The following applications, the disclosures of each being totally incorporated herein by reference are mentioned:
The present embodiment relates to color consistency and gray balance calibration in an integrated printing system. It finds particular application in conjunction with a system for increasing the consistency between the outputs of multiple marking engines, and will be described with particular reference thereto. However, it is to be appreciated that the present embodiment is also amenable to other like applications.
In general, computers and other electronic equipment generating and inputting color images or documents typically generate three-dimensional or RGB (red, green, blue) color signals. Electrographic devices, such as printers, copiers, and the like, however, often print in four-dimensional or CMYK (cyan, magenta, yellow, and black) colors (and often can also receive such signals as input). A look-up table is commonly provided to convert each digital RGB color signal value to a corresponding digital CMYK value before or after being received by the printer. Due to the nature of printing inks, and their light absorption characteristics, however, complex non-linear colorimetric relationships exist between the input and output values. Typically, a color correction look-up table is built which approximates the mapping between RGB colorimetric space and CMYK values. The color correction look-up table may be generated by sending a set of CMYK digital values to the printer, measuring the colorimetric RGB values of the resulting color patches outputted by the printer, and generating the look-up table from the difference between the inputted values and the measured outputted values. More specifically, the color correction look-up table corrects for non-linearities, printing parameter variations, and unwanted absorptions of inks, so that the printer will print the true corresponding color. The color of the patches is typically measured with a high accuracy spectrophotometer, or the like. Such systems are described, for example, in U.S. Pat. No. 6,157,469 to Mestha; U.S. Pat. No. 6,384,918 to Hubble, III, et al.; U.S. Pat. No. 6,584,435 to Mestha et al.; U.S. Pat. No. 6,721,692 to Mestha et al.; above-referenced application Ser. Nos. 10/673,688 and 09/487,586, the disclosures of which are incorporated herein in their entireties by reference.
Over time, the output of conventional printers drifts (or deviates from predetermined optimum standards) due to various factors. These factors include environmental conditions (temperature, relative humidity, etc.), use patterns, the type of media (e.g., different paper types, transparencies, etc.) used, variations in media, variations from original models used in initialization, general wear, etc. To correct for the drift, the system is adjusted or recalibrated periodically. Recalibrating the color correction table involves periodically printing and remeasuring a set of test color patches which are then compared to an original set of color patches by calibration software.
Spectrophotometers have been used in a feedback loop of an on-line color correction system. Such a spectrophotometer may be periodically recalibrated, to ensure its accuracy, as described, for example, in U.S. Pat. Nos. 6,157,469 and 6,351,308 to Mestha, the disclosures of which are incorporated herein in their entireties, by reference. Calibration systems of this type use a reduced (smaller) number of color patch samples, printed at intervals during the regular printing operation of the printer, yet still provide relatively substantially continuous updating correction of the printer's color renditions over a wide or substantially complete color spectra.
U.S. application Ser. No. 09/566,291, noted above, discloses an apparatus for automatically calibrating a digital printing system. The apparatus utilizes a limited dynamic color balance control system using an in-line spectrophotometer color measurement system in the output path of a color printer for measuring colors on printed test sheets/banner pages without requiring manual operation or operator input. The automatic color balance control system produces tone values for all four primary colors by printing patches, measuring colors and automatically readjusting the tone reproduction curves until a satisfactory level of accuracy is obtained. While producing color balanced Tone Reproduction Curves (TRCs), the system will automatically lock the printer output to some predetermined color patch targets. In one embodiment, this output is locked to neutral gray when target colors are set to neutral gray inside the digital front end (DFE). After converging to the targets, the control system will return full TRCs for use inside the normal print path. The process is enabled either by the system controller or by the user with minimal intrusion. The control system uses control algorithms to achieve greater accuracy in the presence of uncertainties in the printing system.
Systems which employ several small printers are now being developed. These systems enable high overall outputs to be achieved by printing portions of the same document on multiple printers. Such systems are commonly referred to as “tandem engine” printers, “parallel” printers, or “cluster printing” (in which an electronic print job may be split up for distributed higher productivity printing by different printers, such as separate printing of the color and monochrome pages and are then recombined to form a document.
