Gravimetric blender with power hopper cover

Information

  • Patent Grant
  • 10166699
  • Patent Number
    10,166,699
  • Date Filed
    Tuesday, March 24, 2015
    9 years ago
  • Date Issued
    Tuesday, January 1, 2019
    6 years ago
Abstract
A gravimetric blender has a frame, at least one material storage hopper at the top of the frame including a hopper cover, a weigh bin located within the frame, below the hopper, for receipt of material from the hopper to be weighed and being adapted for downward discharge of the material in the bio bin after the material received from the hopper has been weighed, at least one load cell connecting the weigh bin to the frame for sensing the weight of contents of the weigh bin, a mixer within the frame below the hopper, for mixing material weighed in the weigh bin after that material falls downwardly from the weigh bin to the mixer, and a guide adapted for vertical movement of the hopper cover therealong between positions which the cover contacts and thereby closes the hopper and at which the cover is spaced vertically above the hopper so that the hopper is open at the top.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


This invention relates generally to machines for processing plastic resin material prior to molding or extrusion, and specifically relates to gravimetric blenders. Gravimetric blenders are disclosed in U.S. Pat. Nos. 6,007,236; 6,188,936; 6,402,363; 6,467,943 and D424,587, the disclosures of all of which are incorporated herein by reference.


Description of the Prior Art


Many if not most gravimetric blenders operate with vacuum powered or other loaders that downwardly feed plastic resin material into one or more of the hoppers of the gravimetric blender, where the loaders typically are positioned on the top of the associated hoppers of the gravimetric blender. Vacuum loaders are disclosed in U.S. Pat. Nos. 6,089,794 and 7,066,689, the disclosures of both of which are incorporated herein by reference.


Older gravimetric blenders and many newer larger gravimetric blenders do not have removable hoppers; some small modern gravimetric blenders have removable hoppers. But even if removable, the hoppers cannot be removed if a vacuum loader is on top of the hopper, since the vacuum loader weighs a substantial amount, especially when filled with granular resin material.


Maguire Products, Inc. offers small capacity gravimetric blenders having removable hoppers. These small blenders with their necessarily smaller hoppers that are removable from the blender facilitate easy cleanout of the hopper by allowing removal of the hopper from the blender. A small gravimetric blender with a removable hopper is disclosed in U.S. Pat. No. 6,467,943.


If a gravimetric blender hopper has one or more loaders mounted on the hopper lid and the hopper is removable from the blender, presence of the loader(s) on the hopper lid limits, and in some cases may even eliminate, a worker's ability to remove the hopper from the gravimetric blender. A loader typically has a resin material feed line connected to it and is heavy. Vacuum loaders may weigh from 30 to 50 pounds each, making it awkward and sometimes dangerous for a worker to remove a loader from its position on the gravimetric blender hopper lid.


Moreover, the blender hopper top and hence the loader(s) are typically positioned high above the work floor, well beyond a worker's reach without using a ladder or a movable platform. This typical positioning of equipment in a plastic resin processing, molding or extrusion facility, cries for an easy way to move the loader(s) away from the hopper(s), in order to allow removal of the hopper(s) from the blender for cleaning and maintenance, without first having to remove the loader(s) from the hopper(s), by lifting the loader(s) off the hopper lid.


A previous approach to this problem has been to place a loader on a mount pivotally supported by a post, so that the loader can be swiveled out of the way by pivoting the mount around the post. Sometimes the post and mount are built with a cam or other apparatus so that a slight lift of the mount occurs on initial pivoting, to allow clearance for the loader when rotating sideways on the mount, out of the way of the hopper lid. The support post must be very substantial. The support post must additionally be fixed to a very substantial part of the gravimetric blender frame or fixed to the injection molding press or extruder to which the gravimetric blender is mounted, or even fixed to the facility floor, in order to support the loader.


SUMMARY OF THE INVENTION

This invention provides a new approach to the on-going problem in the prior art, as described immediately above. This invention raises the cover or lid (the two terms are synonymous as used herein) on the hopper(s) of the gravimetric blender, raising the cover high enough to allow removal of the hoppers underneath the lid. The invention maintains all loaders, vacuum powered and otherwise, as well as all weight associated with the loaders, mounted on the hopper cover, centered over the blender. The invention does not rotate the loaders to one side. The invention provides a simple, more stable, lower cost, safer means for dealing with the problem of heavy loaders resting on lids of gravimetric blender hoppers, whether or not the hoppers are removable from the associated gravimetric blender.


The invention controls the height to which the blender lid is raised by selection of the stroke length of pneumatically powered piston-cylinder combinations that raise the lid from the hoppers. Weight lifting capacity according to the invention is desirably set by the diameter of the cylinders of the piston-cylinder combinations. An air switch is desirably used to actuate the cylinders and thereby raise and lower the hopper lid. Any unbalanced load is handled by a center telescoping rod, which serves a part of a guide, keeping the hopper lid flat and in a horizontal position, regardless of any offset of the weight of loaders or any imbalance of the pneumatic pressures actuating the piston-cylinder combinations.


The rod desirably extends downwardly from the center of the lid, desirably into a fixed vertical tube. At one end the rod is preferably very rigidly attached to the hopper lid. The rod telescopes upwardly out of the tube, remaining vertical, thereby assuring that the lid remains horizontal, when the lid is lifted from the hoppers by actuation of the pneumatically powered piston-cylinder combinations.


Accordingly, in one its aspects this invention provides a gravimetric blender having a frame, at least one resin material storage hopper at the top of the frame including a hopper cover, a weigh bin preferably located within the frame, positioned below the hopper and adapted for downward discharge of bin contents after the contents have been weighed, at least one load cell connecting the frame and the weigh bin for sensing weight of the contents of the weigh bin, a mixer below the weigh bin for mixing contents of the weigh bin after the weighed contents fall downward from the weigh bin to the mixer, and a guide adapted for vertical movement of the cover for the hopper(s) therealong between a position at which the cover contacts and thereby closes the hopper(s) and a position at which the cover is spaced vertically above the hopper(s), whereby the hopper top(s) are open. The invention further preferably includes means for moving the hopper cover along the guide.


The invention still further preferably includes at least one piston-cylinder combination with one of the piston and the cylinder being connected to the blender frame or some other suitable part of the blender, and the other of the piston and the cylinder being connected to the cover, with the combination serving to move the hopper cover vertically along the guide.


In another aspect of the invention, the invention may further include a pair of piston-cylinder combinations, each of the combinations having either the piston or the cylinder connected to the blender frame or to some other suitable part of blender, and the other of the piston and the cylinder connected to the cover, for moving the hopper cover vertically along the guide, wherein the piston cylinder combinations are on either side of the guide.


The guide is preferably located along a vertical central axis of the frame.


The invention may further include a connector in the nature of an elongated sleeve desirably connected to the cover and positioned between the cover and the guide, for ensuring maintenance of the cover in a horizontal position as the cover moves vertically along the guide.


