1. Field of the Invention
The present invention relates generally to a gravity-assisted rotational mechanism and a generator device cooperating therewith. The gravity-assisted rotational mechanism has precisely designed weight arrangement. After an initial force is applied to the gravity-assisted rotational mechanism to make it rotate, the gravity-assisted rotational mechanism can continuously operate and the generator device is able to absorb and store natural gravitational energy.
2. Description of the Related Art
A conventional decorative or entertaining self-rotating article such as a top or a bamboo dragonfly is manually driven to swivel so as to achieve visual effect and entertaining or educational or other added function. However, the self-rotating article will contact the ground or air and gradually turn from a fast rotating state to a still state due to friction. The lasting time of the rotation of the article varies with the article's own configuration and weight arrangement.
The so-called “Newton's cradle” is another often seen decoration working in the Law of Conservation of Energy. A Newton's cradle includes multiple metal balls suspended from a rack via strings. The metal balls are originally still and arranged side by side. When a first metal ball is lifted and then released and dropped to hit a second metal ball, the kinetic energy is sequentially transmitted from the second metal ball to a last metal ball. At this time, the last metal ball bounds up to transform the kinetic energy into potential energy. The conversion between the kinetic energy and the potential energy is repeated, whereby the Newton's cradle can lastingly operate.
The above self-rotating mechanism or decoration is driven by external force or operate in the Law of Conservation of Energy. The above decorations can be modified to have longer operation time and wider application range. For example, in condition of minimum energy loss or absorption of natural gravitational energy during operation, the self-rotating article can operate more lastingly in different pattern to achieve more novel and funny visual effect. In addition, a generator device can cooperate with the self-rotating mechanism to supply electrical energy.
It is therefore a primary object of the present invention to provide a gravity-assisted rotational mechanism and a generator device cooperating therewith. The gravity-assisted rotational mechanism has sophisticated structure and is able to lastingly self-rotate.
To achieve the above and other objects, the gravity-assisted rotational mechanism includes multiple concentric rotational members having different sizes and rotatable about the same rotational center, several link members having equal weights for driving the same, and at least one connection member for pivotally connecting the rotational members with the link members. The rotational members can symmetrically push/pull each other. The link members and the connection member are respectively mounted on interference sections of at least some of the rotational members to transform the interference. The energy of the link members is transmitted via the interference sections to the rotational members and the connection member to form a cycle of energy transmission and absorb gravitational energy during the cycle. In condition of low energy loss, the gravity-assisted rotational mechanism forms a continuously swinging and self-revolving device for lasting watching.
In the gravity-assisted rotational mechanism, the torque applied to the rotational members varies with the distances between the rotational members and the rotational shaft. In a preferred embodiment, the gravity-assisted rotational mechanism includes four metal rings with different sizes. The four metal rings are concentrically arranged. When the weight of a link member is applied to the rotational members, a larger torque is applied to the rotational member that has a larger size and is spaced from the rotational shaft by a longer distance. In this case, the gravity-assisted rotational mechanism will revolve in a direction of the torque applied to the larger rotational member. Accordingly, at least one assembly of symmetrical link member and connection member is arranged around the concentric rotational members to provide complementary push/pull effect and achieve the objects of low power loss and lasting rotation.
The generator device cooperating with the gravity-assisted rotational mechanism is able to store the gravitational energy in the form of electrical energy for prolonging the operation time of the gravity-assisted rotational mechanism.
The present invention can be best understood through the following description and accompanying drawings, wherein:
Please refer to
The rotational disc 13 is formed with a central hole 130 in which the rotational center or shaft 20 is drivingly fitted. The rotational disc 13 is further formed with first pivot points 131, 132, which are symmetrically arranged opposite to each other. The rotational disc 13 is further formed with symmetrical pivotal fitting sections 133, 134. The rotational disc 13 is further provided with symmetrically outward extending first guide plates 135, 136. An outer circumference of the rotational disc 13 is formed with first engagement sections 137, 138. The third rotational ring 12 is provided with symmetrically oppositely outward extending second guide plates 121, 122 corresponding to the first guide plates 135, 136. The third rotational ring 12 is further formed with second engagement sections 123, 124 corresponding to the first engagement sections 137, 138. The third rotational ring 12 is further provided with outward extending connection plates 125, 126, which are spaced from the second guide plates 121, 122 by a certain angle. An outer circumference of the third rotational ring 12 is formed with third engagement sections 127, 128. Several push/pull sections 129 are disposed on one face of the third rotational ring 12. The second guide plates 121, 122 are formed with insertion slots 1210, 1220 in which the first guide plates 135, 136 are inserted and received.
