Not applicable.
Not applicable.
The present disclosure relates generally to providing grid power for one or more operations at a site and, more particularly, to providing grid power to a hydrocarbon service application at a site.
In general, pre-production or upstream hydrocarbon services operations at a site utilize diesel-powered equipment, natural gas or both as the power source for the site. For example, an electric stimulation operation may utilize generators, such as turbines, that have as a fuel source natural gas or diesel. Such generators require that the fuel source be transported and stored at the site. However, each of these fuel sources has an associated emission that at many sites may not be conducive to the operating constraints imposed for the site. Emission standards at some locations or sites are becoming more stringent such that current equipment is not conducive for meeting these more stringent emission standards. A need exists for an improved power source that provides the required power necessary for the equipment at a site while meeting emission standards.
For a more complete understanding of the present disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
The present disclosure relates generally to providing grid power at a site and, more particularly, to providing grid power of hydrocarbon services at a site.
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation may be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the specific implementation goals, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure.
Throughout this disclosure, a reference numeral followed by an alphabetical character refers to a specific instance of an element and the reference numeral alone refers to the element generically or collectively. For example, a widget “1A” refers to an instance of a widget class, which may be referred to collectively as widgets “1” and any one of which may be referred to generically as widget “1”. In the figures and the description, like numerals are intended to represent like elements. A numeral followed by the alphabetical characters “N” refers to any number of widgets.
To facilitate a better understanding of the present disclosure, the following examples of certain embodiments are given. In no way should the following examples be read to limit, or define, the scope of the disclosure. Embodiments of the present disclosure may be applicable to drilling operations that include but are not limited to target (such as an adjacent well) following, target intersecting, target locating, well twinning such as in SAGD (steam assist gravity drainage) well structures, drilling relief wells for blowout wells, river crossings, construction tunneling, as well as horizontal, vertical, deviated, multilateral, u-tube connection, intersection, bypass (drill around a mid-depth stuck fish and back into the well below), or otherwise nonlinear wellbores in any type of subterranean formation. Embodiments may be applicable to injection wells, and production wells, including natural resource production wells such as hydrogen sulfide, hydrocarbons or geothermal wells; as well as borehole construction for river crossing tunneling and other such tunneling boreholes for near surface construction purposes or borehole u-tube pipelines used for the transportation of fluids such as hydrocarbons. Embodiments described below with respect to one implementation are not intended to be limiting.
Many job sites or operations require a power source that is capable of providing power for an extensive area, to various equipment, at various voltage/current ratings, etc. all while meeting certain or specified emission standards. To meet these emission standards, a power source is needed that provides the power required by the various equipment at a site for the various operations, for example, hydrocarbon services, without any or with very low emissions. A grid power source offers the opportunity supply large quantities of power to a site, even a remote site, without the burdens (such as costs of storage and transportation, personnel and safety) associated with typical fuel-based power sources. The present disclosure provides a grid power system that is used as a power source or a power grid, to distribute power (for example, switchgear) and to transform power from one voltage to another. For example, the one or more grid power components are configured to and are capable of supporting one or more hydrocarbon or well service operations such as hydraulic fracturing operations and delivery of clean fluid, slurry or proppant. The grid power source may support the providing of power to one or more sites. For example, the grid power source provides a utility grid power that can supply large quantities of hydraulic power to large hydraulic fracturing treatments for the simultaneous fracturing at multiple well sites.
