The invention relates generally to the field of grenades, cartridges and other diversionary/distraction devices and more specifically to a device that can be launched either by hand or apparatus, the device having an integrated safety lever and firing pin retaining clip assembly.
There are numerous versions of grenades that are presently available for purposes of law enforcement, military and other related applications. Included among these devices are what are referred to as so called “non lethal” or distraction/diversionary devices. These devices include, among others, “flash-bang” grenades and “stun” grenades, each of which are commonly designed to temporarily incapacitate a person or persons that are within a prescribed area or to cause persons to leave a prescribed area due to the detonation of a grenade therein. In the case of “flash bang” grenades, a combination of a released charge of intense illumination and auditory (loud sound) discharge are emitted by the grenade while in the case of “stun” grenades, a plurality of hardened rubberized pellets are caused to be released at high speed when the grenade is detonated over a circular radial pattern. Other non-lethal versions can include those containing at least one of or combinations of chemical (e.g., tear gas) and other deterrent filler materials that are intended to cause considerable discomfort.
In the common course of use, each of the above-noted grenades is provided with a fuze assembly, which permits detonation of the device after a timed delay (i.e., a few seconds) following the release of an arming pin and a safety lever. The safety lever is initially restricted from movement to an firing position by the presence of the arming pin. To avoid any premature release of the arming or firing pin, a retaining clip is typically also provided. The retaining clip releasably retains an outer ring portion of the arming pin, requiring the user to first release the arming pin from the retaining clip by means of a combined rotational and axial movement of the pin. Upon release of the arming pin, the safety lever is unlocked and can be pushed inwardly by the user toward the grenade body to the firing position. The safety lever is biased by a striker spring wherein release of the lever causes subsequent upward movement of the lever from a rest position on the part of the user or a launcher device can then initiate the fuze assembly in order to detonate the grenade.
In the foregoing design, the retaining clip is attached to the grenade body by means of a separate component which is placed in overlaying relation relative to the fuze assembly of the grenade during assembly thereof. As such and particularly in the instances of non-lethal grenades, the safety lever would remain with the grenade fuze upon detonation, which could lead to a build-up of pressure as a result of the retaining clip blocking the top venting ports of the grenade. This build-up of pressure could have two effects. First, it could break the fuze body which would cause the actual fuze body to separate and be thrown clear from the grenade upon detonation, becoming a dangerous projectile and creating potential for injury. Second and as pressure is blocked at the top of the grenade, it could build-up additional pressure at the bottom ports of the grenade, thereby permitting the grenade to move on the floor. It is therefore a general need in the field to improve the overall manufacturability and safety in the use of grenades, particularly non-lethal versions, but without sacrificing the ability to prevent premature or inadvertent detonation of these devices.
Therefore and according to one aspect as described herein, a grenade is provided, said grenade comprising a housing, containing a fuze assembly having means for causing detonation of said grenade, a safety lever attached to said housing and engageable with said fuze assembly, an arming pin that locks said lever and a firing pin retaining clip that retains said arming pin to prevent release of said safety lever, wherein said firing pin retaining clip is integrated within the safety lever.
The grenade according to one version thereof is a non-lethal grenade. The safety lever can be fabricated with the firing pin retaining clip therein or the retaining clip can be fastened or otherwise secured directly to the safety lever during assembly thereof.
According to another aspect, there is provided a safety lever for a grenade said safety lever comprising means for engaging a fuze assembly of said grenade and a retaining clip for a firing pin of said grenade. The safety lever is configured to move between a first position and a second position relative to a fuze assembly of said grenade to cause detonation thereof, said safety lever further including means for retaining an arming pin of said grenade which locks said safety lever in said first position.
