1. Field of the Invention
This invention relates generally to downhole tools for drilling and completing subterranean wells and methods of using these tools; more particularly, this invention relates to downhole tools for selectively providing fluid communication therethrough, and methods of using those tools.
2. Description of Related Art
In many drilling, servicing, and completion applications, it becomes necessary to isolate particular zones within the well. When it is desired to completely plug a casing downhole, for example, a bridge plug may be utilized, such as those disclosed in U.S. Pat. application Ser. No. 10/658,979, entitled “Drillable Bridge Plug” by Lehr et al., incorporated by reference in its entirety herein, and assigned to the same assignee of the present application.
In some situations, it is desirable to provide a tool downhole, which allows fluid to flow in only one direction. For instance, when fracturing (“fracing”) a well, it is desirable to provide fluid communication from the formation or reservoir to surface, while not permitting fluid to flow downwardly though the tool. In these systems, a frac plug is used. When treating a multi-zone formation, a lower zone may be treated; and a frac plug may be set above the lower zone. As the frac plug allows fluid flow in one direction only (upward), frac fluid may be pumped downhole to treat a second zone, which is above the frac plug. Once the pumping of the frac fluid ceases, production from the lower and upper zone may continue concomitantly. These steps may be repeated using additional frac plugs, depending upon the number of zones to be treated.
Cement retainers also are known to operate in a similar manner, in the reverse, allowing fluid (such as a cement slurry) to be pumped downhole; however, the cement retainer operates to prevent the cement or other fluids from flowing uphole through the tool. In short, frac plugs and cement retainers are known which have a one-way valve to selectively provide fluid communication through a downhole tool. Thus, a need exists for various downhole tools adapted to control the flow of flow of cement, gases, slurries, or other fluids through the downhole tool.
One prior art system for controlling the flow of fluid through a downhole tool is exemplified by the tool having packer on a hollow mandrel, the mandrel having an inner diameter which is not uniform. As shown in
In some prior art systems, a sealing ball 1 may be dropped from surface once the mandrel is set downhole. When the ball 1 reaches and rests in seat 2, the valve prevents fluid from flowing downward. In other systems, to reduce the time required for closing the valve, the ball 1 is maintained in closer proximity to the seat 2, by a biasing means such as a spring, e.g. In other prior art system, the sealing ball is maintained proximate the ball seat by a pin or cage. Until a predetermined flow rate is achieved, the ball does not seat in the ball seat; once the predetermined flow rate is established (downwardly for a frac plug; upwardly for a cement retainer), the ball 1 rests in the ball seat 2 to prevent fluid flow therethrough.
In other prior art system, the ball and ball seat are inverted from the tool shown in
In some instances, once the frac plugs or cement retainers have completed their function, the frac plugs and cement retainers are destructively removed. Once removed, two-way fluid communication is allowed in the wellbore.
When it is desired to remove these ball valves, a drill or mill may be used. Components of prior art ball valves, ball and ball seats, and caged ball designs can tend to rotate with the mill or drill bit upon removal. For example, it has been discovered that when the rotating element of the removal tool, such as the mill or drill bit, encounters the ball 1, the ball 1 will being to spin or rotate along with the mill or drill bit. The ball may begin to rotate at the same speed of the mill, the ball rotating within the ball seat. Thus, the ball begins to spin within the ball seat 2 thus hampering the milling or drilling operation. When this occurs, the removal time is increased; the operator at surface may have to raise and lower the mill or drill, change the speed of rotation, etc. These actions decrease the predictability of the removal time as well as increasing the removal times, thus further increasing the cost of the removal operation. It would therefore be desirable that the downhole tool provide relatively quick and predictable times for removal. Regarding removal, it is desirable that the downhole tool be capable of being removed with a motor on coiled tubing, as opposed to requiring a drilling rig. This minimizes the expense of the removal of the downhole tool.
In some situations, the prior art gravity valves of the downhole tool may operate at a less than optimum level, depending on the downhole fluid being used. For instance, if the density of the downhole fluid is significantly lower than that of the material of the ball, the ball valves operate in a sluggish fashion, staying closed longer than desired. Alternatively, if the density of downhole fluid approaches the density of the ball, the ball may tend to “float” excessively again Thus, it is desirable that the gravity valve be weighted so that the valve operates at an optimum level closes under the force of gravity even in high specific gravity fluids.