The eye is sensitive to color and gray balance variations in printer outputs, particularly when the outputs form facing pages in a document. Thus even small differences between outputs from different printers which are destined to be closely positioned within a document can be considered a defect. To add to the complexity of color matching between color image forming devices, different color image forming devices can use different types of toners, dyes, pigments, or inks to produce the outputted color images. Likewise, the color images can be produced on a wide range of copy media. Images can be produced, for example, on copy media ranging from paper to plastic, from fabric to metal. In each case, each combination of colorant and media produces a different optical appearance.
In an attempt to solve the problem of color matching of pages produced by different printers, various color matching techniques have been developed that use models to translate colors from one color space to another color space. These models usually manifest themselves in the form of predetermined multi-dimensional look-up tables.
In accordance with aspects of the present exemplary embodiment, a system and method for calibrating a printing system are provided. The method includes designating one of a plurality of printers as a reference printer and defining color values for a desired response for one or more printed test patches on a control page. Through a first process aimed toward achieving the desired response, a printed control page is generated with the reference printer, the control page including one or more of the test patches which, when measured, has a measured response which approaches the desired response. Through a second process aimed toward achieving a desired response, the desired response, in this case, being the measured response of the reference printer, a printed control page is generated with a second of the printers. The control page includes one or more of the test patches which, when measured, has a response which approaches the measured response of the reference printer.
The printing system may include a plurality of printers including a reference printer, a finisher, a network of paper paths which connects the plurality of printers with the finisher, a reflectance system which receives printed pages from the plurality of printers and determines a color value response for test patches on the printed pages, and a computer implemented system. The computer implemented system generates a printed control page with the reference printer, the control page including one or more test patches, compares a color value response of the one or more test patches with a desired color value response, modifies a tone reproduction curve of the reference printer with the aim of matching the desired color value response, generates at least one additional control page, generates a measured response for a test patch of the control page which approaches the desired color value response, and modifies a tone reproduction curve of a second of the printers with the aim of matching the measured response of the reference printer.
The term “independent marking engine” or “printer,” as used herein broadly encompasses a print engine or copier, xerographic or otherwise, capable of applying an image to print media, unless otherwise defined in a claim.
A “printing assembly,” as used herein incorporates a plurality of printers, and may include other components, such as finishers, paper feeders, and the like, which may all be under the control of a common control system.
A “print job” or “document” is normally a set of related sheets, usually one or more collated copy sets copied from a set of original print job sheets or electronic document page images, from a particular user, or otherwise related.
A “finisher,” as broadly used herein, is any post-printing accessory device, in which printed media from two or more printers is combined, such as an inverter, reverter, sorter, mailbox, inserter, interposer, folder, stapler, stacker, collater, stitcher, binder, over-printer, or the like.
The term “print medium” herein refers to a usually flimsy physical sheet of paper, plastic, or other suitable physical print media substrate for images, whether precut or web fed. Printed sheets may be referred to as “output” or “printed media.”
The term “spectrophotometer” is intended to encompass spectrophotometers and colorimeters, as broadly defined herein, unless otherwise defined in a claim.
With reference to
The printing system may incorporate “tandem engine” printers, “parallel” printers, “cluster printing,” “output merger” or “interposer” systems, and the like, as disclosed, for example, in U.S. Pat. Nos. 4,579,446 to Fujino, et al.; 4,587,532 to Asano; 5,489,969 to Soler, et al.; 5,568,246 to keller, et al.; 5,570,172 to Acquaviva; 5,596,416 to Barry, et al.; 5,995,721 to Rourke, et al.; 6,554,276 to Jackson, et al., 6,654,136 to Shimida; 6,607,320 to Bobrow, et al.; and in copending U.S. application Ser. No. 10/924,459, filed Aug. 23, 2004, for Parallel Printing Architecture Using Image Marking Engine Modules by Mandel, et al., and application Ser. No. 10/917,768, filed Aug. 13, 2004, for Parallel Printing Architecture Consisting of Containerized Image Marking Engines and Media feeder Modules, by Robert Lofthus, the disclosures of all of these references being incorporated herein by reference.
