Information
-
Patent Grant
-
6191389
-
Patent Number
6,191,389
-
Date Filed
Friday, March 31, 200024 years ago
-
Date Issued
Tuesday, February 20, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Houser; H. Neil
- Rideout, Jr.; George L.
-
CPC
-
US Classifications
Field of Search
US
- 219 391
- 219 392
- 219 400
- 126 299 R
- 126 299 D
- 126 299 E
- 126 21 A
- 126 193
- 126 198
- 126 300
- 427 243
- 427 244
- 427 402
- 427 155
- 427 384
-
International Classifications
- F27D112
- F27D704
- F24C1520
- F24C1532
-
Abstract
A grease resistant oven grille includes an injection molded plastic structure having a plurality of air passages therethrough and a grease resistant powder coating layer overlying the plastic structure for withstanding oven exhaust of about 275° F. (135° C.) without color change. The grease resistant powder is a polyester resin that is electrostatically applied to the plastic structure after priming the grille with a conductive primer.
Description
BACKGROUND OF THE INVENTION
This invention relates generally to ovens, and more particularly to exhaust ventilation grilles for range applications.
Conventional ovens are either, for example, microwave or radiant cooking type ovens. A microwave oven includes a magnetron for generating RF energy used to cook food in the oven cooking cavity, and radiant cooking ovens include an energy source such as lamps which generate light energy used to cook the food. Although microwave ovens cook food more quickly than radiant ovens, microwave ovens do not brown the food. Radiant ovens brown the food and generally can be used to cook a wider variety of foods than microwave ovens. Therefore, combination ovens have been developed that include both radiant and microwave heating elements to cook a wider variety of foods more quickly.
An oven ventilation system is required for intake of room air into the cooking cavity for cooking operations, and/or for cooling of radiant cooking units, and re-circulation of air back into the room. In some types of ovens, air intake and exhaust is accomplished through ventilation grilles attached to an outer shell of the oven. Due to its low cost and manufacturing versatility, plastic has become a material of choice for oven grilles, and in some cases is used to form decorative grilles on a front face of the oven that add to the aesthetic appeal of the oven.
However, it has been observed that high exhaust temperatures, which may reach 275° F. (135° C.) or greater in a combination oven, and/or grease deposits from cooking cavity exhaust air, adversely affect known plastic grilles of ovens. Resultant grease stains and discoloration of the plastic grilles is highly undesirable. While known plastics exist that maintain grease resistance at elevated temperatures these materials are unacceptable in other aspects, such as UV color stability.
Accordingly, it would be desirable to provide a grease resistant, color stable, plastic oven grille that may withstand severe conditions when used on an oven.
BRIEF SUMMARY OF THE INVENTION
In an exemplary embodiment of the invention, an oven grille includes an injection molded plastic structure having a plurality of air passages therethrough and a grease resistant powder coating layer overlying the plastic structure for withstanding oven exhaust of about 275° F. (135° C.) without color change. The powder coating is a highly cross-linked thermosetting polyester/urethane that is electrostatically applied to the plastic structure over a conductive primer layer having a dry film thickness of about 0.7 mils to about 1.5 mils (17.8 μm to 38.1 μm).
The powder coating insulates the plastic structure, resists oxidation and grease penetration, and is color stable to ultraviolet light, thereby enduring high temperature and grease conditions without blemish. The grille may be fabricated in a variety of colors and may be used on a variety of ovens with superior performance relative to known oven grilles.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a front view of an exemplary oven including a grease-resistant oven grille;
FIG. 2
is a perspective schematic view partially broken away of the oven shown in
FIG. 1
;
FIG. 3
is a front elevational view of the grille shown in
FIG. 1
; and
FIG. 4
is a cross-sectional view of the grille taken along line
4
—
4
of FIG.
3
.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed, in one aspect, to an oven that includes at least two types of cooking elements, such as radiant and microwave cooking elements. Although one specific embodiment of a radiant/microwave cooking oven is described below, it should be understood that the present invention can be utilized in combination with many other ovens and is not limited to practice with the oven described herein. For example, the oven described below is an over the range type oven. The present invention, however, is not limited to practice with just over the range type ovens and can be used with many other types of ovens.
