The present invention relates generally to latch mechanisms for containers. More specifically, the present invention relates to a gravity-actuated latch mechanism for selectively restricting access to a container.
Food and food-containing refuse generated by humans often attract the attention of animals. Animals have a keen sense of smell and can easily detect food which has been discarded in containers left outdoors such as refuse bins and storage lockers. Once food has been discovered in such areas, the animals often return to these outdoor containers in the hope of finding additional food.
Animals in pursuit of a readily available source of food are problematic to human populated areas. For example, animals sometimes enter homes, garages, or even vehicles in search of food where they inflict significant property damage. Furthermore, animals entering human inhabited areas can become injured or killed by moving vehicles, electrical lines, and other human accoutrements. Still further, these animals can lose their wariness towards humans, making them a potential threat to humans. Thus, to protect people, property, and the animals themselves, it is desirable to inhibit animals from accessing containers in which refuse and food are stored.
Various attempts have been made to prevent animals from getting into outdoor refuse containers and food storage lockers. For example, refuse containers are sometimes stored inside sturdy locked buildings, in roofed chain link enclosures, and so forth. Unfortunately, food refuse in an enclosure still gives off orders that attract wildlife. Thus, it is critical that such an enclosure be locked and that the enclosure is sufficiently sturdy to dissuade a clever and persistent intruder.
In addition, or alternatively, refuse containers may be outfitted with a latch system to prevent an animal from opening the container. Some latch systems can be problematic, however, because they can be difficult for a user to manipulate. Furthermore, some latch systems typically require the user to unlatch and subsequently re-engage the latch after use. If the latch is not re-engaged the container is not protected from animal access. Additionally, some latch systems can still be opened by animals, such as raccoons, through luck, persistence, or cleverness, or by bears through force or turning the refuse containers completely upside-down.
Another approach is to build the container using heavy, reinforcing components designed to inhibit animals from physically damaging the container in order to gain access. These reinforcing components can make the container undesirably heavy and unwieldy to move. In addition, these heavy, reinforcing components can cause premature damage, such as failure of the container hinges after repeated use. Furthermore, such reinforced containers may be unnecessary in regions having only small animals, such as raccoons, squirrels, and the like that are unable to physically damage a conventional container.
In an effort to control costs associated with refuse collection, many municipalities are implementing “fully-automated collection” techniques. Fully-automated collection involves the use of a truck with an automated, mechanical gripping arm to lift a specially-designed container from the curbside, dump the container contents into the truck, and return the container to the curbside. Such a system typically requires only one person to operate because the truck driver controls the gripping arm from the cab of the truck. In contrast, traditional collection systems require one or two laborers and a driver to collect refuse.
Fully-automated collection relies on the cooperation of the residents to place the refuse containers in the proper location and position for collection. Unless the resident places the refuse container in the proper location at the moment that the truck approaches, a container without a latch system is vulnerable to animals while the container awaits refuse collection. Additionally, the container is vulnerable to weather conditions, such as high winds, that can potentially knock over the container causing the refuse to at least partially dump out. A container with a latch system is also problematic because when the container is placed in the proper location, it must be unlatched so that the contents of the container will be successfully emptied. Accordingly, a container with a disengaged latch system is also vulnerable to animals while the container awaits refuse collection. Alternatively, the refuse vehicle operator may exit the truck to disengage the latch system. However, such a procedure is undesirably inconvenient and time consuming. A container using heavy, reinforcing components may be difficult for a resident to place in the proper location and may not conform with the size, shape, and weight requirements needed to safely function with the automated, mechanical arm.
Accordingly, what is needed is a latch mechanism for restricting access to a container that is easy to use, mechanically robust, cost effective, and is compatible with fully-automated collection systems.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, the Figures are not necessarily drawn to scale, and:
Embodiments of the invention entail a gravity-actuated latch mechanism that may be utilized in conjunction with an enclosure, such as a container with a lid. The latch mechanism may be implemented with a refuse container, lock box, or any other container that may receive and hold items such as food, garbage, trash, recyclable items, and so forth. More particularly, the latch mechanism is configured to inhibit smaller animals such as raccoons, squirrels, dogs, and the like, from accessing the contents of the container. Furthermore, the latch mechanism is configured to resist unlatching in the instance that the container is tipped over by, for example, the wind or an animal. The latch mechanism automatically engages so that a user need not deliberately re-engage the latch after placing refuse in the container. Furthermore, the latch mechanism can be unlatched by an automated, mechanical arm of a refuse truck so that the contents of the container can be emptied during automated collection. Although the gravity-actuated latch mechanism is directed towards inhibiting access of animals to a refuse container used for automated collection, embodiments of the invention may be applied to inhibiting access of animals in general to containers. Additionally, the latch mechanism may be implemented to allow controlled access to a multitude of container designs, cupboards, gates, and the like.