In yet another of its aspects this invention provides a method for removing a gravimetric blender hopper, having a cover vertically supporting a vacuum loader or other equipment for feeding resin material into the hopper, from the blender, for cleaning, material changeover and the like, where the method includes advancing the hopper cover upwardly from the hopper along a vertical guide by application of pneumatic pressure to a piston-cylinder combination, with one of the piston and cylinder connecting with the cover and the other of the piston and cylinder connecting with the blender frame, to a position in which the cover is sufficiently remote from the hopper that a worker can access the coverless hopper and disconnect the hopper from the blender frame, while maintaining the hopper cover in a horizontal orientation to continue supporting the vacuum loader or other equipment for feeding resin material into the hopper. The method in this aspect yet further includes advancing the hopper while applying pneumatic pressure to a pair of piston-cylinder combinations, one each of the piston and cylinder of the combinations connecting to the cover and the other of the piston and the cylinder of the combination connecting to the blender frame. In this aspect of the method, advancement of the hopper cover further includes moving the hopper cover slidably along a vertical guide.


In still yet another aspect of the invention, there is provided a method for removing a gravimetric blender hopper, having a cover vertically supporting a vacuum loader or other equipment for feeding resin material into the hopper, from the blender for cleaning, material changeover and the like, where the method includes advancing the hopper cover upwardly from the hopper slidably along a vertical guide to a position at which the cover is sufficiently remote from the hopper that a worker can access the coverless hopper and disconnect the hopper from the blender frame, where the method further includes maintaining the hopper cover in a horizontal orientation to continue support of the vacuum loader or other equipment for feeding resin material into the hopper. In this aspect of the invention, the advancing may be performed pneumatically.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front view of a gravimetric blender with a power hopper cover in accordance with the preferred embodiment of the invention, with the hopper cover shown in a down position, with the hoppers resultantly closed.



FIG. 2 is a front view, taken similarly to FIG. 1, of a gravimetric blender with a power hopper cover in accordance with the preferred embodiment of the invention, with the hopper cover shown in a raised position, with the hoppers resultantly open.



FIG. 3 is a front view of a gravimetric blender having a power hopper cover in accordance with the invention, with the view taken similarly to FIGS. 1 and 2, with resin loading apparatus depicted in place on the hopper cover, with the hopper cover shown in a down position, with the hoppers resultantly closed.



FIG. 4 is a front view of a gravimetric blender having a power hopper cover in accordance with the invention, with the view taken similarly to FIGS. 1, 2 and 3, with resin loading apparatus depicted in place on the hopper cover, with the hopper cover shown in a raised position, with the hoppers resultantly open.



FIG. 5 is an isometric view of a gravimetric blender with a power hopper cover in accordance with the invention, with resin loading apparatus depicted in place on the hopper cover, with the hopper cover shown in a raised position and with the hoppers resultantly open, illustrating a worker having removed a hopper from the gravimetric blender for material refill, changeover or maintenance purposes.



FIG. 6 is an enlarged broken isometric view of the upper portion of a gravimetric blender having a power hopper cover in accordance with the invention, with the hopper cover shown in a raised position with the hoppers resultantly open, where the view has been taken at a position similar to FIG. 5 but closer to the blender, so as to show more detail.





DESCRIPTION OF THE PREFERRED EMBODIMENTS AND BEST MODE KNOWN FOR PRACTICE OF THE INVENTION

Referring to drawings in general and to FIGS. 1 and 2 in particular, a gravimetric blender is designated generally 10 and includes a hopper assembly 11 having a plurality of hoppers, which are individually designated generally 12. The hoppers 12, each of which is preferably individually manually removable from blender 10 without use of tools, are supported by a frame designated generally 14.


In a typical gravimetric blender such as that illustrated, frame 14 supports, directly or indirectly, a weigh bin 15 into which portions of solid granular plastic resin material or other granular or powdery material can be metered and then weighed prior to release into a mix chamber. The mix chamber is preferably positioned immediately below the weigh bin to receive the weigh bin contents when the weigh bin is dumped, opened or otherwise manipulated so as to drop the material that has been weighed into the mix chamber. The mix chamber is designated generally 20 in the drawings. A rotatable agitator on a shaft provides the mixing mechanism, which agitator is configured much like a beater in a home food mixer and which is desirably positioned within mix chamber 20 for rotation therein to blend the contents of weigh bin 15 as received by mix chamber 20.


Frame 14 may include four upstanding side panel members. In one preferable construction frame 14 is steel and is formed from a single sheet, bent to form three sides, as disclosed in U.S. Pat. No. 6,467,943. Alternatively, the blender frame may be constructed using steel angle members positioned at each of four corners to define the frame.


Hopper assembly 11, with the desirable plurality of hoppers 12, allows a plurality of different solid resinous materials to be dispensed from the individual hoppers 12 into weigh bin 15 by suitable valve mechanisms, which are desirably located within and proximate to the bottom of a given hopper 12. The hoppers 12 are preferably individually manually mountable on and removable from frame 14 of gravimetric blender 10.


Preferably located close to the top or upper extremity of frame 14 are outwardly flared guide flaps 34, with one guide flap on each of the four sides of the frame. In the hopper configuration illustrated in U.S. Pat. No. 6,467,943, where the frame 14 is fabricated from a single sheet bent to form three sides, three outwardly flared guide flaps 34 result. In that construction, outwardly flared guide flaps 34 are integral with and formed as a part of the solid side panels by bending the upward extremities of the solid side panels substantially into the shape illustrated in FIG. 1. In that construction a fourth outwardly flared guide flap is positioned above a fourth panel, which is a transparent removable front panel, with the fourth outwardly flared guide flap being welded to the upward extremities of two solid side panels forming a part of frame 14.


Gravimetric blender 10 further includes preferably at least one load cell used to determine the weight of the contents of weigh bin 15, and which desirably connects weigh bin 15 to frame 14. The load cell illustrated in FIG. 1 is typical and designated 32.


A pneumatically actuated piston-cylinder combination 132 may be used to move a desirably pivotable bottom portion of weigh bin 15, thereby to cause the contents of weigh bin 15 to drop therefrom into mix chamber 20.


Still referring principally to FIG. 1, gravimetric blender 10 includes a hopper cover 38 positioned above hopper assembly 11 and movable vertically in a manner so as to close the hoppers 12 of hopper assembly 11 when hopper cover 38 is in a lower position, and to open and thereby permit access to individual hoppers 12 of hopper assembly 11 when hopper cover 38 is in a raised position, remote from hoppers 12 of hopper assembly 11. In FIG. 1 gravimetric blender 10 is illustrated with hopper cover 38 in position on the top of and contacting hoppers 12, thereby covering the hoppers 12 of hopper assembly 11 and precluding access to the interior of hoppers 12 and further essentially precluding removal of hoppers 12 so long as hopper cover 38 is in the position illustrated in FIG. 1.


In FIG. 2 gravimetric blender 10 is illustrated with hopper cover 38 raised from the position illustrated in FIG. 1, with hopper cover 38 no longer covering hoppers 12 of hopper assembly 11, thereby permitting access to individual hoppers 12 from the top thereof and permitting easy removal of individual hoppers 12 from gravimetric blender 10.