A typical parallel printing system is one which feeds paper from a common paper stream to a plurality of printers, which may be horizontally and/or vertically stacked. Printed media from the various printers is then conveyed from the printers to a common finisher where the sheets associated with a single print job are assembled.
In
With reference now to
The printers 22, 24 may be fed with print media 40 from a single high speed and capacity feeder module 42 including a plurality of print media sources 44, 46, although it will be appreciated that one or more of the printers may be fed from one or more separate feeders. The print media sources 44, 46 may be loaded with print media 40 of different types. A finisher 50 with one or more separate finishing capabilities, here represented by output trays 52, 54 receives printed media from any one or more of the stacked printers 22, 24. Job output trays 52, 54 may include one or more special trays for multiple job collections. Finisher 50 also includes a purge media tray 56 and output media tray 58, which are used for diverting printing control sheets during printing jobs while maintaining the integrity of the print jobs.
As illustrated in
The media handling system 30 includes a downstream print media highway or highways 60, 62 which extends from the feeder module 42 to the finisher module 50 and may include one or more upstream print media highways 66, by which media which has been output by one printer, such as printer 22, can be returned to printer 22 or sent to printer 24 for overprinting. Pathways 68, 70 feed the print media between the downstream media highways 60, 62 and selected ones of the printers. For example, in printing a two page document, page one of the document may be sent to printer 22 and page two to printer 24, where pages one and two may be formed on opposite sides of the same sheet or on separate sheets. Thereafter, these sheets are sent to finisher 50 in sequential ways such that the output maintains the integrity of the print job.
The highway(s) 60, 62, 66 and/or pathways 68, 70 may include inverters, reverters, interposers, bypass pathways, and the like as known in the art to direct the print substrate between the highway and a selected printer or between two printers. It will be appreciated that the printers may be duplex or simplex printers and that a single sheet of paper may be marked by two or more of the printers or marked a plurality of times by the same printer, before reaching the finisher 50
The highways 60, 62 converge at 80 from whence a single highway 82 carries the printed paper past the reflectance value obtaining device 26 to the finisher 50. Although each of the printers 22 is shown linked to the reflectance value obtaining device 26 by the same highway 82, it is to be appreciated that the printers may alternatively be linked by separate pathways to the reflectance value obtaining device 26.
Additionally, it is also contemplated that two or more reflectance value obtaining devices may be provided. For example, as illustrated in
For any system, one of the printers of a particular modality is designated as a reference or master printer. For purposes of discussion, it will be assumed that each of the printers in the systems of
Each printer 22, 24, 92, 94, 102, 104 includes an image forming component capable of forming an image on the print media. Suitable printers include electrophotographic printers, ink-jet printers, including solid ink printers, thermal head printers that are used in conjunction with heat sensitive paper, and other devices capable of marking an image on a substrate. In the case of an electrophotographic printer, the image forming component may include a charge retentive surface, such as a photoconductor belt or drum, a charging station for each of the colors to be applied, an image input device which forms a latent image on the photoreceptor, and a toner developing station associated with each charging station for developing the latent image formed on the surface of the photoreceptor by applying a toner to obtain a toner image. A pretransfer charging unit charges the developed latent image. A transferring unit transfers the toner image thus formed to the surface of a print media substrate, such as a sheet of paper where it is fused by a fusing device. Other methods of forming an image are also contemplated.
In one specific embodiment, an automatic color balance control system produces tone values for all four primary colors Cyan (C), Magenta (M), Yellow (Y) and black (K)) by printing patches with one of the printers, measuring colors with the sensor, and automatically readjusting tone reproduction curves (TRCs) for each of the printers until a satisfactory level of accuracy is obtained. The color balance control system may be as described, for example, in above-mentioned U.S. application Ser. No. 09/566,291 or 10/673,688, except as otherwise noted.