In addition, frac plugs and cement retainers may be exposed to significant pressures downhole. Excessive pressures on the prior art ball in the ball sleeve have been known to cause the ball and seat to leak or even break under the excessive pressure. Further, partially due to the spherical nature of the contact surface of the ball with the ball seat, prior art valves may tend to leak. Thus, it would be desirable to provide a more robust, easily removable downhole tool with improved sealing function, that is capable of operating at high pressures downhole.
The present invention is directed to overcoming, or at least reducing the effects of, one or more of the issues set forth above.
A gravity valve for use in composite frac plugs, traditional cast iron frac plugs, or other downhole tools is disclosed. In some embodiment, the gravity valve has components comprised of non-metallic materials; in some embodiments, the structure of the gravity valve is such that the components of the valve form a non-rotating lock to improve the removal of the tool.
In some embodiments, the geometry of the gravity valve is substantially non-spherical at the interface between the plunger of the valve and the valve seat, enabling rotational locking between the two parts. This is advantageous when it is desired to remove the gravity valve. This feature of the gravity valve facilitates the removal of the gravity valve such that the gravity valve may be milled with common downhole motors and carbide junk mills, usually deployed using coiled tubing. This design represents an improvement over traditional ball valves, ball and ball seats, or caged ball designs in that embodiments of the disclosed gravity valve resist rotation/spinning while being milled. Thus, removal time is decreased and predictability is improved.
In one embodiment, the gravity valve is used in a frac plug; in another, the gravity valve is utilized in a cement retainer. A gravity valve to control the flow of a downhole fluid through a downhole tool having a hollow mandrel is disclosed having a plunger within the mandrel, in which the plunger has an end with a substantially non-spherical surface. The seat of the mandrel may have a complementary substantially non-spherical surface adapted to selectively mate with the substantially non-spherical surface of the plunger to form a seal within the mandrel, rotation between the plunger and the seat being thereby precluded. Materials of construction for the gravity valve are disclosed, some being metal and some being non-metallic materials. Further a plurality of materials may be used to construct the plunger.
In some embodiments, the plunger is constructed from a material based on the relationship of the specific gravity of that material compared to the specific gravity of the downhole fluid. A downhole tool including a gravity valve is disclosed, as is a method of using and removing a downhole tool.
The foregoing and other features and aspects of the invention will become further apparent upon reading the following detailed description and upon reference to the drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, that will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
Structure of Embodiments of a Gravity Valve
Referring to
Also shown in
The seat 110 may have a substantially cylindrical perimeter 111. Also shown is a slot 130 at least partially through the outer perimeter 111 of the seat 110. Seat 110 may also comprise sealing means, such as o-ring 112 as described hereinafter. While
It should be mentioned that in the embodiments of
Referring now to
The increased mating surface area provided by the substantially non-spherical surface on the end 170 of the plunger 150 mating with the complementary substantially non-spherical surface on end 120 on the seat 110 may provide additional advantages. For example, in high pressure situations, it is known that the prior art ball valves may leak, the contact surface being defined by a spherical surface or “line contact.” The increased surface area of embodiments described herein thus provides an improved seal between the seat 110 and the plunger 150.
Further, if the pressure downhole is excessive, the ball or the seat of the prior art ball valves may even break. By distributing the force of the pressure over a larger surface area provided by the non-spherical mating surfaces, contact stress may be reduced on the components of the ball valve. Thus, the greater contact surface area provided by the substantially non-spherical mating surface of the plunger and the complementary surface of the seat may be advantageous in higher-pressure environments over the prior art ball valves having a spherical contact area.
Finally, when it is desired to remove the downhole tool, the substantially non-spherical contact area provides a non-rotational lock; as such, the plunger 150 may not tend to rotate with the mill, thus hastening the removal of the plunger.