Using the grid power system as the power source to supply the required or necessary power to one or more well sites has several benefits over equipment that requires fuel-based power. For example, the costs associated with a hydrocarbon service may be reduced as the transportation and storage of fuel, additional personnel to manage and handle the storage and maintenance and transportation of the fuel are not required, less equipment is required, less maintenance of equipment is required as electric powered equipment is generally more reliable and fewer personnel are required at the site. For example, a typical generator with assorted support and connectivity equipment at a hydrocarbon services site requires a large footprint and requires that large amounts of fuel be available to maintain operations without interruption or down-time. The grid power system is compact and requires less space, equipment and personnel than the corresponding fuel-based power sources. Such also reduces safety risks due to the decrease in equipment at the sight and exposure to fuel through delivery, storage, maintenance and distribution at the site of the fuel. Also, emissions at a site associated with the power source are reduced or eliminated when the power source is electrical as opposed to fuel-based. Additionally, noise associated with the operation of equipment at the site may be reduced as electric powered service equipment operates at a quieter level as compared to fuel-based equipment. The grid power system also requires a smaller footprint as compared to the fuel-based power sources. Thus, the grid power source provides inexpensive, safe and reliable power to a site, such as a hydrocarbon services site.
In one or more embodiments of the present disclosure, an environment may utilize an information handling system to control, manage or otherwise operate one or more operations, devices, components, networks, any other type of system or any combination thereof. For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities that are configured to or are operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for any purpose, for example, for a maritime vessel or operation. For example, an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communication with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components. The information handling system may also include one or more interface units capable of transmitting one or more signals to a controller, actuator, or like device.
For the purposes of this disclosure, computer-readable media may include any instrumentality or aggregation of instrumentalities that may retain data, instructions or both for a period of time. Computer-readable media may include, for example, without limitation, storage media such as a sequential access storage device (for example, a tape drive), direct access storage device (for example, a hard disk drive or floppy disk drive), compact disk (CD), CD read-only memory (ROM) or CD-ROM, DVD, RAM, ROM, electrically erasable programmable read-only memory (EEPROM), and/or flash memory, biological memory, molecular or deoxyribonucleic acid (DNA) memory as well as communications media such wires, optical fibers, microwaves, radio waves, and other electromagnetic and/or optical carriers; and/or any combination of the foregoing.
Typical voltages ranges for power supplied by a grid is at or about 12.47 kiloVolts (kV) to at or about 34.4 kV. As discussed in the present disclosure, a grid power system 100 may provide the required voltage range necessary to provide power to a variety of equipment at a site. The present disclosure provides configurations of a grid power system for the efficient and safe distribution of power at a site.
As illustrated in
The main breaker 102 may comprise a current monitoring system 103. Current monitoring system 103 may comprise a current monitoring device (for example, a current transformer) and a control relay. In one or more embodiments, the current monitoring system 103 may monitor one or more output lines 105 and the main breaker 102 may be opened if a current at one or more output lines 105 reach, exceed or both a preset current limit or threshold. In one or more embodiments, the one or more output lines 105 may be coupled to one or more switchgear units 106. As illustrated in
The one or more switchgear units 106 protect one or more power distribution lines 107 that are coupled to one or more loads 108 such that the one or more loads 108 are not damaged due to power fluctuations or other harmful conditions. For example, the one or more switchgear units 106 may comprise a load control device 104, such as one or more breakers, one or more fused disconnects, one or more other load control devices or any combination thereof, to protect the one or more power distribution lines 107. In one or more embodiments, the one or more switchgear units 106 comprise a load control device 104 associated with each power distribution line 107 coupled to one or more loads 108. The one or more loads 108 may comprise one or more pumping units, for example, one or more electric pumping units (EPU), one or more electric blending units, one or more water supply systems, one or more sand or proppant handling systems, one or more wireline units, one or more command centers, one or more crew houses, any lighting associated with the hydrocarbon services environment, one or more coiled tubing units, any other equipment that requires electrical power at a line voltage at the site and any combination thereof. The one or more loads may comprise one or more transformers 117 to reduce line voltage to a level required by the load 108. For example, a transformer of an EPU may reduce line voltage to a level required by a variable frequency drive and the transformer may have multiple secondary outputs where the outputs are shifted in phase to one another so that the multiple secondary outputs distribute load current pulses in time with the benefit of reducing harmonic distortion as seen by the electrical power source 120, for example, a utility power grid.