Periodically, the printing system is calibrated to achieve color consistency for each of the printers of the same modality. To calibrate the printing system 10, the master printer is first calibrated with the sensor and a target value or set of target values (referred to herein as an aim curve), is generated for the master printer. The aim curve approaches an ideal or desired color response for the printer which, due to constraints of the printer and/or toners used, is not possible to reproduce exactly. The same aim curve is used in the calibration of the other printers. The calibration process will be described first for a system in which all the printers of the same modality are linked to the same sensor (
With reference now to
Linearization of the printer consists of calculating the Tone Reproduction Curve during the calibration process. The particular linearized signal resulting from the TRC is converted into a halftone imaging before actual printing by the marking device.
An exemplary test patch pattern used for calibrating a marking system that marks using primary colors C, M, Y, and K marking media, such as ink, toner or the like typically includes a set of CMY gray patches, i.e., patches in which CMY marking media have been combined to make gray, and a set of K gray patches, i.e., patches in which black marking media has been applied at a certain area coverage to yield a “gray” patch (i.e., gray developed with black separation). The CMY gray patches vary from 0-100% coverage, as do the K gray patches. The CMY gray patches and the K gray patches extend in the slow-scan direction of the marking system to be calibrated, e.g., the direction of paper feed. Conceivable variations on the test patterns are that the CMY patches and K patches could be mixed, and/or that the number of K patches could differ from the number of CMY patches.
Optionally, fiducial marks, located adjacent the CMY and K patches, or other triggering systems, are detected by a fiducial mark sensor 150 to trigger measuring of the reflectance of the adjacent patch by a reflectance sensor. The test patch pattern is described in greater detail in above-mentioned U.S. application Ser. No. 10/673,688.
The detailed construction of the TRCs for each printer is primarily effected in two steps: (1) the K-TRC and then (2) the CMY-TRCs. The K-TRC may be determined as disclosed in U.S. application Ser. No. 10/673,688. Such a method may include printing of varying degrees of gray, i.e., a*=b*=0, and K between 0 to 100%, and measuring color L* values (a* and b* values are discarded from this measurement since inaccuracies caused by dropping a* and b* values are taken care of by the CMY-TRCs). A smooth one-dimensional input K to L* function is constructed.
CMY-TRCs from similar test target patterns are obtained except that the test patterns comprise patches having K=0 and a pre-selected number of mixed color patches with appropriate CMY values for a neutral gray (typically, C=M=Y=V, where V=0-100%). For example, for V=50, the measured L*, a*, b* output of the printer should be L*=50 and a*=b*=0, but due to the complex non-linear colorimetric relationships which exist between the input and output values, the output is in the form of a gamut in L*, a*, b* space. Input CMY values are processed through the gray balanced TRCs which can be determined using the methods disclosed in U.S. application Ser. No. 10/613,688.
Specifically, the master printer 22 is calibrated first using an iterative process which includes sending a digital test target pattern of test patches (a “target”) to the master printer 22, printing the test patch pattern on the master printer on a sheet of paper (a control page), conveying the control page to the sensor 28, along the network 30 of paper pathways, and determining the L*a*b* values for the patches on the control page. Patches which are designed to be printed with a desired response, e.g., as L*a0b0 (neutral gray), will typically have some value of a* and b* because of the constraints of the printer and/or toners used. In the first iteration, the values of a* and b* measured may vary widely from the desired a0b0 values, e.g., a* may be 10 and b* may be 5. The control system constructs TRCs for the master printer 22 which are intended to bring a* and b* closer to the ideal values of 0. A second copy of the target is printed by the master printer and sent to the sensor. Once again, the values of a* and b* may differ from the ideal zero and new TRCs are generated which are intended to bring the values closer to zero. The iterative process is continued, either for a maximum number of iterations or until the values of a* and b* are as close as possible to the ideal of zero or within an acceptable tolerable range. These non-zero values of a* and b* (which will be referred to as af and bf) are designated as the aim values or measured response. For most printers, it is not possible to achieve values of 0 for both a* and b* and thus af and bf will typically have some finite value for any given value of L*. Thus, an aim curve can be generated which includes finite values of a* and b* (af and bf) for different values of L*, i.e., L*afbf.