Referring to
Referring to the
Referring to the
Referring to
While these feature further improves the non-rotational locking mechanism thus facilitating removal of the tool, the slot 161 in the plunger mating with a protrusion in the mandrel (or the protrusion 160 on the plunger 150 and a slot in the mandrel of
Composition of Embodiments of a Gravity Valve
Various types of fluids are encountered downhole. The density of any of these downhole fluids may vary considerably. Thus, the downhole fluids used in conjunction with the gravity valve may have vastly differing specific gravities (specific gravity being density of the fluid/density of water, also known as relative density). Examples are provided below in Table 1:
It is desirable that the gravity valve of the present invention be capable of optimal operation for different downhole fluids.
As stated previously, the prior art ball valves may be typically comprised of cast iron. Such a material may allow the ball valve to operate in a sufficient manner when used in conjunction with some downhole fluids, but not in others. Thus, one object of the present invention is to customize the plunger weight so that the plunger closes under the force of gravity even in high specific gravity fluids.
Further, the materials that may be utilized in the construction of the plunger of the gravity valve disclosed herein may have various specific gravities, as shown in Table 2.
It has been discovered that when the specific gravity of the plunger approximates the specific gravity of the fluid passing through the valve, the gravity valve operation is optimized. The optimum specific gravity of the plunger is slightly greater than that of the fluid being used downhole. Thus, when the specific gravity of the working fluid is 1.0, it is desirable that the specific gravity of the material of the plunger be, e.g., between 1 and 1.2% for a frac plug, and 0.8–1.0 for a cement retainer. The operation of the gravity valve is also dependent upon the operating pressures, etc. By utilizing the above formula, the plunger for the gravity valve may be tailored for optimal performance for a particular application
For example, a fracturing fluid with a weight of 13.6 pounds per gallon (ppg) has a specific gravity (S.G.) of 1.63. Therefore, a gravity valve can be constructed so as to not float in the fluid if the plunger has a specific gravity between 1.63 and 1.95 (1.2×1.63).
In some embodiments, the plunger 150 of the gravity valve may be comprised of cast iron. In others, the plunger 150 may be comprised of entirely non-metallic material, e.g. a single type of plastic or composite. In some embodiments, the plunger 150 may be comprised of a type of thermoset plastic, such as phenolic. The plunger 150 may also be comprised of a carbon-reinforced PPS or PEEK, or PEKK material may be used, as well as a glass fiber reinforced PPS. Lastly, reinforcing fibers in a bi-directional form, such as those found in a resin impregnated sheet molding materials, available from suppliers such as Cytec Engineered Materials of West Paterson, New Jersey, can also be used. In short, any material known to one of ordinary in the art having the benefit of this disclosure, which can withstand the operating pressure to which the plunger is to be exposed, and which may be shaped into the desired structure of the plunger 150, may be utilized. Further, the materials mentioned above may also be desirable, in that they may be more easily milled (and thus facilitate the removal of the plunger 150) than other materials.
In some situations, it may not be possible to achieve the desired relationship between the specific gravity of the fluid being used to the specific gravity of the plunger, by using only one material of construction for the plunger. Thus, it is sometime desirous to construct the plunger of a plurality of materials. In these situations, the “average density” of the entire plunger may be utilized, such that the average density relates to the density of the downhole fluid being used. In these cases, the average density may be determined by dividing the combined weights of the plunger materials used by the volume of the plunger. As stated above, it is desirable in some instances that the average density be substantially within 20% of the specific gravity of the downhole fluid. E.g., using the previous example of the fracturing fluid having an S.G. of 1.63, and referring to the tables of materials properties, a gravity valve plunger could be constructed such that is approximately 95% unfilled PPS and 5% brass, to yield a plunger with an equivalent S.G. of 1.70.
In some embodiments, the plunger 150 of the gravity valve may be comprised of a plurality of materials. The selection of materials may be based on the desired average specific gravity of the resulting plunger 150. For instance, referring back to
To manufacture the gravity valve of
Referring back to
When the specific gravity of the plunger 150 being designed as outline above for use with a fluid of known specific gravity, then the biasing means of the prior art ball valves is superfluous, the valve operating optimally on its own. It should be noted, however, that use of a biasing means such as a spring is not precluded by utilizing the gravity valve disclosed herein. For instance, in horizontal or highly deviated wells, a biasing means such as a spring may be utilized to bias the plunger toward the gravity valve seat (i.e. biasing the plunger substantially downwardly in a frac valve embodiment, and to bias the plunger substantially upwardly in a cement retainer embodiment).
