Grinding device and method

Information

  • Patent Grant
  • 6419564
  • Patent Number
    6,419,564
  • Date Filed
    Monday, February 26, 2001
    23 years ago
  • Date Issued
    Tuesday, July 16, 2002
    22 years ago
Abstract
Grinding wheels are fabricated with outwardly extending circular peripheral rims having a continuous rim surface to which separate abrasive pieces, preferably of a superabrasive such as CBN, are secured by suitable adhesive. The superabrasive pieces are preferably circular and of a diameter corresponding to the width of the rim and are secured to the rim surface so as to either be adjacent and touch one another or to be spaced one from the other around the circle of the rim surface so that a predetermined amount but not all of the rim surface is covered with abrasive pieces. That rim surface coverage optimize grinding efficiency while providing space for fluid flow for purposes of cooling and carrying away particles from the grinding process.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to grinding devices and methods of use of grinding devices; and more particularly to grinding devices constructed with a plurality of abrasive members and which employ such plurality of abrasive members in grinding processes.




2. Description of the Prior Art




Some grinding devices are fabricated in the configuration of wheels or disks and employ the rim or cylindrical periphery of the wheel or disk in various grinding processes. Still other grinding devices, such as that shown in U.S. Pat. No. 2,089,040 employ the planar surface of the wheel or disk in various grinding processes, in fact, a pair of spaced and facing grinding devices are employed in the grinding processes of U.S. Pat. No. 2,089,040.




There are a considerable number of configurations for the grinding surfaces of grinding devices such as generally planar with a plurality of abrasive plugs embedded in the material of the wheel so that the exposed and utilized surfaces of the plugs are co-planar with the surrounding wheel surface as shown in U.S. Pat. No. 3,426,486; and generally curved and with spaced abrasive areas embedded in non-abrasive areas but so as to form a continuous curved surface as shown in U.S. Pat. No. 2,145,888. However, such continuous surface grinding devices are subject to the accumulation of “swarf” (the particles of grinding device material and material from the article being ground) between the grinding device and the article being ground, and the embedding of that “swarf” into the surface of the grinding device. This can reduce the efficiency of the grinding process; while movement of the “swarf” over the surface being ground can possibly scratch the surface of the articles being ground as well as otherwise hindering the grinding thereof.




Other grinding devices are constructed with: a plurality of bulges as shown in U.S. Pat. No. 2,262,583; a plurality of openings as shown in U.S. Pat. No. 3,041,799; and/or a plurality of spaced grinding rings separated by annular channels as shown in U.S. Pat. No. 2,201,410. However, even such grinding wheel constructions may be inadequate to efficiently remove coolant and other fluids and “swarf” from between the grinding device surface and surface being ground or to remove same quick enough.




Still other grinding devices utilize plural concentric grinding rings, each of different composition but concentrically mounted and in spaced relationship, with the respective grinding surfaces co-planar as shown in U.S. Pat. No. 2,309,016; while other grinding devices position plural spaced rings, each with different composition grinding surfaces, in planes that are angularly disposed one with respect to the other as shown in U.S. Pat. No. 2,451,295; and still other grinding devices utilize plural spaced grinding rings of different composition that have their grinding surfaces in different planes as shown in U.S. Pat. No. 2,673,425. However, here again, the spacings, if any, between the respective grinding rigs of these grinding devices may still prove insufficient to remove grinding fluids and “swarf” from the surface to be ground in an acceptable manner.




U.S. Pat. No. 4,456,500 shows and describes a grinding device in the form of a polisher wherein a plurality of teeth are formed from the base material of the polisher by a photoresist method. The resulting teeth, however, must be formed from the material of the grinding device base thus resulting in a possibly unwanted expense of forming the entire device of abrasive material which could be significant if it is desired to use a relatively expensive superabrasive as the abrasive material. U.S. Pat. No. 4,539,017 on the other hand forms the cylindrical peripheral surface of a grinding wheel with spaced islands of abrasive (in various configurations) molded by a centrifugal process to a foamed elastomer base to provide an elastic grinding element. The resulting grinding wheel because of the elastic base would appear to have limited application. In addition, centrifugal process for manufacture of these grinding devices would not be capable of producing a grinding device with similar abrasive islands disposed on a planar surface of a grinding device disk or wheel.