Hopper cover 38 is moved vertically by action of at least one and desirably a pair of piston cylinder combinations designated generally 46 in FIGS. 1 and 2. Only one piston-cylinder combination of the pair is visible in FIGS. 1 and 2 since the pair of piston-cylinder combinations 46 are aligned with and positioned on either side of a vertical guide for hopper cover 38, where the vertical guide is designated 40 and is shown in FIGS. 5 and 6. The second piston-cylinder combination 46 is immediately behind and therefore hidden by the first piston-cylinder combination 46 visible in FIGS. 1 through 4.


Load cell 32, weigh bin 15 and pneumatic piston-cylinder combination 132, shown in FIG. 1, are not illustrated in FIGS. 2 through 4 to enhance drawing clarity.


As further shown in FIGS. 1 and 2, hoppers 11 may have inspection ports formed therein. Additionally, guide flaps 34 may also be apertured so as to provide access to the inspection ports. The inspection ports in FIGS. 1 and 2 have been numbered 134. Inspection ports 134 are typically sight glasses installed in the hopper walls with suitable gasketing surrounding the sight glasses. Only some of the inspection ports 134 have been numbered in FIGS. 1 and 2 in order to enhance drawing clarity.


As apparent in comparing FIG. 1 and FIG. 2, when piston-cylinder combinations 46 are unactuated, with piston rods 52 of piston-cylinder combinations 46 within the cylinders 50 of piston-cylinder combinations 46, as illustrated in FIG. 1 where piston rod 52 substantially cannot be seen due to being within cylinder 50 of piston-cylinder combination 46, the hopper cover 38 is in a lower position, where it may contact and close the open tops of hoppers 12 comprising hopper assembly 11. When piston-cylinder combinations 46 have been actuated and piston rods 52 have extended therefrom as illustrated in FIG. 2, this lifts hopper cover 38 from the hoppers 12, where the upper edges of the hopper walls have been designated 136 in FIG. 2. This lifting action is effectuated as a result of the cylinder portions 50 of piston-cylinder combinations 46 being fixedly connected by their nose mounts to hopper cover 38. The piston-cylinder combinations are upside down relative to conventional positioning and usage of such piston-cylinder combinations.


Referring to FIGS. 3 and 4, the gravimetric blender depicted in FIGS. 1 and 2 is shown again with the gravimetric blender in FIG. 3 being in essentially the same configuration as the gravimetric blender of FIG. 1, that is with the hopper cover 38 preferably contacting the upper extremities 136 of hoppers 12 thereby closing hoppers 12 and precluding access to the interior of hoppers 12 and also essentially precluding removal of hoppers 12 from gravimetric blender 10. FIG. 4 is similar to FIG. 2 in that it depicts hopper cover 38 raised from and no longer contacting upper extremities 136 of hoppers 12 so that an operator may have access to the interior of hoppers 12 and may remove one or more hoppers 12 from gravimetric blender 10. As noted above, in FIGS. 3 and 4, similarly to FIG. 2, weigh bin 15, piston-cylinder combination 132 which dumps weigh bin 15, and load cell 32 have not been illustrated to enhance drawing clarity.


In FIG. 3 a vacuum actuated resin loader of the type disclosed in U.S. Pat. Nos. 6,089,794 and 7,066,689 and which is available from Maguire Products, Inc. in Aston, Pa., is depicted mounted on the upper surface of hopper cover 38. Additionally, a generic material loader has also been depicted mounted on the upper surface of hopper cover 38, where the generic material loader is designated 36A.


Vacuum actuated resin loader 36 receives granular resin material through an inlet port designated generally 148 in the drawings, with granular resin material filling a receiver designated generally 104 in the drawings. Resin loader 36 provides granular resin to the particular hopper 12 located immediately below resin loader 36 upon opening of a suitable, preferably pneumatically powered, valve, typically in the form of a slide gate, which has been designated generally 198 in the drawings. The piston-cylinder combinations that are desirably pneumatically powered and which operate the slide gate valve 198 at the lower extremity of loader 36 are illustrated in FIG. 5 and designated generally 200.


Referring to FIG. 5, where a worker's hands are shown, with the worker having removed one of hoppers 12 from gravimetric blender 10, hopper cover 38 is illustrated in the raised position with two resin loaders 36 illustrated mounted on hopper cover 38 and a generic loader 36A is also illustrated mounted on hopper cover 38. In FIG. 5 it is apparent that the resin loader 36 illustrated closest to the viewer, is the loader for the hopper 12 that has been removed from gravimetric blender 10, and that the remaining resin loader 36, to the left in the drawing, is the resin loader servicing the hopper 12 remaining mounted on gravimetric blender 10, where this hopper 12 is on the left hand side of the drawing.



FIG. 5 further illustrates that there are two piston-cylinder combinations 46 used to raise and lower hopper cover 38. While only one piston-cylinder combination 46 is visible in FIG. 5, two piston rods 52, one for each of the piston-cylinder combinations 46, are illustrated. Additionally, located desirably at the center of hopper cover 38 and positioned essentially at the center and preferably running along a central vertical axis of blender 14, is a vertical guide, designated generally 40, for hopper cover 38 as hopper cover 38 goes up and down under the influence of pneumatic piston-cylinder combinations 46. Vertical guide 40 includes two parts, a tube 42 that is secured to frame 14 of gravimetric blender 10, and a rod 44 that telescopes slidably within tube 42 and is fixed to hopper cover 38. The sliding, telescoping arrangement of vertical guide 40, with tube 42 slidably receiving rod 44, is best seen in FIG. 6, which is drawn to a larger scale than FIG. 5.


Referring to FIGS. 5 and 6, two separation plates 58, only one of which is fully illustrated in FIGS. 5 and 6, extend in opposite directions away from the central vertical axis of blender 10, with each separation plate 58 forming a part of the structure for receiving a respective piston rod 52 associated with a respective piston-cylinder combination 46. Separation plate 58 illustrated in FIGS. 5 and 6 connects to a strap 60 which has an angled portion 62 and a vertical portion 64, as illustrated in FIG. 6. The connection of separation plates 58 to strap 60 may be by welding or via suitable screw-nut-angle combinations.


Separation plate 58 connects with and holds tube 42 of vertical guide 40 via conventional circular clamps 56, which wrap around the outside of tube 42 and tighten thereabout when clamps 56 are secured to separation plate 58 by suitable screw-nut combinations. The screw-nut combinations are not numbered to enhance drawing clarity. Three such circular clamps 56 are illustrated in FIG. 6.


With continued reference to FIG. 6, hopper cover 38 has a plurality of apertures, two of which are shown in FIG. 6 and designated generally 68, for flow downwardly of granular resin material from the resin loaders 36 mounted on the top of hopper cover 38, into individual hoppers 12. In FIG. 6 an aperture 68 is illustrated on the left-hand side, in position to facilitate downward flow and fill of the hopper 14, which has been removed from gravimetric blender 10 as illustrated in FIG. 5. A second aperture 68 is also illustrated in hopper cover 38, at a position to facilitate filling of hopper 12 appearing on the left-hand side of FIG. 6.


Typically, valves for permitting and halting downward flow of resin material from loader 36 are a part of a loader 36 and are actuated by pneumatic piston-cylinder combinations forming a part of loader 36; these piston-cylinder combinations have been designated 200 and are visible in FIG. 5. Bolts and nuts secure resin loaders 36 to the upper surface of hopper cover 38. The bolts extend through hopper cover 38 and are secured by suitable nuts; neither have been illustrated in FIG. 6 in order to enhance the clarity of the drawing.