Regarding the construction of the seat 110 of the gravity valve, it should be noted that the composition of the seat 110 may be any material suitable to withstand the downhole pressure the seat 110 will experience. For instance, cast iron may be utilized, as may any metallic or non-metallic material mentioned above, or a combination thereof. Or the composition of the seat 110 may be of the same material of the plunger 110 used in a given operation. The specific gravity of the material of composition for the plunger 150 may affect the operation the valve 400 more than that of the material for the seat 110, as the seat 110 is attachable to the mandrel 250. Thus, the selection of the material for composition of the seat 110 may be less critical than that of the plunger 150, in some situations. Further, the composition of the seat 110 may correspond to the composition of the plunger 150, described above.
Operation of Embodiments of a Gravity Valve
In this embodiment, the mandrel 250 is hollow and comprises a circular cross-section. The gravity valve of one embodiment of the present invention is shown within the mandrel 250. The plunger 150 is disposed above the seat 110 in this embodiment.
The gravity valve is shown disposed in the mandrel of the downhole tool. In this embodiment, the plunger 150 is disposed above the seat 110 within the mandrel, such that the downhole tool is adapted to operate as a frac plug 300. The protrusion 160 of the plunger 150 is adapted to engage the slot 255 in the mandrel 250 as shown. As can be seen, the plunger 150 is free to move upwardly the length of the slot 255 in the mandrel 250. Other means for limiting the axial movement of the plunger 150 may be utilized, as described above, to prevent to plunger from being lifted to surface. The protrusion 160 further operates to engage the slot 255 in the mandrel so that relative rotation is precluded when the valve is open. Thus, the substantially non-spherical surface of the plunger 150 will be in proper alignment with the complementary surface of the seat 110.
Operation and setting of downhole tool of
In the frac plug assembly 300 shown in
The seat 110 may be fixed to the smaller inner diameter 251 of the mandrel 250 by any means known to one of ordinary skill in the art having the benefit of this disclosure, such as via threaded engagement, for example. The o-ring 112 may provide sealing engagement between the seat 110 and the inner diameter 251 of the mandrel 250.
As would be appreciated by one of ordinary skill in the art having the benefit of this disclosure, the gravity valve 400 allows fluid to flow from downhole to surface, while concomitantly preventing fluid to flow from surface to the reservoir downhole. Thus, after the frac plug 300 is set, frac fluid may be pumped downhole to stimulate a zone above the frac plug 30. Once the stimulation is complete, then production from below the frac plug to surface may continue.
As shown in
In some situations, an upward force is generated due to pressure from the formation, e.g., acting to force fluid upward from the formation or reservoir. When this upward force is great enough to overcome gravity to lift the plunger 150 from the seat 110, the gravity valve 400 will open. In the open position, fluid flow uphole through the gravity valve 400 is permitted, as a gap exists around the outer perimeter 151 of the plunger 150 and the larger inner diameter of the mandrel 252.
In some embodiments, the distance the plunger 150 may move upwardly within the mandrel is limited such that the plunger will not flow to surface with the fluid. In the embodiment shown, the protrusion 160 extending into the slot 255 in the mandrel 250 limits the upward movement of the plunger 150. Any other method of limiting the upward movement of the plunger 150, such as having a cage or pin uphole, known to one of ordinary skill in the art having the benefit of this disclosure may be utilized. In some embodiments, it is desirable to prelude relative rotation between the plunger 150 and the seat 110 when the gravity valve 400 is in the open position. For instance, this may improve the seal between the plunger 150 and the seat 110 because the non-spherical surfaces are always in proper alignment (e.g. planar face 171 of the plunger 150 being directly above the complementary planar face 121 of the seat 100 at all times), and may further improve the operation of the frac plug 300. In these embodiments, the substantially non-spherical surface of the plunger 150 and the complementary surface on the seat 110 would not necessarily have to be self-aligning. In the embodiment shown in
As stated above, when the specific gravity of the plunger 150 is substantially 1 to 1.2 times that of the specific gravity of the fluid, such as the frac fluid in this example, operations of the frac plug 300 is optimized.