In one or more embodiments, the one or more switchgear units 106 may comprise a heating, ventilation and air conditioning (HVAC) system 109. The HVAC system 109 controls the temperature of the switchgear unit 106. The switchgear unit 106 may comprise an uninterruptable power supply (UPS) 111 for providing power to a computing system 113 where the computing system 113 comprises a computer, a user interface, a network interface, any other computer or network component or any combination thereof, for example, an information handling system 500 of
As illustrated in
In one or more embodiments as illustrated in
As illustrated in
The one or more transformers 133 may comprise a single secondary winding or a plurality secondary windings that are shifted in phase from one another. The one or more transformers 133 may reduce harmonic distortion expressed to the electrical power source 120. In one or more embodiments, at least one of the transformers 133 may comprise a delta-wye transformer. The one or more transformers 133 may be coupled to a low-resistance ground (LRG) system or a high-resistance ground (HRG) system, for example, system 134. The wye connection of the secondary winding allows the benefit of using a system 134, for example, the LRG system or the HRG system which reduces single-phase fault current and improves personnel safety. The LRG system or HRG system 134 may include monitoring circuitry to determine the state of one or more components of the grid power system 100. The purpose of the LRG system or HRG system 134 is to limit the fault current and improve safety so as to have less voltage rise on any one or more components. By monitoring the ground current, the one or more grid power units 112 can not only limit the ground current but can also alter or change one or more alterations based, at least in part, on the ground current. For example, a fault condition may be indicated by ground current reaching or exceeding a threshold value. One or more actions may be taken as a result of the fault condition, such as to alter one or more operations of the one or more switchgear units 106. In one or more embodiments, when a fault condition occurs, the control system 132 may cause a breaker of a switchgear unit to be opened. For example, the control system 132 may transmit a command to alter or change one or more operations of the switchgear unit.
In any one or more embodiments, the one or more output lines 105, distribution lines 107, main power distribution lines 119 and grid power lines 131 may comprise individual conductors, multiple conductors, insulated bus bars, multi-core cables, multi-core cables with ground checkback or any other features and any other type of conductors known to one of skill in the art, and any other type of coupling, line or cable as required by a particular operation or job site.
In one or more embodiments, the one or more components or equipment may comprise a blending system 202. The blending system 202 may be coupled to a blender power distribution unit 204. One or more pumping systems 206 may comprise one or more pumps 207, for example, a pumping system 206A may comprise one or more pumps 207A and pumping system 206N may comprise one or more pumps 207N. The blender power distribution unit 204 and one or more pumping systems 206 may be coupled to the grid power system 100 such that the grid power system 100 provides power to the blender power distribution unit 204 and one or more pumping systems 206. For example, grid power system 100 may comprise a main breaker 102 and a switchgear unit 106 as power component 208 (for example, as illustrated in
The one or more pumping systems 206 may be coupled to a manifold 212 and manifold 212 may be coupled to one or more wellheads 214, for example one or more wellheads 214A-214N.
At step 404, one or more operations of the main breaker 102 are controlled or altered by the control center 132. For example, in one or more embodiments, the main breaker may be monitored by the control center 132. For example, the control center 132 may received one or more operating parameters from the main breaker 102 including, but not limited to, voltage, current, harmonics and power available at the main breaker 102. The control center 132 may alter or control an operation of the main breaker 102 based, at least in part, on the received one or more operating parameters. For example, the control center 132 may send a command to the main breaker 102 to open the main breaker 102 based, at least in part, on the one or more operating parameters. In one or more embodiments, the control center 132 may log any of the one or more operating parameters received.