Arcuate and spaced grinding segments have been secured to a grinding device disk so as to provide an annular and planar grinding surfaces therefore as shown in U.S. Pat. No. 2,867,063. However, the grinding device disk construction for receiving those arcuate grinding segments requires spaced channels within which the arcuate grinding segments are secured by being bolted in place. The channel construction would appear to provide spaces within which unwanted “swarf” and other materials might collect thus possibly detrimentally affecting wheel operation and grinding efficiency. In addition, the wheel disk that carries the arcuate segments appears to be relatively complex and costly.




U.S. Pat. No. 2,629,975 shows circular blocks of abrading material embedded in arcuate segments that alternate about the same axis to form either a rough grinding device or a finish grinding device. The respective rough and finish grinding devices are utilized alternatively and not together. The patent provides no further detail concerning the size, spacing or thickness above the segment carrier surface for the abrading material or whether any part of such abrading material, in fact, is disposed above the surface of the arcuate members within which the cylindrical blocks of abrading material are embedded. The preparation of the carriers to receive the embedded abrasive blocks requires relatively costly expense and time as well as the time and expense to imbed the blocks in their respective carriers.




SUMMARY OF THE INVENTION




It is therefore an object of this invention to provide new and novel grinding devices.




It is another object of this invention to provide new and novel combinations of grinding wheels or disks and grinding abrasives.




It is yet another object of this invention to provide new and novel processes for grinding articles of manufacture.




It is still another object of this invention to provide new and novel processes for more efficiently grinding articles such as brake rotors, power steering pump rings and rotors, valve plates and the like.




It is yet still another object of this invention to provide new and novel grinding wheels or disks which optimize the amount of abrasive to be utilized for grinding while at the same time also optimizing the arrangement of such abrasives to facilitate the flow of coolant and other fluids and the removal of “swarf” from the grinding area.




It is a further object of this invention to provide new and novel grinding wheels or disks which carry multiple abrasive pieces each of which is of optimum thickness and each of which provides an optimum abrasive surface for grinding.




Other objects and features of the inventions in their details of construction and arrangement of parts will be seen from the above and from the following description of the preferred embodiments when considered with the drawing and from the appended claims.











BRIEF DESCRIPTION OF THE DRAWINGS




In the drawing:





FIG. 1

is a schematic, in perspective, of a grinding machine utilizing grinding wheels, incorporating the instant invention, for grinding articles of manufacture according to processes also incorporating the instant invention;





FIG. 2

is a plan view of a grinding wheel or disk, incorporating the instant invention, but only showing some of the abrasive pieces disposed thereon to better show details thereof;





FIG. 3

is a section view taken on line


3





3


of

FIG. 2

with parts cut away to better show details thereof;





FIG. 4

is a schematic plan of the rim of the grinding wheel or disk of

FIGS. 2 and 3

showing a layout of abrasive pieces thereon;





FIG. 5

is a plan view of one of the abrasive pieces utilized for the grinding wheel of

FIGS. 2-4

, enlarged to better show details thereof;





FIG. 6

is an end view of the abrasive piece of

FIG. 5

;





FIG. 7

is a plan view of an alternative grinding wheel, incorporating the instant invention, but only showing some of the abrasive pieces disposed thereon to better show details thereof;





FIG. 8

is a section view taken on line


8





8


of

FIG. 7

with parts cut away to better show details thereof;





FIG. 9

is a schematic plan of the rim of the grinding wheel or disk of

FIGS. 7 and 8

showing a layout of abrasive pieces thereon;





FIG. 10

is a vertical elevation section through an alternate abrasive piece and carrier, according to the instant invention, enlarged to better show details thereof;





FIG. 11

is a vertical elevation through the abrasive piece and carrier of

FIG. 10

showing same disposed on a section of grinding wheel or disk according to the instant invention;





FIG. 12

is a plan view of a section of the grinding wheel or disk of

FIGS. 2-4

enlarged to better show the disposition of the abrasive pieces thereon and the relative disposition of the abrasive pieces with respect to each other;