Generally rectangular, hollow, somewhat elongated hopper support boxes 74 are preferably secured to each separation plate 58 by suitable nut-bolt combinations as illustrated in FIG. 6. Hopper support box 74 is elongated in a direction parallel with the associated separation plate 58, running transversely to vertical guide 40. Hopper support box 74 includes suitable apertures 70 formed as slots opening in the upwardly facing surface of hopper support box 74, which upwardly facing surface is not numbered in FIG. 6, and extending downwardly in a lateral surface of hopper support box 74, which also is not numbered in FIG. 6 but which facingly contacts a hopper 12 when a hopper 12 is in position. Hopper 12 desirably is equipped with bolts extending outwardly therefrom, as illustrated in FIG. 5, so that the bolt heads, or engaged nuts, may fit into and slide downwardly within the slots 70 in hopper support box 74. This provides added vertical support for hoppers 12 when in place within gravimetric blender 10 and lends rigidity to the entire assembly of separation plate 58, strap 60, vertical guide 40 and piston rods 52.


The extremities of piston rods 52 that are remote from driving pistons 48 resident within cylinders 50 of piston-cylinder combinations 46, are secured to separation plate 58 via rod receptacles 72 that retain the extremity ends of piston rods 52 and are preferably secured to separation plate 58 by suitable nut-bolt combinations. Accordingly, since separation plate 58 is connected to guide flap 34, which is a part of frame 14 of gravimetric blender 10, and since rod receptacle 72 is fixed to separation plate 58, actuation of piston-cylinder combinations 46 and resultant extension of piston rod 52 pushes hopper cover 38, and all of the structures, including the resin loaders, supported by hopper cover 38 upwardly as piston rods 52 extend from piston-cylinder combinations 46 through nut-bushing combinations 54.


As illustrated in FIG. 6, hopper cover 38 includes a downwardly extending lip 66 preferably extending around the entire periphery of hopper cover 38.


The height to which piston-cylinder combinations 46 raise hopper cover 38 from the upper edges 138 of hoppers 12 is controlled by the stroke length of piston-cylinder combinations 46. The weight lifting capacity is established by the inner diameter of cylinders 50 of piston-cylinder combinations 46.


An air switch is used to actuate the piston-cylinder combinations 46 and thereby raise hopper cover 38. Any imbalance in the load presented by hopper cover 38 and the resin loaders and other items which may be supported by hopper cover 38 is handled by the guide 40 consisting of rod 44 telescoping into tube 42. The presence of vertical guide 40 together with the two piston-cylinder combinations located on either side of guide 40, with guide 40 being in alignment with the piston rods 52 of piston-cylinder combinations 46, serves to keep hopper cover 38 flat and horizontal regardless of any offset in the load carried by hopper cover 38 and regardless of any imbalance in the supplied air pressure as between the two piston-cylinder combinations 46.


Rod 44 is rigidly attached to blender cover 38. Since rod 44 telescopes upwardly out of tube 42, that action together with the rigid connection of rod 44 and hopper cover 38, with rod 44 being oriented transversely to hopper cover 38, assures that hopper cover 38 remains horizontal. Furthermore, vertical guide 40 helps to handle any unbalanced load in the event one occurs and serves to keep blender cover 38 flat in the event of an offset in the pneumatic pressures applied to piston-cylinder combinations 46.


With the invention, unlike prior gravimetric blenders, the hopper cover is preferably not supported by the hoppers. Rather, the hopper cover is preferably supported by the piston rods 52 being mounted via rod receptacles 72 to separation plates 58 and hence to frame 14. In other words, hopper cover 38 goes up and down, and when down may contact the upper extremities 136 of hoppers 12, but hopper cover 38 preferably does not rest on hoppers 12 even when hopper cover 38 is in contact with hoppers 12.


With the two piston-cylinder combinations 46, one on either side of the vertical guide, the invention can be operated to lift the hopper cover 38 two inches, four inches, six inches or whatever height is required. All that need be done is to change out one set of piston-cylinder combinations and replace with a second set of different size, to provide any required different lift height. Not only does the power hopper cover 38, when at its extreme vertical upward position, provide clearance for hopper removal, this also provides easy cleaning of the bottoms of resin loaders 36.


Desirably, rod receptacles 72 receive a clevis connected to the end of piston rod 52, with rod receptacles 72 including a pin connection of the clevis to the separation plate 58, which is located between adjacent hoppers 12 and which becomes the support for the hopper cover and the loaders mounted on the hopper cover, as discussed generally above.


In FIG. 6, the structure, particularly the bolts and nuts securing resin loaders 36 to the upper surface of hopper cover 38, which securing structure would be visible looking at the lower or bottom surface of hopper cover 38, has not been shown in order to enhance drawing clarity.


Another factor making the resin loaders difficult to handle and sometimes dangerous to remove, is that the resin loaders usually have material lines connected to them. As a result, to remove a loader from the gravimetric blender, it might be necessary either to disconnect the material line, thereby requiring a worker to make provision for the material that will be spilled from that line, or to leave the line connected to the loader as the loader is lifted off the hopper cover. If the line remains connected, this makes the job of removing the loader even more difficult since the lifting is more awkward with the material line attached. Additionally, the loader would being even heavier and therefore more difficult to handle than usual.