Referring to
In an embodiment, latch mechanism 20 includes a latch body 22 and a strike 24. In general, latch body 22 is adapted to be secured to an inside front wall 28 of a container 26 with a top edge of latch body being mounted flush with the top edge of front wall 28. Strike 24 is adapted to be fastened to a lid 30 that closes, or covers, an opening into container 26. For purposes of illustration, a portion of container 26 with lid 30 is shown in
In an embodiment, an alignment post 34 extending outwardly from latch body 22 is directed through an opening 36 extending through front wall 28. Another fastener (not shown) may extend through another opening (not shown) in front wall 28 and secure to, for example, a threaded opening (not shown) in latch body 22. Those skilled in the art will recognize that a variety of fasteners and fastening techniques may be implemented to secure latch body 22 to front wall 28 of container 26. Similarly, strike 24 may be fastened to lid 30 utilizing a variety of fasteners and fastening techniques known to those skilled in the art.
Latch body 22 functions cooperatively with strike 24 so that lid 30 is secured to front wall 28 of container 26 to inhibit intrusion into container 26, as will be discussed in greater detail below. In addition, latch mechanism 20 can be readily actuated by a gravity effect when the gripping arm of an automated collection refuse pickup vehicle picks up and tilts container 26 to disengage strike 24 from latch body 22, as will also be discussed in greater detail below.
Referring more particularly to
Catch 40 includes a first end 52 and a second end 54. A hook 56 is located at first end 52 of catch 40 and is adapted to engage with strike 24. A mating surface 58 is located at second end 54 of catch 40 and is adapted to at least partially engage with lever 42 (discussed below). When actuated, catch 40 is adapted to selectively pivot, or rotate, about a pivot axis 60 to release hook 56 from engagement with strike 24. Lever 42 includes a pivot body 64 and a lever arm 66 extending from pivot body 64. Lever 42 is adapted to selectively pivot, or rotate, about another pivot axis 68. Lever arm 66 extends through a slot 70 in a wall 72 enclosing elongated passage 50 so that a distal end 74 of lever arm 66 resides in elongated passage 50.
Disc member 44 is implemented as an adjunct to the engagement capability between latching surface 80 of lever 42 and mating surface 58 of catch 40. In particular, when latch mechanism 20 is in latched configuration 76, disc member 44 within cavity 45 is located within a notch 82 (visible in
The combined locking mechanisms of latching surface 80 of lever 42 with mating surface 58 of catch 40, and the further inclusion of disc member 44 engaged with pivot body of lever 42 via notch 82 enables the locked retention of lid 30 to container 26. Furthermore, should container 26 be knocked over by wind or by an animal, or should container 26 be subjected to vibratory stimulus, the combined locking mechanisms are largely capable of retaining lid 30 locked to container 26.
With continued reference to
Cavity 45 includes a cavity region 90 displaced forward from lever 42, i.e., displaced toward front wall 28 of container 26. Disengaged position 88 of disc member 44 occurs when disc member 44 rolls into cavity region 90. Cavity 45 may be slot shaped having a width that is only slightly wider than disc member 44 so that disc member 44 is largely prevented from tipping or tilting within cavity region 90. Accordingly, in order to unlock latch mechanism 20, disc member 44 must first roll out of notch 82.
Now referring to
With continued reference to
It should be observed that a lower inner wall 94 of elongated passage 50 is approximately flat, i.e., without curves, depressions, or pockets. The approximately flat shape of lower inner wall 94 enables latch actuation ball 48 to easily roll in passage 50 when container 26 with latch mechanism 20 is tilted by the refuse truck. Additionally, an upper inner wall 96 includes a shoulder section 98 that forms a pocket 100 within elongated passage 50. Pocket 100 faces the back and sides (see also
In unlock position 92, disc member 44 has rolled within cavity 50 out of engagement with notch 82 of pivot body 64 of lever 42. More particularly, disc member 44 has rolled toward the front of container 26 to clear notch 82 in pivot body 64. Lever 42 is now free to pivot about its pivot axis 68 because of the weight of latch actuation ball 48 against that portion of lever arm 66 residing in elongated passage 50.