Having generated the aim curve and optimum TRCs for achieving the aim curve for the master printer 22, the TRCs are generated for the other printers 24 in the system using a similar iterative process. This involves sending the “target” to the printer 24, printing the target as a control page, and sending the control page to the sensor 28, as for the master printer 22. However, for the slave printers 24, instead of the iterative process being performed with the intent of achieving as close as possible to L*a0b0, the control system generates a TRC which is intended to be as close as possible to L*afbf. Because the printers 22, 24 are nominally identical and thus suffer similar constraints in their abilities to print neutral gray, the slave printer 24 will be able to achieve a close match to the L*afbf aim curve, and the consistency of the images printed by printers 22 and 24 will be higher than if the control system generates TRCs for both the master printer 22 and the slave printer 24 which are aimed at achieving L*a0b0.
Where there several slave printers in the system, the same aim curve of L*afbf values is used for each of the printers in generating the TRCs.
Once the TRCs have been calibrated in this way, periodic recalibration may include fewer iterations of each of the printers, and may use the same aim curve of L*afbf values. For example, recalibration may be conducted periodically, for example, during a normal print job, and include sending the target to each of the printers in turn, printing one control page on each of the printers, determining L*a*b* values with the sensor, comparing the L*a*b* values to the aim curve, and regenerating the TRCs. This allows minor changes in the printer outputs to be corrected to maintain consistency. Periodically, a full calibration is performed, for example, daily and/or when fresh supplies of toner are added.
When more than one reflectance value obtaining device is used, such as shown in
The specific procedures for constructing the TRCs are well understood, and described for example, in application Ser. No. 10/613,688. Briefly, when an actual output has a* and b* values for a target neutral gray, color values need to be adjusted to generate the appropriate neutral gray output which, in this example, L*=50. In this case the C, M and Y could be adjusted to values other than 50 to accommodate the particular printing operation of the subject printing device so that the eventual output would achieve some CMY mix which would have a neutral gray output of L*=50 for the particular printer. The comparison of the target test patches with the measured values of the printer output from the sensor are compared and the difference transformed with a multi-input, multi-output controller for outputting a transformed error vector. The input representing the target colors (again, in this particular example, L* values are between 0 and 100, and a* and b* values are equal to zero) is also fed to a look-up table. This look-up table could be an approximate inverse of the printer (i.e., L*, a*, b*→CMY) or simply L*=C=M=Y.
It will be appreciated that the desired response need not be one dimensional (i.e., neutral gray), but may include color values in more than one dimension. For example, the CMYK values input to the printer may be selected to achieve a desired L*a*b* response where two or more of L*, a*, and b* are non zero (e.g., L*a10b0). The measured response, i.e., aim values, used for the printers will include the L*afbf values for the reference printer which are as close to the desired finite values selected as can reasonably be achieved. The “tone reproduction curves” generated for such multidimensional responses may be two or three dimensional look up tables, as appropriate.
Using the output of the look-up table, first prints of the patches are made. The input target values are then compared to the measured colors to obtain the error. The output of the first summing node is an error signal representing the difference between the desired target color and the output color, which is processed through an integrator, which integrates the weighted errors and outputs corrections to the value that is the output from the look-up table.
Assuming k is the iteration index, the equations for each controlled point [single color] become; Vi(k)=Vi(k−1)+Ui(k); Ui(k)=KiEi(k), where Ei(k)=[L*it−L*im a*it−a*im b*it−b*im]T and Ki is an ith matrix of dimensions 3×3. L*i, a*i, bi* . . . are color values of ith number of patches with i equals color patch numbers between 1 to N. Vi(k) is a function giving rise to delta for C, M, Y values wherein t indicates target values, m indicates measured values and T indicates matrix transpose. The matrix Ki is predetermined from a first set of input-output characterization of the printer for each control point and is stored in memory in the controller. The L*, a*, b*→CMY values are used to build smooth 1D TRC functions. Since the controller does not normally work very well at the gamut boundaries, it will be desirable to include new ways to shape the TRCs at the boundaries of the TRCs. The desired final shape or response of CMY-TRCs causes the color image to print correctly by making these approximately linear in L* with appropriate smoothing near the boundaries for adjusting highlight and shadow colors.
