drag it along, together with the control necessary to position a grader blade for proper redistribution of the dislodged materials.
The problems that are and have always been immediately apparent in connection with the use of graders for this purpose continue to be a problem, however. These include a requirement for a highly skilled operator. Moreover, graders are not highly maneuverable, a problem which is a function of the very size and weight heretofore thought necessary to achieve scarifying/grading operations. Moreover, the economics of grader operation are very sensitive. For example, straight line grading patterns that cover less than 1000 linear feet, are economically inefficient because of the operating/time costs associated with turning the grader around. Even were the economics otherwise, the large size of graders make them difficult or even impossible to maneuver in the manner necessary to service the close quarters that characterize many gravel emplacements. The travelling costs of grader equipment are very high, and some jobs are often not done at all particularly if they are in geographically isolated areas. Graders also cannot access corners because of the positioning of the blade.
Scarifiers have been developed that are compatible with other devices, such as rollers. However, prior scarifiers connect the roller to a single central point on the frame with limited ability to manipulate the roller device when attached. Such devices suffer from a lack of control over the attached devices.
Referring to
The scarifier device 10 advantageously provides an improved scarifier for scarifying and levelling gravel roadways, parking lots, and the like, that incorporates the integrated roller device 12 that can be manipulated by articulation to provide a number of advantages as discussed herein. For example, the scarifier device 10 can be used to scarify and/or level any granular surfaces such as gravel, crushed coral and sea shells, flint, sandstone, granite, shale, or limestone, although the scarifier device 10 could be used on other granular surfaces. The scarifier device 10 provides improved efficiency and an improved finished product during scarifying and/or levelling operations. Specifically, the user can control the position of the integrated roller device 12 to improve scarifying and leveling functions as described herein.
In this example, the scarifier 12 includes a support frame 18, bracket member 20, teeth 22, hydraulic arms 24, and a blade 25 although the scarifier 12 can include other types and/or other numbers of elements in other combinations. The scarifier 12 is configured for scarifying and levelling gravel roadways, parking lots, and the like, by way of example only. In one example, the scarifier 12 is similar in structure and operation to the scarifier disclosed in U.S. Pat. No. 5,265,975, the disclosure of which is incorporated herein by reference, except as discussed below.
In particular, as discussed in detail below, the scarifier 12 is advantageously configured as part of the scarifier device 10 that includes the fully integrated roller device 14 to allow for manipulation of the roller device 14 in an articulated manner to provide improved functionality of the scarifier 12. Further, although the scarifier 12 is shown in cross-section, it is to be understood for the purposes of the disclosure that symmetrical aspects may described in the plural form although only one of the elements is illustrated.
The support frame 18 in this example includes lower horizontal support frame portions 26, vertical support frame portions 28, and upper horizontal support frame portions (not shown). The terms horizontal, vertical, upper, and lower are utilized with respect to the standard orientation of the elements during operation of the scarifier device 10 and are not intended to be limiting. The support frame 18 is configured to be coupled to the integrated roller device 14 as described in further detail below. The vertical support frame portions 28 include vertically extending channels (as shown in cross-section) that allow for linear movement of the bracket portion 20 within the channels of vertical support frame portions 28 using hydraulic arms 24.
The bracket portion 20 holds the plurality of teeth 22 (although a single tooth is shown in
As illustrated in
The teeth 22 include the shank 31 and tips 32 that are utilized in the scarifying and leveling operations as described herein.
Referring again to
The blade 25 is secured to the support frame 18 of the scarifier 12 through a second frame 34 that is rigidly co-joined to the support frame 18. The blade 25 includes a trailing shoe 36 that can be usefully employed in free floating the blade during levelling operations, as will be apparent to persons skilled in the art in light of the present invention. In this frame arrangement, the scarifier 12 and the blade 25 are co-operable in a mutually dependent relation.
The roller device 14 includes a roller support frame 38, roller 40, and vibration device 42, although the roller device 14 can include other types and/or other numbers of elements in other combinations. The roller support frame 38 is configured to be coupled to the support frame 18 of the scarifier 12 as discussed in further detail below. The roller support frame 38 also supports the roller 40. The roller 40 may be any roller known in the art for levelling operations and is coupled to the roller support frame by an axle 43. In one example, the roller 40 provides a 12 inch drum, although other size rollers may be employed.
