This invention relates to lasers, and more specifically, to an improved green laser for use in both commercial and military applications.
Green lasers are advantageous over more widely used red lasers for a variety of reasons. Green lasers are easier on the human eye, more perceptible to a user, and more capable of providing clearer, projected images for users.
Most green lasers, a prior art example of which is shown in
An additional prior art green laser arrangement is shown in
The arrangement shown in
There exists a need in the art for a more efficient and cost effective technology for producing green lasers.
In accordance with an embodiment of the present invention, a laser diode is positioned within a cavity that includes a non-linear optical crystal. The cavity that causes the lasing is positioned between rear side of the actual laser diode, and front side of a non-linear crystal. The arrangement permits the generation of a green light laser beam with an easier manufacturing technique. The method is extendable to other color lasers.
Shown at
The surface at exhibit B is anti-reflection (AR) coated at both the fundamental and second harmonic wavelengths which simply permits the passage of light. Unlike a conventional laser, the surface of exhibit B is not set up to be partially reflective and cause the lasing because the space between surfaces A and B do not act as the laser cavity as in conventional products. The diode 402 is the gain media in this intra-cavity laser and second harmonic generation device.
A lens 403 is AR coated at both the fundamental and second harmonic wavelengths and focuses the output light on a non-linear optical crystal which produces the green light. The exact green laser wavelength is determined by laser gain media and corresponding cavity design. For the gain media with cavity that produce fundamental wavelength from 1040 nanometer to 1064 nanometer; the second harmonic wave produces green laser beam light from 520 nanometer to 532 nanometer. The crystal 404 may be a non-linear optical (NLO) crystal such as KTP (Potassium Titanyl Phosphate KTiOPO), although other such crystals may be used as well.
A surface E shown at
In operation, light emanates from the surface F at the second harmonic laser wavelength. Additionally, residual energy emanates at the fundamental laser wavelength because the high reflective coating at the fundamental wavelength is not one hundred percent reflective. Assuming the laser diode has its peak gain at 1040 nanometer to 1064 nanometer, the second harmonic output is in the visual green range, 520 nanometer and 532 nanometer.
Prior art arrangements typically include a either a pump laser to generate the fundamental wavelength at infra-red (IR), such as 1064 nanometer, or an IR pump laser such as a DBR laser 1064 nanometer to generate green in a single pass, second harmonic generation. However, various embodiments of the present invention actually encapsulate the non-linear optical crystal within the cavity, and also include an optional lens 403, depending upon the balance of cost and electro-optical efficiency requirements. Also, the present invention includes a semiconductor diode 402 within the cavity in between surfaces A and F of
The preferred laser diode 402 is in the near infra-red range, say 1040-1064 nanometer, in order to generate green although this is not critical to the present invention. If the gain of the laser diode and its corresponding HR coating are properly chosen to be near 920 nanometers, the invention can be applied to generate blue laser output. Other wavelengths may be used as well. By using such a laser diode 402, electro-optical power conversion efficiency of about 20-25 percent can be achieved at the second harmonic wavelength, such percentage being measured as the fraction of input electrical power that appears as output light power at the second harmonic wavelength.
In addition to nonlinear crystal KTP, it has been found that other crystals such as GdCa4O(BO3)3, GdxY1-xCa4O(BO3)3 may also be used for wider temperature operation.
The length of the laser cavity, especially the length the nonlinear optical crystal is determined by the optimal conversion efficiency and power requirements. Additionally, the coatings for each of the surfaces indicated in
The laser may be any type including of near IR wavelength. As is known in the art, near IR is above about 700 nm to below about 2000 nm.
Output filter 406 could be mounted inside a package housing and HR coated at surface G fundamental wavelength to rid of residual fundamental laser output from the laser cavity and AR coated the surface G at second harmonic wavelength. Surface H of the filter 406 can be AR coated for both fundamental and second harmonic wavelength. Alternatively, monitor photodiode 401 can be placed sideways so that reflections from filter can be used to monitor laser output to avoid significant tracking error due to a laser output front and back emission power differences.
While the above describes the preferred embodiment of the present invention, various other embodiments will be apparent to those of skill in the art. The scope of the invention therefore, is defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
7447243 | Aoshima et al. | Nov 2008 | B2 |
RE43421 | Zhang | May 2012 | E |
20070230532 | Copner et al. | Oct 2007 | A1 |
20080079855 | Komatsu et al. | Apr 2008 | A1 |
20090010001 | Kamijima et al. | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090232168 A1 | Sep 2009 | US |