In some applications, drop detection devices are utilized to detect liquid drops ejected by ejector nozzles. Based on the detection of liquid drops, the status of a particular nozzle or groups of nozzles can be diagnosed. In some cases light scattering from the ejected drops is used in the drop detection devices.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
In operation of one embodiment, drop detector arrangement 10 is for use in a variety of applications where the controlled ejection of liquid droplets 14 is to be monitored. For example, in one application ink drops are deposited on print media in a print engine for an inkjet printer. In such an application, drop detector arrangement 10 may be used to monitor the ejection of ink. In other applications, drop detector arrangement 10 may be used to monitor the ejection of liquid in biochemical tests, diagnostic strips or device coating applications.
In one embodiment, controller 22 controls the plurality of drop ejectors 12 such that liquid droplets 14 are controllably ejected to service station 20. In one embodiment, print media is received adjacent service station 20 such that liquid droplets 14 are controllably deposited on the print media.
In one embodiment, light source assembly 16 projects light beam 18 in the y-axis direction between the plurality of drop ejectors 12 and service station 20. As such, when liquid droplets 14 are ejected from drop ejectors 12 in the z-axis direction, liquid droplets 14 pass through light beam 18 as they drop to service station 20. In various embodiments, light source 16 assembly includes a collimated source, such as a laser source, or an LED. In various embodiments, light source assembly 16 produces a collimated light beam 18 with an elliptical or rectangular profile, that is, a larger width in the x-axis direction than a height in the z-axis direction, as will be further discussed below.
As a liquid droplet 14 passes through light beam 18, light from light beam 18 is scattered in various directions. Light collector 24 is illustrated adjacent light beam 18 and some of the scattered light will enter light collector 24. Light collector 24 is located in various adjacent positions relative to light beam 18 in accordance with various embodiments.
In one embodiment, light collected into light collector 24 from the light scattering that occurred when liquid droplet 14 passed through light beam 18 can be used to measure the effectiveness or status of liquid droplet 14 from one or more of ejectors 12. For example, if controller 22 directs one particular drop ejector to eject a liquid droplet 14 at a particular point in time, corresponding light scattering from liquid droplet 14 passing through light beam 18 should enter light collector 24. By monitoring the collected light and correlating it with control signals from controller 22, a determination can be made as to whether a liquid droplet 14 did in fact eject, as well as determinations about the size, velocity and quality of liquid droplet 14.
In one embodiment, light collector 24 includes a light detector. In one embodiment, a first end of light collector 24 is located adjacent light source assembly 16 and the light detector is located at a second end of light collector 24, which is opposite the first end. In one example, the light detector is coupled to controller 22, which processes light signals that are collected in light collector 24 and then coupled into the light detector. In one example, a separate controller from controller 22 may be used to process the collected light signals.
Various configurations of ejectors 12 are possible according to various embodiments. For example, pluralities of ejectors 12 can be formed in a silicon die, sometimes in staggered rows across a distance in the x-axis direction as illustrated in
In some embodiments, the aspect ratio of light beam 18 is also controlled such that ejected liquid droplet 14 does not have to pass through a large distance of light so the signal produced from the scattered light is maintained at a relatively short duration. In other words, the beam height H18 of light beam 18 is kept shorter (in the z-axis direction as illustrated in
In one embodiment, light source assembly 16 includes a plurality of parallel lenses, each of which has a gradient index (GRIN). In some embodiments, the GRIN lenses are radial and in others they are axial. Radial GRIN lenses have a radially-decreasing refractive index, such as cylindrical GRIN SOLFOC® lenses, and axial GRIN lenses are flat with an index varying from the front to the back of the lens. Both focus light using the variable refraction index distribution. Light source assembly 16 with GRIN lens arrays produce a controlled light beam 18 with a focused aspect ratio.
In one embodiment, the aspect ratio of light beam 18 is controlled so that its beam width W18 adequately covers drop ejectors 12, yet its beam height H18 produces a relatively short signal representing the scattered light from a liquid droplet 14 passing through light beam 18. In one embodiment, light beam 18 has a width W18 of 4 mm and a height H18 of 1 mm.