At step 406, site power is provided from the main breaker 102 to one or more components or equipment at a site, such as a well services environment, via one or more output lines 105, for example, as illustrated and discussed with respect to
At step 408, a current monitoring system 103 of main breaker 102 may monitor one or more output lines 105 from the main breaker 102 to one or more components or equipment at the site. At step 410, it is determined if a current threshold, for example, has been reached, exceeded or both. At step 412, if the current threshold has been reached, exceeded or both, the current monitoring system 103 transmits a command to the main breaker 102 to alter or change an operation, for example, to cause the main breaker 102 to open. At step 414, in lieu of step 412 or in addition to step 412, in one or more embodiments, one or more current measurements from the current monitoring system 103 are transmitted via communication line 130 to a control center 132. For example, communication line 130 may comprise breaker status, breaker tripped, and any other status indication. At step 416, the control center 132 receives the one or more current measurements and determines if a current threshold has been reached, exceeded or both and if so, at step 418, the control center 132 communicates a signal via a communication line 130 to the main breaker 102 to alter or change one or more operations of the main breaker, for example, to open the main breaker 102.
At step 420, in one or more embodiments, one or more switchgear units 106 coupled to the main breaker 102, a main power distribution unit 110 coupled to the main breaker 102, or both may prevent one or more harmful conditions at the power distribution lines 107 that are coupled to one or more loads 108. At step 422, in one or more embodiments, as discussed with respect to FIGS. 1E-1I, line voltage may be received by a grid power unit 112. For example, a grid power unit may be coupled to one or more switchgear units 106, to main breaker 102, main power distribution unit 110 or any combination thereof. At step 424, a voltage lower than the line voltage is distributed by the grid power unit 112, for example, as discussed with respect to
In one or more embodiments, any one or more steps of
Modifications, additions, or omissions may be made to
Memory controller hub (MCH) 502 may include a memory controller for directing information to or from various system memory components within the information handling system 500, such as memory 503, storage element 506, and hard drive 507. The memory controller hub 502 may be coupled to memory 503 and a graphics processing unit 504. Memory controller hub 502 may also be coupled to an I/O controller hub (ICH) or south bridge 505. I/O hub 505 is coupled to storage elements of the information handling system 500, including a storage element 506, which may comprise a flash ROM that includes a basic input/output system (BIOS) of the computer system. I/O hub 505 is also coupled to the hard drive 507 of the information handling system 500. I/O hub 505 may also be coupled to a Super I/O chip 508, which is itself coupled to several of the I/O ports of the computer system, including keyboard 509 and mouse 510.
In one or more embodiments, a grid power system for distribution of electrical power at a site comprises a main breaker coupled to an electrical power source, a first switchgear unit coupled to the main breaker, one or more loads coupled to the first switchgear unit and one or more communications lines coupled to at least one of the first switchgear unit and the main breaker. In one or more embodiments, the main breaker comprises at least one of a switchgear and a current monitoring system. In one or more embodiments, the grid power system further comprises a main power distribution unit coupled to the main breaker and the first switchgear unit, wherein the main breaker is coupled to the first switchgear unit through the main power distribution unit. In one or more embodiments, the grid power system further comprises a second switchgear unit coupled to the first switchgear unit, wherein at least one of the one or more loads are coupled to the first switchgear unit through the second switchgear unit and a second one or more loads coupled to the second switchgear unit. In one or more embodiments, a grid power system further comprises a grid power unit coupled to the first switch gear unit, wherein at least one of the one or more loads are coupled to the first switchgear unit through the grid power unit and a third one or more loads are coupled to the second switchgear unit. In one or more embodiments, the main breaker comprises at least one of a switchgear and a current monitoring system. In one or more embodiments, the grid power system comprises a main power distribution unit coupled to the main breaker and the first switchgear unit, wherein the main breaker is coupled to the first switchgear unit through the main power distribution unit. In one or more embodiments, the grid power system further comprises a main power distribution unit coupled between the main breaker and the first switchgear unit, wherein the first switchgear unit couples to the main breaker through the main power distribution unit, a grid power unit coupled to the main power distribution unit and one or more fourth loads coupled to the main power distribution unit. In one or more embodiments, the first switchgear unit comprises at least one of an uninterruptable power supply, a computing system coupled to the uninterruptable power supply, a transformer, a heating, ventilation and air conditioning system coupled to the transformer.