An inner circumference of the second rotational ring 11 is formed with fourth engagement sections 110, 111 corresponding to the third engagement sections 127, 128. Multiple first interference sections 112 are disposed on two faces of the second rotational ring 11 to provide supporting force in a first rotational direction. In this embodiment, the first interference sections 112 are L-shaped plates bent in one single direction.
Multiple second interference sections 101 are disposed on two faces of the first rotational ring 10 corresponding to the first interference sections 112 to provide supporting force in a second rotational direction reverse to the first rotational direction. The number of the second interference sections 101 is equal to that of the first interference sections 112. The second interference sections 101 can have the form as the first interference sections 112.
According to the above arrangement, the first guide plates 135, 136 of the rotational disc 13 are inserted in the insertion slots 1210, 1220 of the second guide plates 121, 122. The free ends of the first guide plates 135, 136 are pivotally connected on the second rotational ring 11. The free ends of the second guide plates 121, 122 of the third rotational ring 12 are pivotally connected on the first rotational ring 10. The free ends of the connection plates 125, 126 are also pivotally connected on the first rotational ring 10. The engagement sections 110, 111, 127, 128, 123, 124, 137, 138 are engaged with each other by means of engagement members 14.
Each of the link members 30, 31, 32, 33 is composed of a link bar 302, 312, 322, 332 and a weight body 301, 311, 321, 331 connected with an outer end of the link bar. Weight materials can be placed in the weight bodies 301, 311, 321, 331 to micro-adjust the weight thereof. The weight bodies 301, 311, 321, 331 are assembled with the rotational members and substantially positioned around the first rotational ring 10. The link bars 302, 312, 322, 332 are formed with through holes 303, 313, 323, 333 near inner ends of the link bars 302, 312, 322, 332 corresponding to the rotational center or shaft 20 for pivotally connecting the link bars 302, 312, 322, 332 with the rotational center or shaft 20. In addition, the link bars 302, 312, 322, 332 are respectively formed with stabilization points 304, 314, 324, 334 for pivotally connecting with the first pivot points 131, 132 of the rotational disc 13. The inner ends of some symmetrical link bars 302, 322 additionally have outward extending sections 3021, 3221 for pivotally connecting with the second rotational ring 11. Moreover, different sections of the link bars 302, 312, 322, 332 are respectively restricted within the first and second interference sections 112, 101. Multiple rod-shaped restriction members 34 are loosely fitted through the second interference sections 101 and affixed to the link bars 302, 312, 322, 332. The rod-shaped restriction members 34 are further fixedly fitted through the first interference sections 112.
In a preferred embodiment, in order to keep the positional relationship between the respective components of the gravity-assisted rotational mechanism 1 in a good stabilized state in operation, multiple elastic members 40, 41 are provided between the pivotal fitting sections 133, 134 of the rotational disc 13 and the push/pull sections 129 of the third rotational ring 12 and between the restriction members 34 and the rotational center or shaft 20. The elastic members 40, 41 serve to provide elastic push effect to eliminate the loosening of the respective components and the gaps therebetween so as to stabilize the operation of the gravity-assisted rotational mechanism 1. In addition, the elastic members 40 between the pivotal fitting sections 133, 134 of the rotational disc 13 and the push/pull sections 129 of the third rotational ring 12 serve to store the natural gravitational energy in the form of elastic energy during the rotation to provide rotational assistance for the third rotational ring 12. Also, the elastic members 41 between the restriction members 34 and the rotational center or shaft 20 serve to store the gravitational energy in the form of elastic energy during the rotation to provide rotational assistance for the first rotational ring 10 so as to enhance the ability to continuously rotate.
Please refer to
Please now refer to
The above embodiments are only used to illustrate the present invention, not intended to limit the scope thereof. Many modifications of the above embodiments can be made without departing from the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
099104912 | Feb 2010 | TW | national |