1. Field of the Invention
The field of the present invention is griddle cooking systems, particularly those that are designed for use in connection with mobile kitchens, such as those depended upon by the military and humanitarian relief organizations.
2. Background
The cooking surface of a griddle is preferably maintained at a uniform predetermined temperature over the entire surface for food preparation. One or more heating elements are typically positioned underneath the cooking surface to heat the cooking surface. If more than one heating element is used, because each individual heating element heats a limited area of the cooking surface, undesirable hotter and colder zones may develop on the cooking surface. Multiple heating elements can therefore make it difficult to maintain a substantially uniform temperature over the entire cooking surface.
Single element heating elements have thus been developed in an attempt to reduce the temperature variance over the cooking surface. Such heating elements are typically serpentine in form so that the heating element can be distributed under substantially the entire cooking surface, thus also creating a better distribution of heat across the entire cooking surface. However, despite the better distribution of heat across the cooking surface, even serpentine heating elements can leave hot and cold spots. These temperature variances can develop over time as the heating element ages and sections of the serpentine structure become less efficient at generating heat. For electric-based heating elements, this can occur due to structural changes within parts of the heating element due to repeated heating and cooling. In gas-based heating elements due to the accumulation of debris causing blockages in the fuel distribution passageways.
The present invention is directed toward a griddle cooking system. As part of the system, a heating block includes a heat plenum and a plurality of heat release chambers fluidically coupled to the heat plenum. Each of the heat release chambers includes a chamber opening onto a first side of the heating block. A griddle is disposed opposite the first side of the heating block and includes a cooking surface opposite an under surface. A heat distributor is disposed between the under surface and the heating block. The heat distributor includes a plurality of heat diffusers, each disposed over one of the chamber openings, a plurality of heat deflectors disposed about each heat diffuser, each heat deflector positioned at an angle relative to the under surface, and an exhaust port.
Additional options may be incorporated into the griddle cooking system. As one option, a perforated panel may be disposed atop the heat distributor adjacent the under surface of the griddle. The perforated panel may aid in more evenly distributing heat across the under surface by forming a heating cavity between the perforated panel and the undersurface of the griddle. Heat distribution may be further controlled by varying the volume of the heating cavity. As another option, temperature sensitive elements may be embedded within the griddle. Placement of such temperature sensitive elements aid the operator in keeping the cooking surface at a desired cooking temperature. As yet another option, the heat diffusers may be in the form of perforated wall structures. Still further, the perforated wall structures may be formed as an A-frame structure. Any of the foregoing options may be implemented alone or in combination.
Accordingly, an improved griddle system is disclosed. Advantages of the improvements will appear from the drawings and the description of the preferred embodiment.
In the drawings, wherein like reference numerals refer to similar components:
Turning in detail to the drawings,
The liquid fuel burner (not shown) is preferably of the type generally described in U.S. Pat. No. 4,298,338, the disclosure of which is incorporated herein by reference in its entirety. Advancements in this type of liquid fuel burner may be found in U.S. Pat. No. 4,507,076 and U.S. Pat. No. 4,573,904, the disclosures of which are incorporated herein by reference in their entirety. Such liquid fuel burners are available from Babington Technology, of McLean, Va., and are advantageous because they can burn any distillate fuel efficiently and cleanly without smoke, odor, or carbon monoxide emissions. Alternatively, other types of heat generators may be used in conjunction with the griddle system. Those skilled in the art will recognize that the heat output capabilities of the heat generator selected for use with the griddle system will in large part determine the maximum temperature at which the cooking surface can be maintained.
The heating block 27 is shown in
The top portion of the heat distributor 41 includes a rectangular frame 59, which forms a planar top, and an exhaust port 61 disposed in the side thereof. The rectangular frame 59 also includes a lip 63 around the top perimeter, and this lip 63 provides a seating surface for a perforated cover 65 which spans across the entire top portion of the heat distributor 41. The perforated cover 65, while seated on the lip 63, does not extend all the way to the top of the heat distributor 41. Rather, space is left between the top of the heat distributor 41 and the top of the perforated cover 65, so that when the griddle is seated on the heat distributor 41, a heating cavity is formed, between the perforated cover 65 and the under surface of the griddle, in which heated air can freely circulate after passing up through the perforations in the perforated cover 65. The perforations in the perforated cover 65 are preferably evenly distributed across the entire perforated cover 65, although an uneven distribution might be used as well. The density of perforations across the perforated cover 65 is preferably at least ¼ sq. in. for every square inch of the perforated cover 65, although the density may be varied according to design considerations and desired heat distribution.
As seen in
The under surface 71 is supported by legs 75 and cross-supports 77 around the perimeter of the under surface 71. The legs 75 are constructed so that the griddle 13 may be placed on top of the heat distributor, with the top of the heat distributor positioned immediately adjacent the under surface 71 of the griddle. Each leg 75 of the griddle 13 is therefore shaped to seat over a corner of the heat distributor, with the distance between the legs being sufficient to allow the entire top portion of the heat distributor to slide up into position against the under surface 71 of the griddle 13.
Constructed as described above, it is anticipated that a single Babington 2000 Multi-Fuel Burner will be capable of heating the cooking surface up to 450 degrees, with the temperature variant across an entire 48″×30″ cooking surface being no more than plus or minus 15 degrees. Use of other types of burner assemblies is expected to yield different maximum temperature and temperature variant results, depending upon the total heat output capacity of the burner assembly.
Thus, a griddle system is disclosed. While embodiments of this invention have been shown and described, it will be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2173166 | Hoelseher | Sep 1939 | A |
2362757 | Lang | Nov 1944 | A |
2907316 | Windust | Oct 1959 | A |
3978782 | Werling | Sep 1976 | A |
4155700 | Babington | May 1979 | A |
RE30285 | Babington | May 1980 | E |
4298338 | Babington | Nov 1981 | A |
4342259 | Lee | Aug 1982 | A |
4507074 | Babington et al. | Mar 1985 | A |
4507076 | Babington | Mar 1985 | A |
4516928 | Babington | May 1985 | A |
4573904 | Babington | Mar 1986 | A |
4972824 | Luebke et al. | Nov 1990 | A |
5413032 | Bruno et al. | May 1995 | A |
5575197 | Cheng | Nov 1996 | A |
5740723 | Lin | Apr 1998 | A |
5782230 | Linnebur et al. | Jul 1998 | A |
5975071 | Babington | Nov 1999 | A |
6073542 | Perez | Jun 2000 | A |
6138554 | McFadden et al. | Oct 2000 | A |
6176233 | Babington | Jan 2001 | B1 |
6196213 | Van Der Woude | Mar 2001 | B1 |
6453487 | Babington | Sep 2002 | B1 |
6758207 | Hotard et al. | Jul 2004 | B1 |
7100599 | Babington | Sep 2006 | B2 |
7188617 | O'Blenes | Mar 2007 | B1 |
7348519 | Federspiel et al. | Mar 2008 | B2 |
20060016348 | Babington | Jan 2006 | A1 |