Claims
  • 1. A gravimetric blender for receiving separate portions of individual granular resin materials, weighing the separate portions of individual granular resin materials according to a recipe, and mixing the weighed separate portions of individual granular resin materials into a homogenous granular resin material blend for subsequent molding or extrusion into finished plastic parts, comprising: a) a frame;b) at least one resin material storage hopper at the top of the frame and connected thereto, including a vertically movable hopper cover;c) a weigh bin connected to the frame and located below the hopper, adapted for downward discharge of bin contents after the contents have been weighed therein;d) at least one load cell connecting the frame and the weigh bin, for sensing weight of contents of the weigh bin;e) a mixer connected to the frame, below the hopper, for mixing contents of the weigh bin after those contents fall downwardly from the weigh bin to the mixer;f) a vertically oriented tubular member for guiding vertical movement of the hopper cover therealong between positions at which the cover contacts and thereby closes the hopper and at which the cover is spaced from and above the hopper so that the hopper is open; andg) a pair of horizontally spaced pneumatically powered piston-cylinder combinations positioned on either side of the guide and being connected to the frame and to the hopper cover with the cylinders of the piston-cylinder combinations being mounted on an upper surface of the hopper cover, for moving the hopper cover vertically up and down along the guide.
  • 2. A gravimetric blender for receiving separate individual granular resin materials, weighing and combining separate parts of the individual granular resin materials according to a recipe, and mixing the separate parts into a homogenous granular resin material blend for subsequent molding or extrusion into finished plastic parts, comprising: a) a frame;b) a plurality of resin material storage hoppers connected to the frame;c) a movable cover contactingly overlying the plurality of hoppers;d) a weigh bin located, below the hoppers, adapted for downward discharge of bin contents after the contents have been weighed therein;e) at least one load cell connecting the frame and the weigh bin, for sensing weight of contents of the weigh bin;f) a mixer connected to the frame, below the hopper, for mixing contents of the weigh bin after those contents fall downwardly from the weigh bin to the mixer; andg) piston-cylinder combination means for moving the hopper cover vertically relative to the frame towards and away from the hoppers, the cylinders of the piston-cylinder combination being mounted on the top of the hopper cover.
  • 3. The gravimetric blender of claim 2 wherein the hopper cover piston-cylinder combination moving means moves the cover between positions at which the cover contacts all of the hoppers and at which the cover is spaced above all of the hoppers.
  • 4. The gravimetric blender of claim 3 wherein the hopper cover moves vertically in response to the piston-cylinder combinations between positions at which the cover closes all of the hoppers and at which all of the hopper tops are open.
  • 5. The gravimetric blender of claim 2 wherein the piston-cylinder combination comprises a pair of piston-cylinder combinations, each connected to the frame and to the cover, for moving the hopper cover vertically, the piston-cylinder combinations being horizontally spaced from one another and at the same height.
  • 6. The gravimetric blender of claim 3 further comprising: a) a tubular member for guiding vertical movement of the hopper cover between positions at which the cover contacts and thereby closes the hoppers and at which the cover is spaced from the hoppers so that the hoppers are open, each one of the piston-cylinder combinations further comprising: i) a piston and a cylinder, each piston-cylinder combination having the piston connected to the frame and each piston-cylinder combination having the cylinder fixedly connected to the cover, for moving the hopper cover vertically back and forth along the guide, with the piston-cylinder combinations being on either side of the guide and the piston-cylinder combinations and the guide being horizontally aligned.
  • 7. A method for moving an upwardly and downwardly movable hopper cover of a gravimetric blender, the gravimetric blender receiving granular resin materials, weighing the granular resin materials according to a recipe, and mixing the weighed granular resin material into a homogenous blend, the cover being movable from a position at which the cover contacts and covers upwardly facing opening of the hopper to a position at which the cover is vertically spaced away from the hopper upwardly facing opening, for facilitating cleaning and material changeover within the hopper, the cover being adapted for supporting a vacuum loader for feeding resin material into the hopper, the method comprising: a) advancing the hopper cover upwardly from the hopper along a guide by application of pneumatic pressure to a piston-cylinder combination, the cylinder being affixed to the cover and the piston being connected to the blender frame, to a position at which the cover is sufficiently remote from the hopper that a worker can access the now coverless hopper and remove the hopper from the blender frame, while maintaining the hopper cover in orientation to facilitate continued support of a vacuum loader resting on the hopper cover for feeding resin material into the hopper.
  • 8. The method of claim 7 in which advancing the hopper cover further comprises advancing the hopper cover vertically by applying pneumatic pressure to a pair of piston-cylinder combinations, each piston-cylinder combination having the cylinder affixed to the top of the cover and the piston connected to the blender frame.
  • 9. In a method for removing a hopper from a gravimetric blender, the gravimetric blender receiving separate individual granular resin materials, weighing the separate individual granular resin materials according to a recipe, and mixing the weighed separate individual granular resin materials into a homogeneous blend, the gravimetric blender having a cover for vertically supporting a vacuum loader for feeding resin material into the hopper, the hopper being removed from the gravimetric blender for cleaning and material changeover, the improvement to the method comprising; a) advancing the hopper cover upwardly from the hopper slidably along a path defined by a telescoping guide to a position at which the cover is sufficiently remote from the hopper that a worker can access the coverless hopper and disconnect the hopper from the blender frame, whileb) pneumatically maintaining the hopper cover in a horizontal orientation while positioned remotely from the hopper to continue support of any vacuum loader resting thereon for feeding resin material into the hopper.
  • 10. The method of claim 9 wherein the defined path is vertical and the advancing is performed pneumatically.
  • 11. In a method for raising a hopper cover from a gravimetric blender, the hopper cover supporting equipment for feeding resin material into the hopper, for blender cleaning and material changeover, the gravimetric blender receiving separate individual granular resin materials, weighing separate portions of the individual granular resin materials according to a recipe, and mixing the weighed separate portions of the individual granular resin materials into a homogeneous blend, the improvement to the method comprising: a) advancing the hopper cover upwardly from the hopper along a predefined path defined by an upwardly oriented guide connected to the blender frame, to a position at which the cover is sufficiently remote from the hopper that blender cleaning and material changeover can be performed, while maintaining the hopper cover in a horizontal position to continue supporting the equipment for feeding resin material into the hopper; by applying pressure to piston-cylinder combinations, affixed to the cover and to the blender frame thereby moving the hopper cover upwardly along the guide path in response to pressure applied to the cylinder of the piston-cylinder combination.
  • 12. In a gravimetric blender including a hopper and a hopper cover, the gravimetric blender receiving separate individual granular resin materials, weighing portions of the separate individual granular resin materials according to a recipe, and mixing the weighed portions of the separate individual granular resin materials into a homogeneous blend, the improvement comprising: a) pneumatic means for moving the hopper cover towards and away from the hoppers;b) means for guiding the hopper cover upwardly along a predefined path during movement thereof while maintaining the cover in a fixed orientation relative to the hopper during cover movement.
  • 13. In a gravimetric blender having hoppers and a hopper cover, the gravimetric blender receiving separate individual granular resin materials, weighing portions of the separate individual granular resin materials according to a recipe, and mixing the weighed separate portions of the individual granular resin materials into a homogeneous blend, the improvement comprising: a) telescoping means for vertically guiding the hopper cover during movement thereof relative to the hoppers.
  • 14. In the gravimetric blender of claim 13, the further improvement comprising means for maintaining the hopper cover horizontal during vertical movement thereof.
  • 15. A gravimetric blender receiving separate individual granular resin materials and mixing the materials according to recipe parts by weight into a homogenous granular resin material blend for subsequent molding or extrusion into finished plastic parts, comprising: a) a frame;b) resin material storage hoppers supported by the frame;c) a hopper cover;d) means below the hoppers and connected to the frame, for receiving resin material individually from the storage hoppers, weighing portions of the individually received material, accumulating portions of the the received material, mixing the accumulated material, and discharging the mixed material; ande) tubular means connected to and supported by the frame for telescopingly upwardly guiding the hopper cover during pneumatically powered movement thereof.
  • 16. The gravimetric blender of claim 15, further comprising means for maintaining the hopper cover horizontal during upward movement thereof.
  • 17. A gravimetric blender for receiving separate individual granular resin materials and mixing the materials according to recipe parts by weight into a homogenous granular resin material blend for subsequent molding or extrusion into finished plastic parts comprising: a) a frame;b) resin material storage hoppers supported by the frame;c) a hopper cover;d) means below the hoppers, connected to the frame, for receiving material individually from the storage hoppers, weighing the individually received materials, accumulating the received material, blending the accumulated material, and discharging the weighed, blended accumulated material;e) pneumatic means connected to the frame and to the hopper cover for moving the hopper cover towards and away from the hoppers; andf) means connected to the frame for guiding the hopper cover during movement thereof, the pneumatic means and the guiding means being aligned thereby to maintain the hopper cover in a fixed orientation during cover movement towards and away from the hoppers.
CROSS-REFERENCE TO RELATED PATENT APPLICATION

This patent application is a 35 USC 120 division of co-pending and now allowed patent application Ser. No. 13/345,856 filed 9 Jan. 2012 in the name of Stephen B. Maguire, which in turn was a division of U.S. patent application Ser. No. 11/454,291 filed 17 Jun. 2006 in the name of Stephen B. Maguire, the priority of both of which are claimed under 35 USC 120. The '291 application is now U.S. Pat. No. 8,092,070.