Periodically, it may be desirable to calibrate the sensors in the system against an outside sensor (a “reference” sensor, not illustrated). According to an exemplary method, a printed reference (also called a hardcopy reference) is created, for example, by sending the digital target to the master printer. The printed reference is removed from the system to be evaluated by the reference sensor. L*a*b*values generated by the reference sensor are compared with those obtained when the printed reference (or another printed page generated by the master printer from the digital target) is evaluated by the sensor 28 (or by the master sensor 96 when two or more sensors are used). Correction factors can then be determined to correct the L*a*b*values of the sensor 28, 96 for deviations from the ideal values of the reference sensor. This procedure ensures that color patches on the printed page have colors close to or equal to the desired L*a*b* values. The reference sensor may be a standard commercially available spectrophotometer, e.g., an X-Rite or GreTag device.
Where there is more than one sensor in the system (
With reference once more to
The reflectance value obtaining device 26 obtains reflectance values from test patches by measuring the test patches with a reflectance sensor 28 in sequence, which may, for example, be a spectrophotometer, so that reflectance sensor 28 can obtain a reflectance value from each patch. The spectrophotometer can be implemented using an LED array as described, for example, in above mentioned U.S. Pat. Nos. 6,584,435 and 6,721,692 or one of various spectrophotometers sold by Gretag MacBeth, ExColor, and X-Rite. Fiducial marks are detected by the fiducial mark sensor 150 to trigger measuring of the reflectance of an adjacent patch by reflectance sensor 28. It is also understood that other sensor triggering mechanisms may be used, such as timing triggering signals by control system 148.
The calibration or recalibration process can be performed during a normal printing process. By way of illustration, the printing assembly 16 prints multiple copies a two page document. During normal printing, page 1, the first page of the document, is printed by printer 22, and page 2 is printed by printer 24. The pages are collated by finisher 50 as 1-2, 1-2, . . . , etc. At specific times determined by the control system 148, the system sends a target for generation of a control page to test and control the gray balance calibration of the printers. The print sequence in the first printer 22 is stopped to print the control page, and page 1 of the document is instead printed in the second printer 24. After gray balance evaluation, the control page is diverted to the purge tray 56. The first printer 22 then prints page 2 of the document. Then the target for generation of a control page is sent to the second printer 24, and page 1 of the document is again printed in the first printer. The print sequence can be described as 1-2, 1-2, control T-1, 2-1, 2-1, control T-2, 1-2, 1-2, etc.
It will be appreciated that several of the control pages may be used in an extensive calibration process. Thus, for example, the control system may send the target to the master printer so that several control pages are printed before calibrating the slave printers.
It should be understood that each of the circuits, shown in
The disclosed methods may be readily implemented in software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation hardware platforms. Alternatively, appropriate portions of the disclosed marking system may be implemented partially or fully in hardware using standard logic circuits or a VLSI design. Whether software or hardware is used to implement the systems in accordance with this invention is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized. The processing systems and methods described above, however, can be readily implemented in hardware or software using any known or later developed systems or structures, devices and/or software by those skilled in the applicable art without undue experimentation from the functional description provided herein together with a general knowledge of the computer arts.
Moreover, the disclosed methods may be readily implemented as software executed on a programmed general purpose computer, a special purpose computer, a micro-processor, or the like. In this case, the methods and systems of this invention can be implemented as a routine embedded on a personal computer or as a resource residing on a server or workstation, such as a routine embedded in a photocopier, a color photocopier, a printer driver, a scanner, or the like. The systems and methods can also be implemented by physical incorporation into a software and/or hardware system, such as the hardware and software system of a photocopier or a dedicated image processing system.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others.