One advantage provided is greater ease in the manufacture of grenades by assimilating the above-noted safety functions within a single component, but without sacrificing reliability or functionality of the grenade. That is, the herein described safety lever includes a retaining clip that permits an arming pin of the grenade to lock the safety lever in a first or non-firing position wherein the lever continues to operate upon release of the arming pin to be caused to move between the first position and an arming position in which the fuze assembly of the grenade can be engaged. By maintaining the retaining clip within the safety lever itself and not providing a separate component, the retaining clip is maintained and released immediately after engagement with the fuze assembly based on a hinged connectivity of the safety lever with the grenade body. As a result, there is no chance of the retaining clip becoming a dangerous projectile when the grenade detonates, a clear preference, especially in non-lethal versions or otherwise creating built-up pressure in the grenade prior to detonation.
Moreover, integration of the retaining clip within the safety lever improves and simplifies manufacture and assembly of grenades incorporating same, but without sacrificing reliability.
These and other features and advantages will be readily apparent from the following Detailed Description, which should be read in conjunction with the accompanying drawings.
The following embodiments described herein relate to a grenade having a safety feature that is integrated directly within the handle or lever of the grenade. Throughout the course of discussion, various terms are used to aid in providing a suitable frame of reference with regard to the accompanying drawings. To that end, terms such as “above”, “below”, “top”, “bottom”, “upward”, downward”, “proximal”, “distal” and the like are used throughout. These terms, however, are not intended to be overlimiting of the present invention as claimed. In passing, it should further be noted that the drawings which are provided in this application should not be necessarily relied upon in terms of their depicted scale.
Moreover, the embodiments described herein relate specifically to certain so-called “non-lethal” or diversionary weapons/devices or grenades that use a contained material to produce an audible or visual distraction or to otherwise impair or incapacitate individuals in the vicinity of the detonated grenade. It will be readily apparent that the concepts that are described herein, however, are also applicable to other forms of weaponry having an arming pin-actuated feature that is used in conjunction with at least one fuze or fuze assembly to effect detonation.
Referring to
As previously noted, the grenade 20 described herein is a so-called “non-lethal” or “diversionary” grenade. According to this exemplary version, a plurality of hardened (e.g., Durometer 70) rubberized pellets 36 are added as filler material within the hollow interior chamber 28 of the grenade housing 24. upon detonation of the grenade 20 these rubberized pellets 36 are dispersed at a high speed over a predetermined radius and are intended to stun or incapacitate persons within that radius. Alternatively, other materials such as those producing a light emitting or audible effect (referred to as a “flash-bang” grenade) could be utilized. A cap 40 is defined by a substantially cylindrical configuration and is engaged with the stem portion 32, the cap being made, according to this embodiment, from a plastic material and having a downwardly extending portion 44 that is sized to create an interference fit with the interior walls of the stem section 32 and an upper ledge 48 shaped to configure substantially to that of the exterior wall of the stem section when the cap is fitted thereto. As such, the cap 40 is releasably, though tightly attached to the grenade housing 24.
The cap 40 includes a center through opening or bore 52, the opening according to this embodiment including a set of screw threads (not shown) for receiving a portion of a fuze assembly 60, which is attached thereto. An example of a portion of a fuze assembly is shown in
The fuze assembly 60 is mounted to the cap 40 and includes a portion that extends into the interior chamber 28 of the body 24. According to this version, the fuze assembly includes a fuze body 64 having a downwardly extending portion 66 that is threaded over at least an axial portion thereof and complimentary to the screw threads of the central bore 52 of the cap 40 into which the portion is threadingly engaged. The fuze body 64 retains therein a striker 70, a striker spring 74 and a primer, wherein the fuze assembly further includes at least one charge so as to effect detonation of the grenade 20. A safety lever 80 or spoon is attached to the fuze body 64 in biased and overlaying fashion and is retained in place by means of an arming pin 90 that is also attached to the fuze body 64. The safety lever 80 extends downwardly from the fuze body 64 and is pivotally and releasably or hingably attached thereto, the lever substantially conforming to the fuze body 66 and the grenade body 24, respectively.