Referring now to
With particular reference to the enlarged partial view shown in
A spring element 106 of manual open actuator 46 has a spring end 108 in communication with disc member 44. When the knob of manual open actuator 46 is pulled outwardly, disc member 44 moves forward and out of engagement with notch 82 in pivot body 64 so that lever 42 can be rotated. Rotating manual open actuator 46 in a clockwise direction causes a wing feature 110 of actuator 46 to push upwardly on lever arm 66 causing lever 42 to pivot so that distal end 74 of lever arm 66 moves upwardly in elongated passage 50 to its stop position. With lever 42 moved to its stop position, catch 40 is now free to rotate so that hook 56 releases from strike 24, as discussed above. Accordingly, lid 30 (
However, when such a ledge is not present, a housing 114 of latch mechanism 112 may be suitably shaped to have a shed 116, or sloped region, as part of housing 114 that serves to deflect waste smoothly as container 26 (
Referring to
In an embodiment, latch mechanism 20 includes a latch body 22 and a strike 24. In general, latch body 22 is adapted to be secured to an inside front wall 28 of a container 26 with a top edge of latch body being mounted flush with the top edge of front wall 28. Strike 24 is adapted to be fastened to a lid 30 that closes, or covers, an opening into container 26. For purposes of illustration, a portion of container 26 with lid 30 is shown in
In an embodiment, a fastener (not shown) may extend through another opening (not shown) in front wall 28 and secure to, for example, a threaded opening (not shown) in latch body 22. Those skilled in the art will recognize that a variety of fasteners and fastening techniques may be implemented to secure latch body 22 to front wall 28 of container 26. Similarly, strike 24 may be fastened to lid 30 utilizing a variety of fasteners and fastening techniques known to those skilled in the art. Additionally, the latch mechanism 20 is drip proof.
Latch body 22 functions cooperatively with strike 24 so that lid 30 is secured to front wall 28 of container 26 to inhibit intrusion into container 26, as will be discussed in greater detail below. In addition, latch mechanism 20 can be readily actuated by a gravity effect when the gripping arm of an automated collection refuse pickup vehicle picks up and tilts container 26 to disengage strike 24 from latch body 22, as will also be discussed in greater detail below.
Referring more particularly to
Catch 40 includes a first end 52 and a second end 54. A hook 56 is rotatably coupled to first end 52 of catch 40 and is adapted to engage with strike 24. A mating surface 58 is located at second end 54 of catch 40 and is adapted to at least partially engage with lever 42 (discussed below). When actuated, catch 40 is adapted to selectively pivot, or rotate, about a pivot axis 60 to release hook 56 from engagement with strike 24. Lever 42 includes a pivot body 64 and a lever arm 66 extending from pivot body 64. Lever 42 is adapted to selectively pivot, or rotate, about another pivot axis 68. Lever arm 66 extends through a slot 70 in a wall 72 enclosing elongated passage 50 so that a distal end 74 of lever arm 66 resides in elongated passage 50.
Pivot body 64 includes a counterweight 65. Counterweight 65 balances the weight of lever arm 66, wherein the weight of counterweight 65 may be slightly less than, equal to, or slightly greater than the weight of lever arm 66 and still keep latch mechanism 20 from opening with a knock over of refuse container 26. It is understood that a return spring may compensate for minor imbalances in lever arm 64 with counterweight 65. Because of counterweight 65, when refuse container 26 is knocked over, the resulting force towards the top of refuse container 26 does not cause the lever arm 66 to move towards the top of latch body 22, which would open it. The center of gravity of lever 42 is approximately at the center of rotation of pivot axis 68. Counterweight 65 also very slightly impedes the opening of latch mechanism 20 during a dump cycle but the weight of latch actuation ball 48 makes the amount of resistance from counterweight 65 irrelevant.
Secondary lock actuation member 44 is implemented as part of a secondary lock mechanism 120. Secondary lock mechanism 120 includes a secondary lock lever arm 121 having a first end 122 and a second end 123. A pivot axis 124 is located at second end 123 of secondary lock lever arm 121. Secondary lock mechanism 120 further includes a dampening device 130 operatively coupled to secondary lock lever arm 121 at connection 128. Secondary lock mechanism 120 also includes a plunger 132 that travels through an elongate passage 136. Plunger 132 includes a first end 131 and a second end 133. Plunger 132 also includes a protrusion 134 located at second end 133. Protrusion 134 engages an aperture 126 of secondary lock lever arm 121 to operatively coupled plunger 132 to secondary lock lever arm 121. The elongate aperture 126 may have an elongate shape in order to translate rotational movement of secondary lock lever arm 121 about pivot axis 124 to a linear movement of plunger 132 through an elongate passage 136. Elongate passage 136 extends into elongate passage 50.
In the upright position as shown in
The combined locking mechanisms of latching surface 80 of lever 42 with mating surface 58 of catch 40, and the further inclusion of secondary lock mechanism 120 enables the locked retention of lid 30 to container 26. Furthermore, should container 26 be knocked over by wind or by an animal, or should container 26 be subjected to vibratory stimulus, the combined locking mechanisms are largely capable of retaining lid 30 locked to container 26.