US Referenced Citations (191)
Number Name Date Kind
540154 Dreisoerner May 1895 A
600233 Palm May 1898 A
753597 Long Mar 1904 A
937096 Schmid Oct 1909 A
1451759 Bruhn Apr 1923 A
1489348 Hampton Apr 1924 A
1520017 Denton Dec 1924 A
2161190 Paull Jun 1939 A
2188646 Bunch Jan 1940 A
2199657 Bunch May 1940 A
2550240 Geiger et al. Apr 1951 A
2587338 Lee et al. Feb 1952 A
2606696 Miner Aug 1952 A
2656828 Conover Oct 1953 A
2665825 Poitras et al. Jan 1954 A
2701881 McGee Feb 1955 A
2893602 Barber et al. Jul 1959 A
2909315 Sampietro Oct 1959 A
3111115 Best Nov 1963 A
3115276 Johanningmeier Dec 1963 A
3138117 Dorey Jun 1964 A
3209898 Beebe et al. Oct 1965 A
3228563 Rankin et al. Jan 1966 A
3252531 Mayer et al. May 1966 A
3348848 Lucking et al. Oct 1967 A
3410530 Gilman Nov 1968 A
3470994 Schnell et al. Oct 1969 A
3476358 Westerlund et al. Nov 1969 A
3518033 Anderson Jun 1970 A
3702140 O'Connor Nov 1972 A
3733012 Grun May 1973 A
3735641 Bink et al. May 1973 A
3814388 Jakob Jun 1974 A
3822866 Daester et al. Jul 1974 A
3853190 Delesdernier Dec 1974 A
3871629 Hishida Mar 1975 A
3957399 Siczek May 1976 A
3959636 Johnson et al. May 1976 A
3967815 Backus et al. Jul 1976 A
3985262 Nauta Oct 1976 A
3985345 Jakob Oct 1976 A
3988088 King et al. Oct 1976 A
3989229 Nogushi et al. Nov 1976 A
3998103 Bjorklund et al. Dec 1976 A
4014462 Robertson Mar 1977 A
4026442 Orton May 1977 A
4037827 Davison Jul 1977 A
4103357 Nogushi et al. Jul 1978 A
4108334 Moller Aug 1978 A
4148100 Moller Apr 1979 A
4185948 Maguire Jan 1980 A
4219136 Williams et al. Aug 1980 A
4339277 Schutt Jul 1982 A
4354622 Wood Oct 1982 A
4364666 Keyes Dec 1982 A
4391140 Reinhard et al. Jul 1983 A
4394941 Recine Jul 1983 A
4402436 Hellgren Sep 1983 A
4454943 Moller Jun 1984 A
4459028 Bruder et al. Jul 1984 A
4473173 DeGroff et al. Sep 1984 A
4475672 Whitehead Oct 1984 A
4498783 Rudolph Feb 1985 A
4499962 Izumi Feb 1985 A
4501405 Usry Feb 1985 A
4505407 Johnson Mar 1985 A
4522321 Kinoshita Jun 1985 A
4525071 Horowitz et al. Jun 1985 A
4544279 Rudolph Oct 1985 A
4552235 Brunnschweiler Nov 1985 A
4571416 Jarzombek et al. Feb 1986 A
4581704 Mitsukawa Apr 1986 A
4586882 Tseng May 1986 A
4606710 Maguire Aug 1986 A
4619379 Biehl Oct 1986 A
4621990 Forsythe et al. Nov 1986 A
4629410 Hehl Dec 1986 A
4657490 Abbott Apr 1987 A
4705083 Rossetti Nov 1987 A
4733971 Pratt Mar 1988 A
4756348 Moller Jul 1988 A
4793711 Ohlson Dec 1988 A
4812048 Neumann et al. Mar 1989 A
4830508 Higuchi et al. May 1989 A
4848534 Sandwall Jul 1989 A
4850703 Hanaoka et al. Jul 1989 A
4895450 Holik Jan 1990 A
4957176 Roth Sep 1990 A
4967940 Blette et al. Nov 1990 A
5039279 Natwick et al. Aug 1991 A
5074519 Pettus Dec 1991 A
5090450 Pelech et al. Feb 1992 A
5096302 Durina Mar 1992 A
5110521 Moller May 1992 A
5116547 Tsukahara et al. May 1992 A
5116548 Tsukahara et al. May 1992 A
5125535 Ohlman Jun 1992 A
5132897 Allenberg Jul 1992 A
5143166 Hough Sep 1992 A
5148943 Moller Sep 1992 A
5161714 Neumann et al. Nov 1992 A
5172489 Moller Dec 1992 A
5199852 Danby Apr 1993 A
5213724 Saatkamp May 1993 A
5215215 Sauer Jun 1993 A
5217108 Newnan Jun 1993 A
5219224 Pratt Jun 1993 A
5225210 Shimoda Jul 1993 A
5240324 Phillips et al. Aug 1993 A
5243455 Ricciardi et al. Sep 1993 A
5252008 May, III et al. Oct 1993 A
5261743 Moller Nov 1993 A
5282548 Ishihara Feb 1994 A
5285930 Nielsen Feb 1994 A
5340949 Fujimura et al. Aug 1994 A
5341961 Hausam Aug 1994 A
5344232 Nelson et al. Sep 1994 A
5364242 Olsen Nov 1994 A
5379923 Sagastegui et al. Jan 1995 A
5423455 Ricciardi et al. Jun 1995 A
5527107 Weibel et al. Jun 1996 A
5599099 Bullivant Feb 1997 A
5599101 Pardikes Feb 1997 A
5651401 Cados Jul 1997 A
5767453 Wakou et al. Jun 1998 A
5767455 Mosher Jun 1998 A
5772319 Pemberton et al. Jun 1998 A
5780779 Kitamura et al. Jul 1998 A
5843513 Wilke et al. Dec 1998 A
5853244 Hoff et al. Dec 1998 A
5896297 Valerino, Sr. Apr 1999 A
5980490 Tsoukalis Nov 1999 A
5988983 Furusawa Nov 1999 A
6007236 Maguire Dec 1999 A
D424587 Maguire May 2000 S
6057514 Maguire May 2000 A
6089745 Feistkorn et al. Jul 2000 A
6089794 Maguire Jul 2000 A
6102562 Bengtson Aug 2000 A
6111206 Maguire Aug 2000 A
6131174 Fischer et al. Oct 2000 A
6154980 Maguire Dec 2000 A
6155709 O'Callaghan Dec 2000 A
6188936 Maguire et al. Feb 2001 B1
6203184 O'Callaghan Mar 2001 B1
6213739 Phallen et al. Apr 2001 B1
6338466 Wallace et al. Jan 2002 B1
6340487 Wenger et al. Jan 2002 B1
6386841 Probst May 2002 B1
6402363 Maguire Jun 2002 B1
6405949 Maguire Jun 2002 B1
6467943 Maguire Oct 2002 B1
6599005 Van Der Wel Jul 2003 B2
6719453 Cosman et al. Apr 2004 B2
6774318 Beal et al. Aug 2004 B2
6880965 Sheffield, Jr. Apr 2005 B1
7066689 Maguire Jun 2006 B2
7137729 Moretto Nov 2006 B2
7154069 Gordon Dec 2006 B1
7234247 Maguire Jun 2007 B2
7347007 Maguire Mar 2008 B2
7390119 Maguire Jun 2008 B2
7416096 Maguire Aug 2008 B2
7810986 Landers et al. Oct 2010 B2
7958915 Maguire Jun 2011 B2
7980834 Maguire Jul 2011 B2
8220984 Deters et al. Jul 2012 B2
20010024400 Van Der Wel Sep 2001 A1
20020031822 van der Wel et al. Mar 2002 A1
20020136609 Maguire Sep 2002 A1
20030021181 Maguire Jan 2003 A1
20030024955 Maguire Feb 2003 A1
20030075626 Maguire Apr 2003 A1
20030142580 Maguire Jul 2003 A1
20030185095 Moretto Oct 2003 A1
20030218014 Gregory et al. Nov 2003 A1
20050039816 Maguire Feb 2005 A1
20050052945 Maguire Mar 2005 A1
20060080858 Maguire Apr 2006 A1
20060185186 Maguire Aug 2006 A1
20070289659 Maguire Dec 2007 A1
20070291578 Maguire Dec 2007 A1
20070292288 Maguire Dec 2007 A1
20070292290 Maguire Dec 2007 A1