Number | Name | Date | Kind |
---|---|---|---|
4473298 | Sakamoto | Sep 1984 | A |
4516175 | Jung et al. | May 1985 | A |
4579446 | Fujino et al. | Apr 1986 | A |
4587532 | Asano | May 1986 | A |
4836119 | Siraco et al. | Jun 1989 | A |
5004222 | Dobashi | Apr 1991 | A |
5080340 | Hacknauer et al. | Jan 1992 | A |
5095342 | Farrell et al. | Mar 1992 | A |
5159395 | Farrell et al. | Oct 1992 | A |
5208640 | Horie et al. | May 1993 | A |
5272511 | Conrad et al. | Dec 1993 | A |
5326093 | Sollitt | Jul 1994 | A |
5435544 | Mandel | Jul 1995 | A |
5473419 | Russel et al. | Dec 1995 | A |
5489969 | Soler et al. | Feb 1996 | A |
5504568 | Saraswat et al. | Apr 1996 | A |
5508826 | Lloyd et al. | Apr 1996 | A |
5525031 | Fox | Jun 1996 | A |
5557367 | Yang et al. | Sep 1996 | A |
5559606 | Webster et al. | Sep 1996 | A |
5568246 | Keller et al. | Oct 1996 | A |
5570172 | Acquaviva | Oct 1996 | A |
5596416 | Barry et al. | Jan 1997 | A |
5629762 | Mahoney et al. | May 1997 | A |
5710968 | Clark et al. | Jan 1998 | A |
5748221 | Castelli et al. | May 1998 | A |
5748330 | Wang et al. | May 1998 | A |
5764369 | Farrell et al. | Jun 1998 | A |
5778377 | Marlin et al. | Jul 1998 | A |
5784667 | Mestha et al. | Jul 1998 | A |
5790281 | Knox et al. | Aug 1998 | A |
5818960 | Gregory et al. | Oct 1998 | A |
5884910 | Mandel | Mar 1999 | A |
5956469 | Liu et al. | Sep 1999 | A |
5995721 | Rourke et al. | Nov 1999 | A |
6008907 | Vigneau et al. | Dec 1999 | A |
6026216 | Ohtsuka et al. | Feb 2000 | A |
6027201 | Edge | Feb 2000 | A |
6059284 | Wolf et al. | May 2000 | A |
6075614 | Ohtsuka et al. | Jun 2000 | A |
6125248 | Moser | Sep 2000 | A |
6157469 | Mestha | Dec 2000 | A |
6205246 | Usami | Mar 2001 | B1 |
6219155 | Zuber | Apr 2001 | B1 |
6241242 | Munro | Jun 2001 | B1 |
6297886 | Cornell | Oct 2001 | B1 |
6301383 | Ito et al. | Oct 2001 | B1 |
6341773 | Aprato et al. | Jan 2002 | B1 |
6345117 | Klassen | Feb 2002 | B2 |
6351308 | Mestha | Feb 2002 | B1 |
6381037 | Balasubramanian et al. | Apr 2002 | B1 |
6384918 | Hubble, III et al. | May 2002 | B1 |
6404511 | Lin et al. | Jun 2002 | B1 |
6441923 | Balasubramanian et al. | Aug 2002 | B1 |
6450711 | Conrow | Sep 2002 | B1 |
6476376 | Biegelsen et al. | Nov 2002 | B1 |
6476923 | Cornell | Nov 2002 | B1 |
6484631 | Degani et al. | Nov 2002 | B2 |
6493098 | Cornell | Dec 2002 | B1 |
6537910 | Burke et al. | Mar 2003 | B1 |
6550762 | Stoll | Apr 2003 | B2 |
6554276 | Jackson et al. | Apr 2003 | B2 |
6567170 | Tandon et al. | May 2003 | B2 |
6577826 | Misaizu et al. | Jun 2003 | B1 |
6577925 | Fromherz | Jun 2003 | B1 |
6607320 | Bobrow et al. | Aug 2003 | B2 |
6608988 | Conrow | Aug 2003 | B2 |
6612566 | Stoll | Sep 2003 | B2 |
6612571 | Rider | Sep 2003 | B2 |
6621576 | Tandon et al. | Sep 2003 | B2 |
6633382 | Hubble, III et al. | Oct 2003 | B2 |