Because there is considerable risk of catastrophic injury that could develop if the arming pin 90 prematurely or unintentionally is pulled, a retaining clip 98 is further provided. As shown in
In operation and as noted, release of the arming pin 90 from the retaining clip 98 is effected by a twisting motion of the proximal ring portion 94 of the pin. As shown in
Turning to
A fuze assembly (partially shown) 160 is configured to fit onto the top opening 128 of the grenade body 24, the fuze assembly according to this embodiment being a Model 201, Pyrotechnic Delay fuze including a fuze body 164 having a downwardly extending portion 162 having a set of external threads 165 that are conformed in terms of pitch and to complement that of the threaded axial section 130 and to permit threaded engagement therebetween. Representative fuze versions are more completely described, by way of example, in U.S. Pat. Nos. 4,926,752, 5,196,649 and 5,624,523.
A safety lever 180 includes an upper end that is pivotally and biasedly attached to the fuze assembly 160, wherein an arming or firing pin 190 is attached through a pair of axially aligned lateral openings 137 (only one shown in this these figures) formed in the fuze assembly 160 to prevent premature movement of the lever. The arming pin 190 is a cotter pin or other suitable pin-like member having a proximal ring portion 194 that is engaged by a retaining clip 198. The retaining clip 198 according to this prior art version similar to that shown previously in
In operation and similarly to the preceding example, the retaining clip 198 and more specifically the C-shaped member 103,
With the arming pin 190 removed, the unlocked safety lever 180 is now pushed inwardly toward the body by the user. Upon either throwing (release) of the grenade 120 by hand (not shown) or by a launching apparatus (not shown), the safety lever 180 is caused to pivot based upon the presence of a biasing spring 74,
Referring to
A fuze assembly 260, such as an M201 Pyrotechnic fuze according to this embodiment or other suitable assembly, is attached to the grenade body 224, the fuze assembly includes a downwardly extending portion (not shown) having a set of external threads that correspondingly match those of the axial threaded portion at the top of the grenade body 224. The fuze assembly 260 further includes a striker and striker spring similar to those shown in
According to this grenade version, a safety lever 280 is pivotally and biasedly attached to the grenade body 224, the lever including a lower handle portion 284 extending substantially along and conforming to the side of the grenade body 224. The safety lever 280 further including a distal end 286 that includes a pair of hinge members 288, spaced from one another and extending downwardly in a concave manner from a top surface 289 of the safety lever. The hinge members 288 are configured to engage with a bar 266 projecting from the top surface 267 of the fuse assembly 260, the bar being separated from the top surface of the fuse assembly by a tab 269 having a width that is that is marginally larger than the spacing between the hinge members 288 of the safety lever 280 in order to permit pivotal engagement therewith.
The safety lever 280 further includes an integrated retaining clip 282. According to this version, the clip 282 is fastened using screws 283 or otherwise attached to the top surface 289 of the safety lever 280, but the clip can be alternatively attached or integrated into the lever itself as a single component. The clip 282 is further defined according to this embodiment by a substantially C-shaped spring clip section 285 having a spacing that is sized to securably but releasably retain the proximal ring portion 294 of an arming pin 290. The arming or firing pin 290, when positioned in the lateral opening 261,
To remove the firing pin 290, the proximal ring portion 294 must first be rotated out of engagement with the retaining clip 298. The presence of the integrated retaining clip 282 does not interfere with the intended operation of the grenade 20 as the safety lever 280 is gripped by the user (not shown). The grenade 220 can be launched, releasing the safety lever 280 which causes the lever, including the integrated retaining clip 298, to be moved into a firing position in which the striker is moved on axis is with the primer of the fuze assembly 260, permitting detonation of the grenade and in which the safety lever 280 falls harmlessly to the ground following its release based on the hinged attachment thereof to the grenade 220.
A second embodiment of a safety lever 380 with an integrated safety clip is shown in
It should be readily apparent that other variations and modifications are possible utilizing the inventive concepts described herein and according to the following claims.