FIG. 13

is a plan view of a section of the grinding wheel or disk of

FIGS. 7-9

enlarged to better show the disposition of the abrasive pieces thereon and the relative disposition of the abrasive pieces with respect to each other; and





FIG. 14

is a schematic showing an alternative abrasive piece configuration and an alternative arrangement plan for said abrasive pieces on a grinding wheel disk all according to the instant invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




With reference to

FIG. 1

there is generally shown at


20


a schematic of a grinding machine incorporating a pair of grinding wheels


22


,


24


carried by grinding wheel spindles


26


,


28


which are, in turn, rotatively carried by workheads


32


,


34


respectively. Workheads


32


,


34


and spindles


22


,


24


are shown disposed in a vertical spindle configuration (i.e. with their respective spindle axis of rotation in vertical co-linear alignment) but could also be disposed in a horizontal configuration (i.e. with their respective spindle axis of rotation in horizontal co-linear alignment). A first motor


40


serves to provide a rotative drive to spindle


26


and grinding wheel


22


through a drive belt


42


and pulley


44


arrangement; while a second motor


50


serves to provide a rotative drive to A spindle


28


and grinding wheel


24


through a drive belt


52


and pulley


54


arrangement. Suitable and conventional power is provided for motors


40


,


50


through suitable and conventional controls


60


carried by and/or within machine frame and base


62


.




Spindles


26


,


28


and workheads


32


,


34


are carried by machine frame and base


62


for movement towards and away from each other through controls


60


and otherwise in a conventional manner, and so as to provide for a spacing “S” between a work face


70


of grinding wheel or disk


22


and a work face


72


of grinding wheel or disk


24


.




An article carrier


90


is conventionally disposed for rotation about an axis


92


to move articles


94


to be ground through space “S” and between work face


70


of grinding wheel


22


and work face


72


of grinding wheel


24


all in substantially conventional manner. The spacing “S” of faces


70


,


72


is set to permit entry thereinto of article carrier


90


with articles


94


carried thereby and to facilitate grinding faces


100


,


102


of articles


94


by movement of faces


70


,


72


of grinding wheels


22


,


24


towards and into contact with faces


100


,


102


of articles


94


; all in substantially conventional manner and under control of controls


60


. After each article


94


has had its faces


100


,


102


ground the article exits space “SO” from between grinding faces


70


,


72


, is removed from article carrier


90


and is replaced by another article


94


with unground faces


100


,


102




13


also in conventional manner.




The respective grinding faces


70


,


72


of grinding wheels


22


,


24


and the use of those faces and grinding wheels to grind articles comprise the instant invention.




Grinding wheels


22


and


24


are identical in construction and use and accordingly only grinding wheel


22


will be described in detail and with respect to

FIGS. 2 and 3

.




A grinding wheel base


120


(

FIGS. 2 and 3

) is provided for grinding wheels


22


,


24


. Each base


120


is circular and disk-like and includes a peripheral rim


122


extending up from a face


124


of base


120


. A plurality of openings


130


(

FIGS. 2 and 3

) extend through base


120


to facilitate securing grinding wheel base


120


to grinding wheel spindle (


22


,


24


) with a rear face


132


of base


120


disposed adjacent or proximate a corresponding surface or face (not shown) of the spindle. Additional openings


140


(

FIG. 2

) also extend through base


120


to facilitate securing base


120


to its spindle.




An annular surface


140


(

FIG. 2

) of rim


122


extends between concentric walls thereof and is configured and disposed to receive a plurality of abrasive pieces


150


which are secured in place by a suitable adhesive such as an epoxy or the like. While

FIG. 2

only shows a few abrasive pieces


150


adhesively secured to surface


140


of rim


122


it should be understood that such abrasive pieces


150


are adhered to surface


140


in an array about the entire rim


122


as shown in

FIG. 4

; and that while

FIG. 4

shows such abrasive pieces


150


slightly spaced one from the other that such abrasive pieces


150


may, in fact, be disposed so as to touch as shown in

FIG. 2

or so as to be slightly spaced as shown in FIG.


4


.