In one or more embodiments, a grid power system for distribution of electrical power at a well site comprises a main breaker coupled to an electrical power source, one or more grid power units coupled to the main breaker and one or more loads coupled to the one or more grid power units. In one or more embodiments, the one or more grid power units are coupled to the main breaker via a main power distribution unit.
In one or more embodiments, a method for distributing electrical power at a site comprises coupling a main breaker to an electric power source, coupling a first switchgear unit to the main breaker, coupling one or more loads to the first switchgear unit, coupling one or more communication lines to at least one of the first switchgear unit and the main breaker. In one or more embodiments, the main breaker comprises at least one of a switchgear and a current monitoring system. In one or more embodiments, the method for distributing electrical power at a site comprises coupling a main power distribution unit to the main breaker and the first switchgear unit, wherein the main breaker is coupled to the first switchgear unit through the main power distribution unit. In one or more embodiments, the method for distributing electrical power at a site comprises coupling a second switchgear unit to the first switchgear unit, wherein at least one of the one or more loads are coupled to the first switchgear unit through the second switchgear unit and a second one or more loads coupled to the second switchgear unit. In one or more embodiments, the method for distributing electrical power at a site comprises coupling a grid power unit to the first switchgear unit, wherein at least one of the one or more loads are coupled to the first switchgear unit through the grid power unit and a third one or more loads are coupled to the second switchgear unit. In one or more embodiments, the main breaker comprises at least one of a switchgear and a current monitoring system. In one or more embodiments, the method for distributing electrical power at a site comprises coupling a main power distribution unit to the main breaker and the first switchgear unit, wherein the main breaker is coupled to the first switchgear unit through the main power distribution unit. In one or more embodiments, the method for distributing electrical power at a site comprises coupling a main power distribution unit between the main breaker and the first switchgear unit, wherein the first switchgear unit couples to the main breaker through the main power distribution unit, coupling a grid power unit to the main power distribution unit and coupling one or more fourth loads to the main power distribution unit. In one or more embodiments, the first switchgear unit comprises at least one of an uninterruptable power supply, a computing system coupled to the uninterruptable power supply, a transformer and a heating, ventilation and air conditioning system coupled to the transformer.
Therefore, the present disclosure is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present disclosure.
The present application is a continuation of and claims priority to U.S. patent application Ser. No. 17/393,174 filed Aug. 3, 2021, and published as U.S. Patent Application Publication No. 2021/0376608 A1, which is a continuation of and claims priority to U.S. patent application Ser. No. 16/553,006 filed Aug. 27, 2019, now U.S. Pat. No. 11,108,234 B2, each entitled “Grid Power for Hydrocarbon Service Applications,” each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1743771 | Hall | Mar 1926 | A |
2244106 | Granberg et al. | May 1938 | A |
3130353 | Mount, Jr. | Apr 1964 | A |
5077628 | Neuhouser | Dec 1991 | A |
7309835 | Morrison et al. | Dec 2007 | B2 |
7940039 | de Buda | May 2011 | B2 |
8789601 | Broussard et al. | Jul 2014 | B2 |