In
Although exit lens 36 is illustrated as a cylindrical lens in accordance with one embodiment, various other configurations of lens 36 are also possible. For example, lens 36 can be various combinations of spherical, aspheric, cylindrical, acylindrical, Fresnel, diffraction, and lenticular lenses. Also, in one embodiment, laser diode 32 is an edge emission diode, and in another, it is a vertical cavity surface emitting laser.
In
Although lens 46 is illustrated as a cylindrical lens in accordance with one embodiment, various other configurations of lens 46 are also possible. For example, lens 46 can be various combinations of spherical, aspheric, cylindrical, acylindrical, Fresnel, diffraction, and lenticular lenses. Also, in one embodiment, laser diode 42 is an edge emission diode, and in another, it is a vertical cavity surface emitting laser.
In
In
Although lenses 64 and 68 are respectively illustrated as spherical and cylindrical lenses in accordance with one embodiment, various other configurations of lenses 64 and 68 are also possible. For example, lenses 64 and 68 can be various combinations of spherical, aspheric, cylindrical, acylindrical, Fresnel, diffraction, and lenticular lenses. Also, in one embodiment, laser diode 62 is an edge emission diode, and in another, it is a vertical cavity surface emitting laser.
Light from initial lens 64 is directed into GRIN lens array 66. In one embodiment, GRIN lens array 66 has a plurality of parallel lenses, each of which has a gradient oriented to at least partially collimate light from the laser diode 62. In one embodiment, GRIN lens array 66 collimates light in one axis (either the fast or slow axis) and over-collimates light in the other axis. Light from GRIN lens array 66 then passes through exit lens 68, which in one embodiment, compensates for the over-collimated light in one axis from the GRIN lens array 66. Light emerging from exit lens 68 accordingly has a controlled beam profile with a larger width than height.
In light source assembly 70, light from laser diode 72 is at least partially collimated by aspheric lens 74 into GRIN lens array 76. GRIN lens array 76 includes a plurality of parallel GRIN lenses, which produce individual beamlets of light. In the illustration, there are three individual GRIN lenses in GRIN lens array 76. Cylindrical lens 78 is positioned relative to one end of GRIN lens array 76 such that the beamlets of light from GRIN lens array 76 are focused at a single point by cylindrical lens 78. In one embodiment, focusing the beamlets at a single point prevents substantial divergence of the light and helps keep the light substantially focused. In another embodiment, cylindrical lens 78 is a faceted cylinder, and in another, is a prism.
Spherical lens 80 at least partially collimates the beamlets resulting light beam 88. In one case, light beam 88 includes individual substantially parallel light beams correlating with each GRIN lens of GRIN lens array 76. In the illustration of
In one embodiment, light source assembly 70 is in a drop detector arrangement (such as arrangement 10 above). In one embodiment, the drop detector arrangement includes a plurality of drop ejectors that are in three parallel rows. In this way, each individual beamlet of light of light beam 88 is substantially below a row of ejectors. Accordingly, light beam 88 in one embodiment does not provide light in locations where no drops will be ejected. Instead, light is focused under ejectors where scattered light is to be produced. Energy savings can be realized by only projecting light where it is used in the arrangement.
Where additional or less rows of ejectors are provided in a drop detector arrangement, a correlating amount of individual beamlets of light in light beam 88 can be produced with light source assembly 70, such as by adjusting the number of individual GRIN lenses in GRIN lens array 76.
In one embodiment, light beam 88 of light source assembly 70 works over a relatively long distance in a drop detector arrangement. For example, if placed in drop detector arrangement 10 illustrated in
In light source assembly 90, light from laser diode 92 is directed into GRIN lens array 94. GRIN lens array 94 includes a plurality of fan-arrayed GRIN lenses, which produce individual beamlets of light. In the illustration, there are three GRIN lenses in GRIN lens array 94. Cylindrical prism 96 is positioned relative to one end of GRIN lens array 94 such that the beamlets of light are projected as 3 collimated beamlets of light, making up light beam 98.