Each abrasive piece


150


(

FIGS. 2-6

) is of circular disk-like or wafer configuration and is preferably fabricated from vitrified material with CBN cubic boron nitride or diamond to provide super abrasive abrasive pieces. Abrasive pieces


150


also be fabricated from formulations utilizing resin bond or metal bond and incorporating CBN or diamond. Other combinations of the aforementioned materials may also be utilized for abrasive pieces


150


. The diameter “D” (

FIGS. 5 and 6

) of each abrasive piece


150


preferably corresponds to the thickness “t” (

FIG. 3

) or width of rim


122


. An abrasive piece one inch (1″) in diameter has been found to function well but abrasive pieces in a range between one-half inch “½” to one and one-half inches (1-½″) will also serve the purpose. Each abrasive piece is preferably fabricated to a thickness “T” (

FIG. 6

) of one-eighth of an inch (⅛″) but abrasive piece thickness between one-sixteenth of an inch ({fraction (1/16)}″) and one-half an inch (½″) would also function for the intended purpose.




In

FIGS. 7 and 8

an alternative embodiment of grinding disk


220


is shown. Disk


220


is formed with an annular ring base


222


that includes an annular rim


224


about which abrasive pieces


230


are affixed preferably by a suitable adhesive such as that utilized for securing abrasive pieces


150


of

FIGS. 2-6

to rim


122


(

FIGS. 2-4

) of disk


120


. Abrasive pieces or wafers


230


are preferably fabricated from the same materials as disks


150


and in similar size ranges of diameter and thickness; with the thickness of rim


224


substantially corresponding to the diameter of the abrasive pieces


230


that are to be affixed thereto.




Abrasive pieces


230


are applied to rim


224


of disk


220


about the entire rim as shown for pieces


150


and rim


122


of disk


120


and may be so applied in a spaced relationship as shown in

FIG. 7

or closely adjacent each other as shown for pieces


150


in

FIGS. 2 and 4

. or further apart as will be hereinafter explained in greater detail.




Articles


94


to be ground may be items and parts such as brake rotors, power steering pump rings and rotors, valve plates or the like. Such articles


94


are fed between grinding wheels


22


,


24


and the grinding wheels are rotated and advanced towards each other by specified amounts to grind off the correct amount of material from articles


94


.




The grinding process creates granular material both from the abrasive used for grinding and the article being ground. Preferably that granular material or “swarf” is carried away by fluids utilized for that purpose and which also serve to cool the articles being ground and the grinding wheels.




To effectively cool and to effectively carry away the swarf the fluid must circulate over and about the abrasive surfaces and over and about the articles to be ground. Thus, if the entire surface of the grinding wheel rims were covered with abrasive then it would greatly restrict the flow of coolant and articles would not be properly ground. In fact, heat generated during the grinding process could effectively destroy and render useless the articles being ground. Alternatively, too great a spacing between areas of abrasive of the rims of the respective grinding wheels or disks might result in inefficient grinding or improper grinding of the articles.





FIGS. 12 and 13

both show a pair of abrasive pieces


150


disposed one proximate the other on a portion of the surface


122


of rim


120


of grinding wheel


22


. Surface


122


has been divided into sectors


122




a


,


122




b


by dotted lines


123


and as such the entire surface


122


of rim


120


could be similarly divided into similar sectors. Each sector


122




a


,


122




b


, . . . ,


122




n


has a given area “A” for its portion of surface


122


of rim


120


; and each abrasive piece or wafer


150


covers a predetermined portion “W” of each sector area “A”. The remaining sector surface area “R” (shown cross-hatched in

FIG. 12

) that is not covered by an abrasive piece or wafer


150


provides a space over and through which fluids can flow to cool the grinding disk, and articles to be ground and to carry away “swarf”.




In

FIG. 12

abrasive pieces


150


are spaced one adjacent the other and the covered area “W” equals a maximum percent of area A; while in

FIG. 13

abrasive pieces


150


are spaced one from the other and covered area “W” is a lesser percent of area A then that for the configuration of

FIG. 12. A

percentage of covered are “W” ranging between 60 to 80 percent of sector area A is preferable to maximize grinding efficiency utilizing grinding disks according to the instant invention; while a percentage of covered area “W” ranging between 10% and 90% of the sector area could provide acceptable grinding.