8834012 | Case et al. | Aug 2014 | B2 |
8997904 | Cryer et al. | Apr 2015 | B2 |
9103193 | Coli et al. | Aug 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9366114 | Coli et al. | Jun 2016 | B2 |
9395049 | Vicknair et al. | Jul 2016 | B2 |
9410410 | Broussard et al. | Aug 2016 | B2 |
9475020 | Coli et al. | Oct 2016 | B2 |
9475021 | Coli et al. | Oct 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9893500 | Oehring et al. | Feb 2018 | B2 |
9966206 | Sastry et al. | May 2018 | B1 |
9970278 | Broussard et al. | May 2018 | B2 |
10008880 | Vicknair et al. | Jun 2018 | B2 |
10020711 | Oehring et al. | Jul 2018 | B2 |
10107084 | Coli et al. | Oct 2018 | B2 |
10107085 | Coli et al. | Oct 2018 | B2 |
10221668 | Coli et al. | Mar 2019 | B2 |
10246984 | Payne et al. | Apr 2019 | B2 |
10227855 | Coli et al. | May 2019 | B2 |
10526882 | Oehring et al. | Jan 2020 | B2 |
10686301 | Oehring et al. | Jan 2020 | B2 |
10648311 | Oehring et al. | May 2020 | B2 |
10879727 | Cooper | Dec 2020 | B1 |
11108234 | Weightman et al. | Aug 2021 | B2 |
11208878 | Oehring et al. | Dec 2021 | B2 |
11449018 | Oehring et al. | Sep 2022 | B2 |
11715951 | Weightman et al. | Aug 2023 | B2 |
20030057704 | Baten et al. | Mar 2003 | A1 |
20090068031 | Gambier et al. | Mar 2009 | A1 |
20090095482 | Surjaatmadja | Apr 2009 | A1 |
20090200290 | Cardinal et al. | Aug 2009 | A1 |
20100038907 | Hunt et al. | Feb 2010 | A1 |
20110241590 | Horikoshi et al. | Oct 2011 | A1 |
20120112757 | Vrankovic et al. | May 2012 | A1 |
20120255734 | Coli et al. | Oct 2012 | A1 |
20130306322 | Sanborn et al. | Nov 2013 | A1 |
20140077607 | Clarke et al. | Mar 2014 | A1 |
20140111896 | Liptak et al. | Apr 2014 | A1 |
20140138079 | Broussard et al. | May 2014 | A1 |
20140174717 | Broussard et al. | Jun 2014 | A1 |
20140294603 | Best | Oct 2014 | A1 |
20150114652 | Lestz et al. | Apr 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20160105022 | Oehring et al. | Apr 2016 | A1 |
20160290114 | Oehring et al. | Oct 2016 | A1 |
20160326854 | Broussard et al. | Nov 2016 | A1 |
20160326855 | Coli et al. | Nov 2016 | A1 |
20160348479 | Oehring et al. | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170016433 | Chong et al. | Jan 2017 | A1 |
20170028368 | Oehring et al. | Feb 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170104389 | Morris et al. | Apr 2017 | A1 |
20170125984 | Mergener | May 2017 | A1 |
20170145918 | Oehring et al. | May 2017 | A1 |
20170226839 | Broussard et al. | Aug 2017 | A1 |
20170314380 | Oehring et al. | Nov 2017 | A1 |
20180138740 | Churnock et al. | May 2018 | A1 |
20180156210 | Oehring et al. | Jun 2018 | A1 |
20180183219 | Oehring et al. | Jun 2018 | A1 |
20180258746 | Broussard et al. | Sep 2018 | A1 |
20180278124 | Oehring et al. | Sep 2018 | A1 |
20180334893 | Oehring | Nov 2018 | A1 |
20180363434 | Coli et al. | Dec 2018 | A1 |
20180363435 | Coli et al. | Dec 2018 | A1 |
20180363436 | Coli et al. | Dec 2018 | A1 |
20180363437 | Coli et al. | Dec 2018 | A1 |
20180363438 | Coli et al. | Dec 2018 | A1 |
20190003329 | Morris et al. | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190049909 | Krippner | Feb 2019 | A1 |
20190055827 | Coli et al. | Feb 2019 | A1 |
20190245348 | Hinderliter et al. | Aug 2019 | A1 |
20190258212 | Morton et al. | Aug 2019 | A1 |
20200300073 | Hinderliter et al. | Sep 2020 | A1 |
20210032961 | Hinderliter et al. | Feb 2021 | A1 |
20210131248 | Hinderliter et al. | May 2021 | A1 |
20220200262 | Johansson | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
106536031 | Mar 2017 | CN |
1220410 | Jul 2002 | EP |
100267866 | Oct 2001 | KR |
2014177346 | Nov 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20230327441 A1 | Oct 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17393174 | Aug 2021 | US |
Child | 18209319 | US | |
Parent | 16553006 | Aug 2019 | US |
Child | 17393174 | US |