FIG. 1
is a front view of an over the range type oven
100
in accordance with one embodiment of the present invention. Oven
100
includes a frameless glass door
102
having an injection molded handle
104
. A window
106
is provided for visualizing food in the oven cooking cavity. Door
102
has an inner metal frame that extends around the door periphery and comprises an RF door choke. The glass of door
102
has, for example, a thickness of about ⅛″ and can withstand high temperatures, as is known in the art, and is secured to the inner metal frame by an adhesive. Handle
104
also is secured to the metal frame by bolts that extend through openings in the glass. Oven
100
also includes an injection molded, grease resistant plastic vent grille
108
and a frameless glass control panel
110
.
Rubber tactile switch covers
112
are located over each key pad of panel
110
, and an injection molded knob or dial
114
is provided for making multiple selections. Selections are made using dial
114
by rotating dial
114
clockwise or counter-clockwise and when the desired selection is displayed, pressing dial
114
. Instructions and selections are displayed on a liquid crystal display
116
.
FIG. 2
is a perspective view of a portion of oven
100
. Oven
100
includes a shell
120
, and a cooking cavity
122
is located within shell
120
. Cooking cavity
122
is constructed using high reflectivity (e.g., 72% reflectivity) stainless steel. An upper radiant cooking unit
124
is mounted to an upper panel
130
of shell
120
. In one embodiment, a lower radiant cooking unit (not shown) is located at a lower section of shell
120
. An exhaust system
132
also is mounted to shell
120
, and a cooling system (not shown) is mounted to shell
120
for cooling oven components. Exhaust air is discharged from exhaust system
132
over shell upper panel
130
above cooking cavity and through vent grille
108
into a room where oven
100
is located.
FIG. 3
is an elevational view of vent grille
108
including louvers
140
extending between cross members
142
extending substantially perpendicularly to louvers
140
.
FIG. 4
is a cross-sectional view of grille
108
including a top surface,
144
a bottom surface
146
, and a plurality of louvers
140
. Each louver
140
contains a face
148
, an inner extension
150
extending substantially perpendicular from each face
148
, and an inclined section
152
extending obliquely from each of inner extensions
150
. In use, exhaust air flows from exhaust system
132
(shown in
FIG. 2
) and is substantially channeled between inclined sections
152
of adjacent louvers
140
to exit grille
108
in a substantially parallel flow to inner extensions
150
of louvers
140
, as indicated by the arrows in FIG.
3
.
In a particular embodiment, grille
108
is fabricated from injected molded plastic, such as white VALOX 815 or neutral VALOX 412, both commercially available from General Electric Company. The plastic is injection molded according to known techniques to form a plastic structure including air passages therethrough, such as with louvers
140
. To withstand exhaust temperatures between about 260° F. to about 325° F. (127° C. to 163° C.) or more, and further to withstand grease stains and discoloration from heat and grease exposure of about 24 hours to about 200 hours at those temperatures, exterior surfaces of grille
108
are primed and powder coated as described in detail below. The powder coating insulates grille surfaces, resists oxidation and grease penetration, and is color stable to ultraviolet light at elevated temperatures relative to known oven grilles, thereby extending a useable lifespan of plastic grille
108
.
After injection molding operations, grille
108
is hung on a conveyor jig (not shown), blown with air, and wiped down with a tac rag. A conductive primer, such as, for example, PPG RPP9850 BCF commercially available from PPG Industries, Inc. of Pittsburgh, Pa., is sprayed upon grille surfaces to a dry film thickness of about 0.7 mils to 1.5 mils (17.8 μm to 38.1 μm). In an alternative embodiment, other known suitable primers and the like may be used within the scope of the invention. The conductive primer is reduced as necessary with a solvent, such as, for example, acetone or a 50/50 mixture of acetate and methyl ethyl ketone, to achieve an appropriate application viscosity, such as, for example 22 seconds #4 Ford Cup. Solvent reduction is further adjusted as necessary near the appropriate viscosity level to minimize runs and solvent blisters. The conductive primer is applied to grille
108
using known spray techniques and equipment, such as, for example, manual or automatic methods utilizing air atomized spray guns or high volume, low pressure (HVLP) spray guns. Once the conductive primer is applied to the grille surfaces, the primer is cured in an oven for approximately 20 minutes at 270° F. to 300° F. (132° C. to 149° C.).