In one embodiment, GRIN lens array includes individual GRIN lenses fanned out at angles relative to each other, such that these relative angles determine spacing between each of the individual beamlets of light of light beam 98.
As with light source assembly 70 previously, in one embodiment light source assembly 90 is in a drop detector arrangement, such as arrangement 10. As above, in one embodiment the drop detector arrangement includes drop ejectors in three parallel rows and each individual beamlet of light of light beam 98 is substantially below a row of ejectors. Accordingly, light beam 98 of light source assembly 90 focuses light under ejectors where scattered light is to be produced. As above, more or less beamlets can be used for more or less ejector rows.
Where additional or less rows of ejectors are provided in a drop detector arrangement, a correlating amount of individual light beams of light beam 98 can be produced with light source assembly 90, such as by adjusting the number of individual GRIN lenses in GRIN lens array 94.
In one embodiment, light beam 98 of light source assembly 90 works over a relatively long distance in a drop detector arrangement. For example, if placed in drop detector arrangement 10 illustrated in
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. For example, the drop detector arrangement 10 could be used in conjunction with a computer printer, or with any of a variety of drop ejection systems while remaining within the spirit and scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4422719 | Orcutt | Dec 1983 | A |
5304814 | Markham | Apr 1994 | A |
5428218 | Toughlian et al. | Jun 1995 | A |
5589858 | Kadowaki et al. | Dec 1996 | A |
5621524 | Mitani | Apr 1997 | A |
5742303 | Taylor et al. | Apr 1998 | A |
5774141 | Cooper et al. | Jun 1998 | A |
5856833 | Elgee et al. | Jan 1999 | A |
5896145 | Osborne et al. | Apr 1999 | A |
6088134 | Schmidt | Jul 2000 | A |
6168258 | Lou et al. | Jan 2001 | B1 |
6299275 | Elgee | Oct 2001 | B1 |
6513900 | Endo et al. | Feb 2003 | B2 |
6517184 | Bruch et al. | Feb 2003 | B1 |
6525863 | Riza | Feb 2003 | B1 |
6565179 | Bruch et al. | May 2003 | B1 |
6585349 | Lou et al. | Jul 2003 | B1 |
6648444 | Valero et al. | Nov 2003 | B2 |
6747684 | Ornellas et al. | Jun 2004 | B2 |
6767122 | Honguh et al. | Jul 2004 | B2 |
6769756 | Su et al. | Aug 2004 | B2 |
6786626 | Wu et al. | Sep 2004 | B2 |
6802580 | Valero | Oct 2004 | B2 |
6814422 | Bruch et al. | Nov 2004 | B2 |
6851816 | Wu et al. | Feb 2005 | B2 |
6877838 | Elgee | Apr 2005 | B2 |
6935717 | Su et al. | Aug 2005 | B2 |
6966664 | Wu | Nov 2005 | B2 |
6969159 | Su et al. | Nov 2005 | B2 |
6984013 | Arqullevich et al. | Jan 2006 | B2 |
7055925 | Subirada et al. | Jun 2006 | B2 |
7125151 | Uemura et al. | Oct 2006 | B2 |
7140762 | Wu et al. | Nov 2006 | B2 |
7249830 | Hawkins et al. | Jul 2007 | B2 |
7267467 | Wu et al. | Sep 2007 | B2 |
7287824 | Subirada et al. | Oct 2007 | B2 |
7287833 | Howard | Oct 2007 | B2 |
7364276 | Piatt et al. | Apr 2008 | B2 |
7434919 | Hawkins et al. | Oct 2008 | B2 |
7442180 | Vitello et al. | Oct 2008 | B2 |
7452053 | Valles et al. | Nov 2008 | B2 |