20070297278 Maguire Dec 2007 A1
20080267004 Deters et al. Oct 2008 A1
20090126564 Maguire May 2009 A1
20090257832 Maguire Oct 2009 A1
20100170659 Maguire Jul 2010 A1
20120195154 Maguire Aug 2012 A1
20130135958 O'Callaghan May 2013 A1
Foreign Referenced Citations (34)
Number Date Country
1100402 May 1981 CA
1255582 Nov 1967 DE
1982969 Apr 1968 DE
2 034 837 Apr 1972 DE
32 37 353 Apr 1984 DE
34 08 820 Sep 1985 DE
3433693 Mar 1986 DE
35 41 532 May 1986 DE
39 23 241 Jan 1991 DE
43 23 295 Feb 1995 DE
196 14 688 Oct 1997 DE
171291 Mar 1960 EP
0 318 170 May 1989 EP
0 507 689 Oct 1992 EP
0 587 085 Mar 1994 EP
0 678 736 Oct 1995 EP
0 743 149 Nov 1996 EP
1167265 Nov 1958 FR
1 477 595 Apr 1967 FR
2517087 May 1983 FR
1004877 Sep 1965 GB
1120270 Jul 1968 GB
1145752 Mar 1969 GB
1303459 Jan 1973 GB
2081687 Feb 1982 GB
2161090 Jan 1986 GB
59082936 May 1984 JP
2253835 Oct 1990 JP
4176608 Jun 1992 JP
04201522 Jul 1992 JP
1310290 May 1987 SU
WO 8707182 Dec 1987 WO
WO 9111689 Aug 1991 WO
WO 0149374 Jul 2001 WO
Non-Patent Literature Citations (89)
Entry
Maguire Products, Inc., “Weigh Scale Blender Technical Information—Specifications, Features” Nov. 4, 1994.
Sheet of 2 photographs of Mould-Tek gravimetric blender, circa 1993.
Sheet of 2 photographs of Motan gravimetric blender and feeding system with Maguire Products, Inc. controls, circa 1993.
Sheet of 3 photographs of UNA-DYN gravimetric blender, circa 1993.
Sheet of 2 photographs of Maguire Products, Inc. gravimetric blender with Conair hoppers and feeding system, circa 1993.
Sheet of 1 photograph of Hydracolor gravimetric blender, circa 1993.
Four page brochure entitled “Gravimix Better Quality through Research”, circa 1993.
Two-sided flyer entitled “GB 140 Series Compact Auto Weigh Blender” published by Conair Franklin in the United States, Jun. 1994.
Six page brochure entitled “Graviblend Precise Continuous Weigh Blenders” published by Ktron Vertech, Jun. 1991, United States.
Six page brochure entitled “Piovan Gravimetric Blenders MDW” published by Piovan Sri, Oct. 1993, Venezia, Italy.
One page two-sided flyer entitled “Gravimix, The New Gravimetric Blending Generation” published by Ferlin, De demsvaard, Holland, circa 1993.
Four page brochure entitled “When you Weigh it All Up . . . ” published by Ferlin Trading, Holland, circa 1993.
Two page brochure entitled “Mould-Tek Bulk Handling Systems” published by Mould-Tek Industries, Inc. in Canada, circa 1993.
Five page brochure entitled “Blending power: GXB Blender The Better Alternative” of Mould-Tek, circa 1998.
One page brochure “Una-Dyn Additive Feeder”.
Two pages of advertisements from European Plastics News, pp. 76 and 75, Sep. 2000.
Four page brochure entitled “Novatec Gravimetric Blenders”.
Two-sided color brochure entitled Maguire: WSB-MB Micro-Blender of Maguire Products, Inc., Jun. 1997.
Three page, two-sided color brochure entitled Maguire: Blender Selection Guide, Jun. 1997.
Two-sided color brochure entitled “Convey, Blend, Dry” published by Novatec, Inc., undated.
Three page two-sided color brochure entitled “Accuracy, flexibility and performance are at your fingertips with ConveyPacer III Series “S” Controller” of Mould-tek, 1999.
Seven page two-sided color brochure plus cover entitled “Exac-U-Batch Series Weigh Scale Blenders: Engineered to be the ultimate blend of precision and control!” of Mould-tek, 2000.
Three page two-sided color brochure entitled “We have the building blocks to integrate your entire plastics bulk handling system.” of Mould-tek, 1999.
One page two-sided color brochure entitled “Saturn's comparative testing program selected Mould-Tek's GXB Blender” of Mould-tek, undated.
Advertisement entitled “Machinery and Systems for Extrusion is Our Only Business” by Process Control Corporation, circa 1993.
Advertisement “Introducing our 400 VME-II Gravimetric Blender” by HydReclaim Corporation, circa 1993.
Four page brochure entitled “Conomix Plus Volumetric Blender” dated Aug. 1993.
Four page brochure entitled “Conair Franklin Autocolor Y Mezclador” dated Mar. 1995.
Thirty-two page catalog entitled “Maguire Color Blending Equipment” published by Maguire Products, Inc., 1993, United States.
Brochure entitled “Plastic Molders and Extruders: published by Maguire Products, Inc., 1995”.
Forty-four page two-sided brochure including cover and back pages entitled “Maguire: Auxiliary equipment for the plastics industry” of Maguire Products, Inc., Oct. 2000.
Five page two-sided color brochure entitled “Gravicolor 100: Gravimetric mixing and dosing unit” of Motan, date unknown.
Two page two-sided color brochure entitled “Model GXB-2202 Exac-U-Batch Gravimetric Scale Blender: Accurate weigh scale blending under precise computer control” of Mould-tek, 2000.
One page two-sided color brochure entitled “NovaBlend Model 600” of Novatec Inc., Jun. 1997.
International Search Report dated Aug. 7, 1998 of PCT/US98/10102.
International Search Report dated Apr. 29, 1998 of PCT/US97/23172.
Supplementary European Search Report dated Jan. 14, 2002 of EP 97954838.
Two page two-sided color brochure entitled “Optimum Series™: OL Blenders and Weigh Hoppers” of AEC HydReclaim, 2000.
Four page two-sided color brochure entitled “Optimum Series™: Gravimetric Batch Blenders” of AEC HydReclaim, 2000.
One page two-sided color brochure entitled “Guardian Batch Blender” of Process Control Corporation, date unknown.
Forty-two page brochure, plus cover of Maguire Products, Inc., “Weigh Scale Blender Technical Information—Specifications, Features”, Jun. 14, 1998.