In one example, as illustrated in
The scarifier 12 is coupled to the roller device 14 at a pivot 44. The pivot 44 allows for articulation of the roller device 14 between the fully extended position as shown in
In this example, the hitch device 16 provides a three-point hitch connection for the scarifier device 10. The hitch device 16 is pivotally coupled to the vertical frame portion 28 through oversize holes configured to receive an undersized connection pin to allow for lateral displacement of the teeth 22 during operation. The hitch device 16 includes hydraulic cylinders 46a-46c that allow for operation various operations of the hitch device 16. The hitch device 16 allows for the scarifier device 10 to be coupled to a tractor, by way of example only.
In one example, the hitch device 16 also includes arm 17, which is shown in detail in
As a result, in operation, extension of the hydraulic cylinder 80 causes the barrel of the hydraulic cylinder 80 to move toward the rear of the tractor to which the scarifier device 10 is attached to by hitch device 16, by way of example. As the barrel of the hydraulic cylinder 80 moves rearward, the lugs 82 attached to the hydraulic cylinder 80 actuate the toggle 84, which releases the lock 86 on the extension arm. When the barrel of the hydraulic cylinder 80 reaches the end of its stroke in the slot 88, the piston rod 90 moves away from the rear of the tractor and angles the scarifier device 10, which may be employed in any of the operations described herein. The hydraulic cylinder 80 may then be moved in the opposite direction to reverse the process.
Referring now more specifically to
Referring more specifically to
The locking force is generated by hydraulic pressure, the use of leverage, and the weight of the roller device 14. In one example, the locking force is sufficient to securely hold the roller device 14 in position during use of the vibration device 42, which may be a 3500 psi vibro unit. The face of the cam lock 48 is convex and protrudes at the point 68 where it contacts the pin 62. This feature, along with the 8 degree offset of the pivot hole 70 allows for part wear and will ensure the tightness of the cam lock 48 as it wears over time.
In one example, the scarifier 12 is sized and configured to allow the cam lock 48 to hold the roller device 14 securely in place. In one example, in the retracted position shown in
Exemplary operations of the scarifier device 10 will now be described. The scarifier device 10 can be put into the fully deployed position, as a shown in
Further, in the deployed position the vibration mechanism 42 can be utilized to further enhance compaction as the vibration mechanism 42 provides vibrations that provide particle dispersion and settlement. Accordingly, the use of the vibration mechanism 42 provides for better surface performance and longevity for the surface worked upon by the roller device 14.
The user can operate the integrated roller device 14, through the hydraulic arm 15, to move the roller device 14 to various positions between the fully deployed position shown in
Next, the user can manipulate the roller device 14 using the hydraulic arm 15 to the fully retracted position as shown in
In the fully retracted position, the vibration force during use of the vibration mechanism 42 is directed to the teeth 22 through the cam lock 48. Additionally, as shown in
Accordingly, as illustrated and described by way of the examples herein, this technology provides an improved scarifier for scarifying and levelling gravel roadways, parking lots, and the like, that incorporates an integrated roller device that can be manipulated by articulation to provide greater efficiency and improved scarifying and/or levelling operations.
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
This application claims benefit of U.S. Provisional Patent Application No. 62/986,982, filed Mar. 9, 2020, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3274713 | Jones | Sep 1966 | A |
3448814 | Bentley | Jun 1969 | A |
3470964 | West | Oct 1969 | A |
3998276 | MacMillan | Dec 1976 | A |
4217962 | Schaefer | Aug 1980 | A |
5265975 | Scott | Nov 1993 | A |
5407014 | Tranmer | Apr 1995 | A |
5511625 | Mork | Apr 1996 | A |
5833011 | Boertlein | Nov 1998 | A |
20080069639 | James | Mar 2008 | A1 |
20110284253 | Stevenson | Nov 2011 | A1 |
20170037583 | Gillespie | Feb 2017 | A1 |
20180127948 | Villalba Hernández | May 2018 | A1 |
Number | Date | Country |
---|---|---|
182660 | Aug 2018 | RU |
Number | Date | Country | |
---|---|---|---|
20210277612 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62986982 | Mar 2020 | US |