7490918 | Nagashima | Feb 2009 | B2 |
7513616 | Lin | Apr 2009 | B2 |
7832822 | Kiyama et al. | Nov 2010 | B2 |
20010019480 | Fujino et al. | Sep 2001 | A1 |
20030193608 | Yen | Oct 2003 | A1 |
20050021244 | Nicoli et al. | Jan 2005 | A1 |
20050024410 | Subirada et al. | Feb 2005 | A1 |
20050253890 | Nagashima | Nov 2005 | A1 |
20060103691 | Dietl et al. | May 2006 | A1 |
20060120098 | Ikeda et al. | Jun 2006 | A1 |
20060139392 | Fernandez et al. | Jun 2006 | A1 |
20060187651 | Kim et al. | Aug 2006 | A1 |
20060279601 | Unosawa et al. | Dec 2006 | A1 |
20070024658 | Diol et al. | Feb 2007 | A1 |
20070030300 | Jeong | Feb 2007 | A1 |
20070064068 | Piatt et al. | Mar 2007 | A1 |
20080180471 | Han | Jul 2008 | A1 |
20080246803 | Barger et al. | Oct 2008 | A1 |
20090091595 | Hayashi et al. | Apr 2009 | A1 |
20090141057 | Hayashi et al. | Jun 2009 | A1 |
20090179934 | Takagi et al. | Jul 2009 | A1 |
20090244141 | Govyadinov et al. | Oct 2009 | A1 |
20090244163 | Govyadinov | Oct 2009 | A1 |
20090273620 | Govyadinov et al. | Nov 2009 | A1 |
20090310206 | Gluckstad | Dec 2009 | A1 |
20100207989 | Govyadinov | Aug 2010 | A1 |
20110090275 | Govyadinov et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2001113725 | Apr 2001 | JP |
2005083769 | Mar 2005 | JP |
2006047235 | Feb 2006 | JP |
2006346906 | Dec 2006 | JP |
2007119971 | May 2007 | JP |
2007015808 | Feb 2007 | WO |
2009120436 | Oct 2009 | WO |
Entry |
---|
LightPath Technologies, “GRADIUM Lenses,” pp. 2 (Jun. 16, 2009). <http://www.lightpath.com/products/GRADIUM.php>. |
NSG Europe, “SELFOC Laser Diode Collimating Lenses,” pp. 2 (Aug. 25, 2010). <http://www.nsgeurope.com/collimating.shtml>. |
The Restriction Requirement for U.S. Appl. No. 12/381,873 mailed Sep. 29, 2010 (6 pages). |
The Restriction Requirement for U.S. Appl. No. 12/079,338 mailed Mar. 17, 2011 (7 pages). |
The Restriction Requirement for U.S. Appl. No. 12/388,805 mailed on Jul. 14, 2011 (6 pages). |
The Non-Final Office Action for U.S. Appl. No. 12/254,864 mailed on Jun. 11, 2010 (23 pages). |
The Office Action for U.S. Appl. No. 12/381,873 mailed on Feb. 4, 2011 (12 pages). |
The Office Action for U.S. Appl. No. 12/079,338 mailed on Jul. 25, 2011 (15 pages). |
The Office Action for U.S. Appl. No. 12/388,805 mailed on Aug. 25, 2011(19 pages). |
The Office Action for U.S. Appl. No. 12/381,873 mailed Sep. 1, 2011 (11 pages). |
The Notice of Allowance for U.S. Appl. No. 12/254,864 mailed Dec. 1, 2010 (12 pages). |
The International Search Report for International Application No. PCT/US2009/034892 mailed on Jul. 28, 2009 (7 pages). |
The Written Opinion of the International Searching Authority for International Application No. PCT/US2009/034892 mailed on Jul. 28, 2009 (5 pages). |
Svanholm, Erik, “Printability and Ink-Coating Interactions in Inkjet Printing,” Dissertation, Karlstad University Studies 2007:2, pp. 58 (Feb. 2007). |
McLeod, Euan et al., “Complex Beam Sculpting with Tunable Acoustic Gradient Index Lenses,” SPIE, Complex Light and Optical Forces, vol. 6483, pp. 1-9, (2007). |
Number | Date | Country | |
---|---|---|---|
20120013906 A1 | Jan 2012 | US |