6639669 | Hubble, III et al. | Oct 2003 | B2 |
6760056 | Klassen et al. | Jul 2004 | B2 |
6775029 | Wen et al. | Aug 2004 | B1 |
6819906 | Herrmann et al. | Nov 2004 | B1 |
6925283 | Mandel et al. | Aug 2005 | B1 |
6959165 | Mandel et al. | Oct 2005 | B2 |
7027182 | Soler | Apr 2006 | B1 |
7027187 | Zuber | Apr 2006 | B1 |
7295703 | Bala et al. | Nov 2007 | B2 |
7355752 | Sharma et al. | Apr 2008 | B2 |
7355753 | Yao | Apr 2008 | B2 |
20010013940 | Mayer et al. | Aug 2001 | A1 |
20010033686 | Klassen | Oct 2001 | A1 |
20020067849 | Klassen et al. | Jun 2002 | A1 |
20020078012 | Ryan et al. | Jun 2002 | A1 |
20020103559 | Gartstein | Aug 2002 | A1 |
20020149799 | Hayashi | Oct 2002 | A1 |
20020191183 | Tandon et al. | Dec 2002 | A1 |
20030025924 | Lammens et al. | Feb 2003 | A1 |
20030025925 | Elsman et al. | Feb 2003 | A1 |
20030050768 | Mestha et al. | Mar 2003 | A1 |
20030055611 | Mestha et al. | Mar 2003 | A1 |
20030063302 | Munger et al. | Apr 2003 | A1 |
20030077095 | Conrow | Apr 2003 | A1 |
20030081214 | Mestha et al. | May 2003 | A1 |
20030085941 | Tezuka et al. | May 2003 | A1 |
20030132982 | Tandon et al. | Jul 2003 | A1 |
20030164960 | Housel | Sep 2003 | A1 |
20030202822 | Viturro et al. | Oct 2003 | A1 |
20040012817 | Brewington et al. | Jan 2004 | A1 |
20040042021 | Wu et al. | Mar 2004 | A1 |
20040046820 | Wu et al. | Mar 2004 | A1 |
20040070775 | Yao et al. | Apr 2004 | A1 |
20040070776 | Yao et al. | Apr 2004 | A1 |
20040085561 | Fromherz | May 2004 | A1 |
20040085562 | Fromherz | May 2004 | A1 |
20040088207 | Fromherz | May 2004 | A1 |
20040114164 | Linder et al. | Jun 2004 | A1 |
20040136013 | Mestha et al. | Jul 2004 | A1 |
20040136015 | Van de Capelle et al. | Jul 2004 | A1 |
20040141193 | Mestha | Jul 2004 | A1 |
20040150156 | Fromherz et al. | Aug 2004 | A1 |
20040150158 | Biegelsen et al. | Aug 2004 | A1 |
20040153983 | McMillan | Aug 2004 | A1 |
20040165199 | Klassen et al. | Aug 2004 | A1 |
20040216002 | Fromherz et al. | Oct 2004 | A1 |
20040225391 | Fromherz et al. | Nov 2004 | A1 |
20040225394 | Fromherz et al. | Nov 2004 | A1 |
20040239935 | Kitazawa | Dec 2004 | A1 |
20040246528 | Washio et al. | Dec 2004 | A1 |
20040247365 | Lofthus et al. | Dec 2004 | A1 |
20040252905 | Mizes et al. | Dec 2004 | A1 |
20040257595 | Sharma et al. | Dec 2004 | A1 |
20040264768 | Sharma et al. | Dec 2004 | A1 |
20040264769 | Sharma et al. | Dec 2004 | A1 |
20040264770 | Sharma et al. | Dec 2004 | A1 |
20040264771 | Sharma et al. | Dec 2004 | A1 |
20050036159 | Sharma et al. | Feb 2005 | A1 |
20050052668 | Hoshino | Mar 2005 | A1 |
20050071104 | Viturro et al. | Mar 2005 | A1 |
20050088672 | Johnson | Apr 2005 | A1 |
20050200902 | Mahy | Sep 2005 | A1 |
20060007510 | Nishide et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060197966 A1 | Sep 2006 | US |