Ninety-three page brochure, plus cover of Maguire Products, Inc. Weigh Scale Blender with ‘Four’ Component Software—Operation and Maintenance Manual, Jun. 12, 2001.
Four page brochure entitled Plastics Product Review, Dec./Jan. 1997-1998.
One page advertisement entitled “Former Processor Steve Maguire on the MicroBlender™ System”, Plastics Auxiliaries, Sep. 1999.
Two page brochure entitled Just one good idea after another, Maguire Products, Inc., undated.
One page advertisement entitled New Product Showcase: Miniature receivers allow central conveying to micro-blenders, Injection Molding, p. 230, Oct. 1998.
Two page mailing entitled “Maguire . . . More sizes . . . more options . . . more choices” of Maguire Products, Inc., undated.
Three pages entitled “Maguire blender targets small presses”, Modern Plastics Show Daily, pp. 1 and 61, Jun. 18, 1997.
One page entitled “Maguire shows Micro-Blender, software”, Plastics News, p. 8, Jun. 18, 1997.
One page entitled “Maguire blender targets small injection presses”, Modern Plastics, p. 79, Jul. 1997.
Three page release of Maguire Products, Inc. entitled “Jun. 1997: World's Smallest Gravimetric Blender, Unveiled at NPE. Brings New Capabilities to a Wide Range of Processing Equipment”.
Two page release of Maguire Products, Inc. entitled “Jun. 1998: MicroBlender receives “Best Buy” status”.
One page release entitled “Jun. 2000—Maguire Alleges Patent Infringement by Novatec, Labotek, Piovan and Ferlin”.
Three pages entitled “Feeders, blenders offer more exacting levels of performance”, Focus, Jun. 1998, pp. 115-117.
One page advertisement “Marketplace”, Canadian Plastics, Jul. 1998, p. 40.
One page advertisement of Plastics Auxiliaries, Sep. 1998, p. 63.
One page entitled “Smallest Blender Adds ‘Clear-Vu’ Loading”, Plastics Engineering, Sep. 1998, p. 49.
Two pages entitled “Maguire's Miniature Receivers Tie Micro-Blenders to a Central Loading System”, Plastics Focus, Oct. 19, 1998, p. 5-6.
Six page article entitled “It's All in the Mix”, Molding Systems, Mar. 1999, pp. 24-29.
One page entitled Maguire Products—Product Data Sheet—Weigh Scale Blender—Micro Blender, Aug. 1998.
One page color advertisement entitled “Great thinkers choose the world's smartest blender”, Injection Molding, Feb. 2000, p. 116.
Two page color advertisement entitled “Maguire customers respect the power of these simple words: The perfect blend of simplicity and control.”, Plastics News, Mar. 8, 1999, inside cover.
Five page press release of Maguire Products, Inc. entitled “World's Smallest Gravimetric Blender, Unveiled at NPE, Brings New Capability to Wide Range of Processing Equipment”, Jun. 17, 1997.
Five page press release of Maguire Products, Inc., entitled “Extrusion Control System Developed by Maguire Boosts Quality and Productivity, Costs 50% Less than Existing Equipment”, Jun. 17, 1997.
One page, two-sided color brochure entitled “Bulk handling power: the manufacturer of the world's most advanced blender gives you the same performance in bulk handling systems” of Mould-Tek, dated Apr. 1999.
One page advertisement entitled “Micrabatch Gravimetric Blender” of TSM Control Systems, dated Oct. 2001.
Two page product information sheet entitled “Gravimetric Batch Blending:” of TSM Control Systems, date unknown.
Two page color brochure entitled “New Gravimetric Dosers” of Moretto P.A. s.r.l., dated 2001.
One page advertisement entitled “Ancillaries: Hoppers, Loaders & Blenders”, date unknown.
Four page brochure entitled “BlendingLine: Gravicolor: Gravimetric mixing and dosing units” of Motan, Oct. 2000.
One page advertisement entitled “AEC Engineering What's Next: A Whole New Meaning to Less is More” of AEC HydReclaim, Jun. 2000.
Three pages of Comet E-newsletter of Comet Automation Systems, Inc., distributed Fall 2002.
One page from Plastics News, Oct. 21, 2002, p. 4.
Two pages from Plastics Equipment Trends, Nov. 2002, pp. 6-7.
One page from Plastics Technology Magazine, May 2003, p. 49.
One page from Injection Molding Magazine, May 2003, p. 123.
One page from Plastics in Packaging, May 2003, p. 26.
One page from Plastics Machinery & Auxiliaries, Sep. 2003, p. 27.
Two page brochure of Comet Automatic Systems Inc. entitled “GraviMix Micro Blending System”, 2002.
27 page manual entitled “Gravimix: Gravimix Micro Blending System” of Comet Automation Systems, Inc., circa 2002.
Two page brochure of GBX Blender, The Better Alternative, Mould-Tek, Nov. 1999.
Advertisement entitled “Weigh Blender Delivers Unmatched Accuracy” by Universal Dynamics, Inc., circa 1993.
Advertisement entitled “A Full Line-up of Blender Solutions . . . Priced Right” by HydReclaim, circa 1993.
Advertisement entitled “New From HydReclaim—Now Processors Can Economically Achieve Continuous Gravimetric Blending” by HydReclaim, circa 1993.
Article entitled “Control Loading Systems” from Plastics Technology, Oct. 1995, p. 41.
Forty-four page two-sided brochure including cover and back pp. entitled “Maguire: Auxiliary equipment for the plastics industry” of Maguire Products, Inc., Oct. 2000.
Two-sided color brochure entitled Maguire: Model MPA Liquid Color Pump , Maguire Products, Inc., published Dec. 28, 1995.
International Search Report for PCT/US02/02934, dated Feb. 20, 2003.
Written Opinion for PCT/US02/02934, dated Mar. 24, 2003.
Related Publications (1)
Number Date Country
20150197037 A1 Jul 2015 US
Divisions (2)
Number Date Country
Parent 13345856 Jan 2012 US
Child 14666599 US
Parent 11454291 Jun 2006 US
Child 13345856 US