When it is desired to remove the frac plug, the end cap 260, cones 220, 221, slips 210, 211, and packing element 230 may be milled with a standard mill being rotated by a motor on the end of coiled tubing. When the mill encounters the plunger 150, rotation relative to the mandrel is precluded by at least two means in this embodiment. First, the protrusion 160 on the plunger 160 is inserted into the slot 255 of the mandrel 250. Second, and more importantly, with the gravity valve 400 in the closed position, the non-spherical mating surfaces of the plunger 150 mate with the complementary non-spherical surfaces of the seat 110. As the mill contacts the plunger 150, the mating of the non-spherical surfaces also acts to prevent relative rotation therebetween. Thus, removal of the gravity valve is facilitated. This feature allows a simple junk mill on coiled tubing to be utilized, instead of utilizing a more expensive drilling rig.
Referring to
Thus, in this configuration, the downhole tool comprises a cement retainer 200, such that the fluid flow from surface downhole through the gravity valve 400 is allowed, but fluid from the formation or reservoir to surface is precluded by the buoyancy of the gravity valve 400.
Generally, the force of gravity will prevent the plunger 150 from contacting the seat 110. Thus, the gravity valve 400 will be in an open position allowing fluid flow from surface, through the smaller inner diameter 251 of the mandrel 250, through the seat 110, and around the outer perimeter 151 of the plunger 150 into the larger outer diameter 252 of the mandrel 250, continuing downhole. The downward movement of the plunger 150 may be limited so that the plunger 150 is not lost downhole. For instance, the protrusion 160 on the plunger 150 may mate with a slot 255 on the mandrel 250, the length of the slot determining the extend of downward movement of the plunger 150 is allowed to travel. Alternatively, a pin may reside in the mandrel to engage a slot in the plunger 150, as described with respect to
Further, when cement is being pumped downhole, the force of the fluid flow of the cement further acts to apply a downward pressure on the plunger 150.
In some situations, when the pumping of cement ceases, an upward pressure is generated from pressure downhole. When this upward or buoyant force is great enough to overcome gravity, the plunger 150 will move from its lowermost position. When this force is great enough, the plunger 150 will contact seat 110, thus closing the gravity valve 400. In the closed position, the substantially non-spherical surface on the nose or end 170 of the plunger 150 mates with the complementary non-spherical surface on the end 120 of the seat 110, to close the gravity valve 150. In the closed position, fluid flow uphole through the gravity valve 400 is precluded.
In some embodiments, it is desirable to preclude relative rotation between the plunger 150 and the seat 110 when the gravity valve 400 is in the open position. For instance, this may improve the seal between the plunger 150 and the seat 110 because the non-spherical surfaces are always in proper alignment. In the embodiment shown in
As stated above, when the specific gravity of the plunger 150 is less than the specific gravity of the fluid such as cement, operation of the gravity valve 400 in the cement retainer 200 is optimized.
When it is desired to remove the cement retainer 200, the end caps 260, 262, cones 220, 21, slips 210, 211, and packing element 230 may be milled with a standard mill being rotated by a motor on the end of coiled tubing. When the mill encounters the plunger 150, rotation relative to the mandrel is precluded, as the protrusion 160 on the plunger 160 is inserted into the slot 255 of the mandrel 250 thus precluding relative rotation therebetween. Thus, removal of the gravity valve is facilitated.
While the invention may be adaptable to various modifications and alternative forms, specific embodiments have been shown by way of example and described herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. Moreover, the different aspects of the disclosed methods and apparatus may be utilized in various combinations and/or independently. Thus the invention is not limited to only those combinations shown herein, but rather may include other combinations. For example, the disclosed invention is also applicable to any permanent or retrievable tool for controlling fluid flow therethrough, utilizing the advantage of the non-spherical mating surfaces of the gravity valve, and selecting the materials composition of the gravity valve in light of the specific gravity of the fluids downhole, disclosed therein; the invention is not limited to the preferred embodiments.
The following table lists the description and the numbers as used herein and in the drawings attached hereto.