After the primer is cured, grille surfaces are powder coated with a thermosetting polyester powder coating. The powder coating can include a polyester/urethane resin. Suitable powder coatings are highly cross-linked to produce adequate hardness, abrasion and chemical resistance, as well as color stable to ultraviolet light that enable grille
108
to withstand the demanding conditions associated with use in an oven environment, such as, for example, during operation of oven
100
(shown in FIGS.
1
and
2
). Examples of suitable thermosetting polyester powder coatings are commercially available from Lilly Powder Coating of Kansas City, Mo., a division of Lilly Industries, Inc. of Bowling Green, Ky., and include:
|
325B
Black
|
346W
White
|
3300D7001
Almond
|
3300D8002
Bisque
|
|
Other resinous film forming materials, such as acrylic, polyether, and polyurethane materials or a mixture thereof could be combined with rheology control agents, ultraviolet light stabilizers catalysts, fillers, and the like and used within the scope of the present invention, provided that the resultant coating composition is not detrimentally affected in terms of physical performance and properties.
The powder coating is spray applied to louvers
140
using electrostatic powder guns after grille
108
is heat treated, or degassed, to remove volatiles which may outgas and cause surface defects as the powder coating is cured. The powder coating may be applied using automatic or manual spray methods. The powder coat is then cured by baking grille
108
at substantially the same temperature at which the primed grille was pre-heated or degassed.
It is contemplated that other conventional powder coating methods, including but not limited to fluidized bed applications and the like may also be used within the scope of the invention with or without primer coatings or layers underneath the powder coatings.
In one embodiment, grille
108
is degassed by baking grille
308
at 370° F. to 380° F. (188° C. to 193° C.) for at least about 15 minutes to about 30 minutes. The 325B Black powder coating is applied manually to grille louvers
140
using electrostatic powder coating spray guns at a setting of 35 kV to 44 kV. After the powder coating is manually applied to louvers
140
, grille
108
is automatically powder coated using electrostatic powder coating spray guns at a setting of 60 kV to 90 kV. The powder coated grille
108
is oven cured for at least about 20 minutes at a temperature of about 370° F. to 380° F. (188° C. to 193° C.). The powder coating is applied to a thickness of approximately 1.5 mils to 2.5 mils (38.1 μm to 63.5 μm) on louvers
140
, and to a thickness of approximately 3 mils to 5 mils (76.2 μm to 127 μm) on a remainder of the grille surface.
In another embodiment, grille
108
is degassed by baking grille
308
at 370° F. to 380° F. (188° C. 193° C.) for at least 5 minutes to about 15 minutes. The 346W White, 3300D7001 Almond, or 3300D8002 Bisque powder coating is manually applied to louvers
140
using electrostatic powder coating spray guns at a setting of 35 kV to 44 kV. After the powder coating is manually applied to louvers
140
, grille
108
is automatically powder coated using electrostatic powder coating spray guns at a setting of 60 kV to 90 kV, and the powder coating is cured in an oven at 370° F. to 380° F. (188° C. to 193° C.) for approximately 20 minutes. The powder coating is applied to a thickness of approximately 1.5 mils to 2.5 mils (38.1 μm to 63.5 μm) on louvers
140
, and to a thickness of approximately 3 mils to 5 mils (76.2 μm to 127 μm) on a remainder of the grille surface.
The above-described method was found to produce grease resistant grilles that were tested satisfactorily to the following specifications:
|
Crosshatch Adhesion
95% retention of coating after tape jerk
|
with 3M 600 tape.
|
Steam Exposure
2 hours without blistering, color change,
|
or loss of adhesion
|
Chicken Grease Exposure
24 hours at 275° F. (135° C.) without color
|
or gloss change
|
Lard/CRISCO (50/50)
24 hours at 275° F. (135° C.) without color
|
Grease Exposure
or gloss change
|
Humidity Exposure
30 days at 100% relative humidity and
|
100° F. (43° C.)with no blistering, no color
|
change, and no loss of adhesion
|
Dry Heat Exposure
168 hours at 275° F. (135° C.) with color
|
change and no loss of adhesion
|
|
Therefore, an adequate oven grille is provided that is capable of withstanding a higher temperature environment than known oven grilles while resisting grease stains and color affects.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Claims
- 1. A grease resistant oven grille comprising:an injection molded plastic structure having a plurality of air passages therethrough; and a grease resistant powder coating layer overlying said plastic structure.