With continued reference to
With continued reference to
When refuse can 26 (not shown) is returned to upright position, secondary lock actuation ball 44 moves along elongate passage 45 and engages first end 122 of secondary lock lever arm 121 and rotates secondary lock lever arm 121 as gravity acts on secondary lock actuation ball 44. The rotation of secondary lock lever arm 121 into a position shown in
With continued reference to
As refuse can 26 tilts from a refuse truck, latch mechanism 20 begins to tilt. At a tilt of, for example, approximately fifteen degrees beyond, or below, horizontal, latch actuation ball 48 begins to roll within elongated passage 50 due to the effect of gravity and contacts distal end 74 of lever arm 66 residing in passage 50. That is, the refuse truck continues to move container 26 through a dump cycle creating a steeper angle so that latch actuation ball 48 is able to apply more weight to distal end 74 of lever arm 66 to positively move lever arm 66 to its stop.
It should be observed that a lower inner wall (not shown) of elongated passage 50 is approximately flat, i.e., without curves, depressions, or pockets. The approximately flat shape of lower inner wall enables latch actuation ball 48 to easily roll in passage 50 when container 26 with latch mechanism 20 is tilted by the refuse truck. Because of the timing of a normal dump cycle and the shape of lower inner wall, latch actuation ball 48 rolls in elongate passage past the location of where elongate passage 136 engages elongate passage 50. This is accomplished because dampening device 130 controls the time for secondary lock mechanism 120 to operate to extend plunger 132 into elongate passage 50. It will be understood that dampening device 130 can ensure that rotation of secondary lock lever arm 121 takes any predetermined amount of time. In some embodiments, the time is four seconds. In other embodiments, it is more or less than four seconds. Additionally, an upper inner wall includes a shoulder section located on a portion of the housing not shown that forms a pocket 100 within elongated passage 50. Pocket 100 faces the back and sides of container 26 when container 26 is in an upright position. Accordingly, if container 26 falls backward and/or on one of its sides, ball 48 is more likely to roll into and reside in pocket 100 instead of rolling in passage 50 to strike distal end 74 of lever arm 66. Thus, lid 30 (
Referring further to
For example, and with reference to
It is typically necessary for a user to have the ability to unlock latch mechanism 20 in order to place refuse into container 26 (
However, when such a ledge is not present, a housing 114 of latch mechanism 112 may be suitably shaped to have a shed 116, or sloped region, as part of housing 114 that serves to deflect waste smoothly as container 26 (
Embodiments described herein entail a gravity-actuated latch mechanism that may be utilized in conjunction with an enclosure, such as a container with a lid. The latch mechanism may be implemented with a refuse container, lock box, or any other container that may receive and hold items such as food, garbage, trash, recyclable items, and so forth. More particularly, the latch mechanism is configured to inhibit smaller animals such as raccoons, squirrels, dogs, and the like, from accessing the contents of the container. Furthermore, the latch mechanism includes a gravity-actuated lever and catch structural configuration that is resists unlatching in the instance that the container is tipped over by, for example, the wind or an animal. The latch mechanism automatically engages so that a user need not deliberately re-engage the latch after placing refuse in the container. Furthermore, the latch mechanism can be unlatched by an automated, mechanical arm of a refuse truck so that the contents of the container can be emptied during automated collection.
Although the preferred embodiments of the invention have been illustrated and described in detail, it will be readily apparent to those skilled in the art that various modifications may be made therein without departing from the spirit of the invention or from the scope of the appended claims.
This application claims priority to U.S. Provisional Patent Application “Gravity-Actuated Latch Mechanism,” Ser. No. 62/042,047, filed 26 Aug. 2014, and claims priority to U.S. Provisional Patent Application “Gravity-Actuated Latch Mechanism,” Ser. No. 62/109,886, filed 30 Jan. 2015, the disclosures of which are hereby incorporated entirely herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4844113 | Jones | Jul 1989 | A |
5094358 | Serio, Sr. | Mar 1992 | A |
5224744 | Michelutti | Jul 1993 | A |
5474341 | Putman | Dec 1995 | A |
5599050 | Tinsley | Feb 1997 | A |
5697655 | Strong | Dec 1997 | A |
6382688 | Agostini | May 2002 | B1 |
6550827 | Tsujino | Apr 2003 | B1 |
6802550 | Griggs, Jr. | Oct 2004 | B1 |
7540393 | Wong | Jun 2009 | B2 |
7597365 | Kreitzer | Oct 2009 | B2 |
8960735 | Michael | Feb 2015 | B2 |
Number | Date | Country | |
---|---|---|---|
20160060898 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62042047 | Aug 2014 | US | |
62109886 | Jan 2015 | US |