Number | Name | Date | Kind |
---|---|---|---|
1684266 | Fisher et al. | Sep 1928 | A |
RE21677 | Tremolada | Dec 1940 | E |
2331532 | Bassinger | Oct 1943 | A |
3076509 | Burns et al. | Feb 1963 | A |
3299955 | Page, Jr. | Jan 1967 | A |
3479829 | Goodman | Nov 1969 | A |
3550683 | Corneaux | Dec 1970 | A |
3687196 | Mullins | Aug 1972 | A |
3720264 | Hutchinson | Mar 1973 | A |
3727691 | Muecke et al. | Apr 1973 | A |
3750749 | Giroux | Aug 1973 | A |
3828852 | Delano | Aug 1974 | A |
3867984 | Dufrene | Feb 1975 | A |
3971436 | Lee | Jul 1976 | A |
4151875 | Sullaway | May 1979 | A |
4162619 | Nixon Jr. | Jul 1979 | A |
4185690 | Kinney | Jan 1980 | A |
4188999 | Amancharla | Feb 1980 | A |
4190111 | Davis | Feb 1980 | A |
4258788 | Patton et al. | Mar 1981 | A |
4266620 | Wolgamott et al. | May 1981 | A |
4313497 | Graham | Feb 1982 | A |
4349071 | Fish | Sep 1982 | A |
4393930 | Ross et al. | Jul 1983 | A |
4401161 | Warren | Aug 1983 | A |
4427065 | Watson | Jan 1984 | A |
4436150 | Barker | Mar 1984 | A |
4467867 | Baker | Aug 1984 | A |
4478286 | Fineberg | Oct 1984 | A |
4479548 | Gilbert | Oct 1984 | A |
4520879 | MacElvain | Jun 1985 | A |
4589495 | Langer et al. | May 1986 | A |
4646829 | Barrington et al. | Mar 1987 | A |
4708202 | Sukup et al. | Nov 1987 | A |
4722389 | Arnold | Feb 1988 | A |
4796707 | Halbardier | Jan 1989 | A |
4834184 | Streich et al. | May 1989 | A |
4836279 | Freeman | Jun 1989 | A |
4972908 | Braddick | Nov 1990 | A |
4986361 | Mueller et al. | Jan 1991 | A |
5020597 | Braddick et al. | Jun 1991 | A |
5048612 | Cochran | Sep 1991 | A |
5117915 | Mueller et al. | Jun 1992 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5211224 | Bouldin | May 1993 | A |
5224540 | Streich et al. | Jul 1993 | A |
5271468 | Streich et al. | Dec 1993 | A |
5318131 | Baker | Jun 1994 | A |
5332038 | Tapp et al. | Jul 1994 | A |
5390737 | Jacobi et al. | Feb 1995 | A |
5413172 | Laurel | May 1995 | A |
5449040 | Milner et al. | Sep 1995 | A |
5451084 | Jansch | Sep 1995 | A |
5540279 | Branch et al. | Jul 1996 | A |
5669448 | Minthorn et al. | Sep 1997 | A |
5701959 | Hushbeck et al. | Dec 1997 | A |
5829531 | Hebert et al. | Nov 1998 | A |
5839515 | Yuan et al. | Nov 1998 | A |
5865251 | Rebardi et al. | Feb 1999 | A |
5984007 | Yuan et al. | Nov 1999 | A |
6167963 | McMahan et al. | Jan 2001 | B1 |
6220348 | Serafin et al. | Apr 2001 | B1 |
6220349 | Vargus et al. | Apr 2001 | B1 |
6244642 | Serafin et al. | Jun 2001 | B1 |
6311778 | Carisella et al. | Nov 2001 | B1 |
6354372 | Carisella et al. | Mar 2002 | B1 |
6390190 | Mullins | May 2002 | B1 |
6394180 | Berscheidt et al. | May 2002 | B1 |
6491108 | Slup et al. | Dec 2002 | B1 |
6491116 | Berscheidt et al. | Dec 2002 | B1 |
6578633 | Slup et al. | Jun 2003 | B1 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6708768 | Slup et al. | Mar 2004 | B1 |
6708770 | Slup et al. | Mar 2004 | B1 |
20020029880 | Slup et al. | Mar 2002 | A1 |
20020066577 | Dewey et al. | Jun 2002 | A1 |
20020096365 | Berscheidt et al. | Jul 2002 | A1 |
20040045723 | Slup et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
0498990 | Aug 1992 | EP |
WO0109480 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050257936 A1 | Nov 2005 | US |