- 2. An oven grille in accordance with claim 1 wherein said powder coating is configured to withstand oven exhaust temperatures of about 260° F. (127° C.) to about 325° F. (163° C.) without color change.
- 3. An oven grille in accordance with claim 2 wherein said powder coating is configured to withstand oven exhaust temperatures of about 275° F. (135° C.) without color change.
- 4. An oven grille in accordance with claim 1 wherein said plastic structure comprises a plurality of cross members, and at least one louver extending between said cross members.
- 5. An oven grille in accordance with claim 4 wherein said louver comprises a face, a inner extension extending substantially perpendicular from the base, and an inclined section extending obliquely from said inner extension.
- 6. An oven grille in accordance with claim 1 further comprising a primer layer between said plastic structure and said powder coating.
- 7. An oven grille in accordance with claim 6 wherein said primer layer has a dry film thickness of about 0.7 mils to about 1.5 mils (17.8 μm to 38.1 μm).
- 8. An oven grille in accordance with claim 7 wherein said primer is a conductive primer.
- 9. An oven grille in accordance with claim 1 wherein said powder coating has a thickness of about 1.5 mils to about 5 mils (38.1 μm to 127 μm).
- 10. An oven comprising;a cooking cavity; at least one radiant cooking unit for delivering cooking energy into said cooking cavity; an exhaust system for ventilating said cooking cavity; and a plastic grille in flow communication with said exhaust system for passing exhaust air therethrough, said grille comprising a powder coated surface for resisting grease stains and color effects at exhaust temperatures of about 260° F. (127° C.) to about 325° F. (163° C.).
- 11. An oven in accordance with claim 10 wherein said grille powder coated surface is configured to withstand oven exhaust temperatures of about 275° F. (135° C.) without color change.
- 12. An oven in accordance with claim 10 wherein said oven grille comprises a plurality of cross members, and at least one louver extending between said cross members.
- 13. An oven in accordance with claim 12 wherein said grille louver comprises a face, an inner extension extending substantially perpendicular from said face, and an inclined section extending obliquely from said inner extension.
- 14. An oven in accordance with claim 10 further comprising a primer layer between said plastic structure and said powder coating of said grille.
- 15. An oven in accordance with claim 14 wherein said oven primer has a dry film thickness of about 0.7 mils to about 1.5 mils (17.8 μm to 38.1 μm).
- 16. An oven in accordance with claim 15 wherein said primer is a conductive primer.
- 17. An oven in accordance with claim 10 wherein said grille powder coating has a thickness of about 1.5 mils to about 5 mils (38.1 μm to 127 μm).
- 18. A method for fabricating a grease resistant oven grille, the grille including a plastic structure having an exterior surface and a plurality of passages therethrough, said method comprising the steps of:applying a conductive primer to the exterior surface of the grille to a dry film thickness of about 0.7 mils to about 1.5 mils (17.8 μm to 38.1 μm); curing the primed grille at a first temperature; degassing the primed grille at a second temperature greater than the first temperature; powder coating a portion of the exterior surface of the cured primed grille with a polyester powder coating, the portion including the plurality of passages; powder coating an entire exterior surface of the cured primed grille with a polyester powder coating; and curing the polyester coating at a third temperature, the second temperature and the third temperature being approximately equal.
- 19. A method in accordance with claim 18 wherein said steps of powder coating comprise the step of electrostatically applying a powder coating to the primed grille to a thickness of about 1.5 mils to about 5 mils (38.1 μm to 127 μm).
- 20. A method in accordance with claim 18 wherein said step of curing the polyester powder coating comprises the step of heating the grille for about 20 minutes at a temperature of about 370° F. to about 380° F. (188° C. to 193° C.).
- 21. A method in accordance with claim 18 wherein said step of curing the primed grille comprises the step of heating the grille for about 20 minutes at about 270° F. to 300° F. (132° C. to 149° C.).
- 22. A method in accordance with claim 18 wherein said step of degassing the primed grille comprises the step of heating the grille for about 5 minutes to about 15 minutes at about 370° F. to about 380° F. (188° C. to 193° C.).
- 23. A method in accordance with claim 18 wherein said step of degassing the primed grille comprises the step of heating the grille for about 15 minutes to about 30 minutes at a temperature of about 370° F. to about 380° F. (188° C. to 193° C.).
US Referenced Citations (5)