FIG. 13

shows yet another embodiment of configuration of abrasive pieces


400


and arrangement of pieces


400


on a surface


410


of a rim


420


of a grinding disk


430


. Abrasive pieces


400


are shown with an octagonal, non-circular, configuration. Pieces


400


are otherwise fabricated from the same material as pieces


150


and to similar dimensions. Other peripheral configurations may be utilized. In addition, pieces


400


are applied to surface


410


of rim


420


in the same manner that abrasive pieces


150


are applied to surface


122


of rim


120


. Rim


420


is however wider than rim


120


and abrasive pieces


400


are applied to surface


410


in spaced relationship so as to provide for at least acceptable grinding as hereinabove described and preferably so as to maximize grinding efficiency as hereinabove described.




From the above description it will thus be seen that there has been provided new and novel grinding wheels and grinding processes.




It is understood that although I have shown the preferred embodiments of my invention that various modifications may be made in details thereof without departing from the spirit as comprehended by the following claims.



Claims
  • 1. A grinding process for a grinding machine having a pair of spaced grinding spindles each of which can carry a grinding wheel so that articles to be ground may be moved between and engaged by an abrasive means carried by each such grinding spindle and have respective sides of each such article ground thereby; comprising:(a) forming each grinding wheel with a rim having a rim surface disposed in a plane substantially parallel to the plane of the surface on the article to be ground; (b) securing to each said rim surface of each said grinding wheel a plurality of abrasive pieces in an array such that no less than sixty percent of the area of each such rim surface is covered by abrasive pieces and such that no more than eighty percent of the area of each such rim surface is covered by abrasive pieces; (c) securing each said grinding wheel to a grinding wheel spindle; (d) advancing the grinding wheel spindles toward each other and into engagement with opposed surfaces of the article to be ground and rotating said grinding wheel spindles and grinding wheels and grinding the opposed surfaces of the article to be ground by a predetermined amount; and (e) passing a fluid about and over said abrasive pieces and about and over the surfaces being ground.
  • 2. The grinding process of claim 1, including providing open spaces between said abrasive pieces.
  • 3. The grinding process of claim 1, including providing article feed means and operating said article feed means to feed articles to be ground between said grinding wheel abrasive pieces.
  • 4. The grinding process of claims 1, including forming each said grinding wheel with a disk-like base means having a first face surface and a second face surface disposed in parallel planes and with a peripheral edge that extends between said first surface and said second surface and forming said rim to extend from either said first surface or said second surface and at a predetermined angle thereto.
  • 5. The grinding process of claim 4, including forming said rim surface to be continuous and endless.
  • 6. The grinding process of claim 5, including forming said peripheral edge to be circular.
  • 7. The grinding process of claim 1, including disposing said array of abrasive pieces to be uniformly spaced about said rim surface.
  • 8. The grinding process of claim 1, including forming each said abrasive piece disk-like and with a circular peripheral edge.
  • 9. The grinding process of claim 8, including forming each said abrasive piece to be one-sixteenth of an inch in thickness and one inch in diameter.
  • 10. The grinding process of claim 8, including forming each said abrasive piece to be between one-sixteenth and one-half inch in thickness and between one-half to one and one-half inches in diameter.
  • 11. The grinding process of claim 1, including forming each abrasive piece as a superabrasive.
  • 12. The grinding process of claim 11, including forming said superabrasive from cubic boron nitride.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Division of application U.S. Ser. No. 08/442,441 filed May 16, 1995, now U.S. Pat. No. 6,217,433.

US Referenced Citations (10)
Number Name Date Kind
2442129 Hollstrom May 1948 A
2799980 Keeleric Jul 1957 A
2836017 Tygh May 1958 A
2882655 Osenberg Apr 1959 A
4663890 Brandt May 1987 A
5040341 Okinaga Aug 1991 A
5074276 Katayama Dec 1991 A
5191738 Nakazato et al. Mar 1993 A
5199832 Meskin et al. Apr 1993 A
6217433 Herrman et al. Apr 2001 B1