Grinding machine for centerless grinding of workpieces

Information

  • Patent Grant
  • 6569000
  • Patent Number
    6,569,000
  • Date Filed
    Friday, August 25, 2000
    24 years ago
  • Date Issued
    Tuesday, May 27, 2003
    21 years ago
Abstract
A grinding machine for centerless grinding of workpieces is provided. The workpieces are disposed on a support in the area of a longitudinal plane of the grinding machine. A first slide is provided for a grinding wheel and positioned laterally relative to the longitudinal plane. A second slide is provided for a regulating wheel and is likewise positioned laterally with respect to the longitudinal plane. A first dressing tool is provided for dressing the grinding wheel at a first predetermined position and a second dressing tool for dressing the regulating wheel at a second predetermined position. The first and second predetermined positions are located in the area of the longitudinal plane.
Description




FIELD OF THE INVENTION




The present application generally relates to the field of grinding workpieces. More specifically, the invention is related to the field of centerless grinding. Still more specifically, the invention is related to a grinding machine for centerless grinding of workpieces disposed on a support in the area of a longitudinal plane of the grinding machine, comprising a first slide for a grinding wheel positioned laterally relative to the longitudinal plane, a second slide for a regulating wheel being likewise positioned laterally with respect to the longitudinal plane, a first dressing tool for dressing the grinding wheel at a first predetermined position and a second dressing tool for dressing the regulating wheel at a second predetermined position.




BACKGROUND OF THE INVENTION




A grinding machine of the type specified before is disclosed in EP 0 448 509 B1.




In this prior art grinding machine the grinding wheel and the regulating wheel are disposed on opposite sides of a longitudinal median plane of the grinding machine, as is conventionally known. In the area of the longitudinal median plane, i.e. between the grinding wheel and the regulating wheel, a support rail is disposed in an axial extension along the longitudinal median plane for supporting the workpieces to be ground. The support rail, as is also well-known per se, is configured sloped at its upper surface. It may be displaced vertically.




The grinding wheel and the regulating wheel together with their associated drives are each disposed on slides. These slides are configured to be displaced both parallel to the longitudinal median plane, along the so-called Z-axis as also along a direction extending under right angles thereto and conventionally designated as X-axis. Moreover, they may be pivoted about a vertical axis.




In this prior art grinding machine, one separate dressing tool each is provided for the grinding wheel on the one hand and for the regulating wheel on the other hand. The dressing tools are positioned on the respective associated slides and extend parallel to the X-axis. The dressing tools engage the grinding wheel and the regulating wheel, respectively, at their respective rear sides, i.e. at the side that is opposite to the longitudinal median plane and, hence, opposite to the workpiece.




The prior art machine has, therefore, the disadvantage that an additional space is necessary on the rear side of the grinding wheel and of the regulating wheel allowing to position the dressing tools in that area. Besides this disadvantage under design aspects, the prior art grinding machine has the essential functional disadvantage that due to the rearward position of the dressing tools precision problems may be generated. These problems are generated on the one hand due to temperature variations as a consequence of different expansions of machine sections, but in particular when the grinding wheel and/or the regulating wheel are pivoted about the vertical axis (so-called B-axis) and/or about an axis (so-called A-axis) extending parallel to the X-axis. These pivotal movements are necessary because the axial feed force is generated by pivoting the regulating wheel about the A-axis, whereas pivoting the regulating wheel about the B-axis the workpiece is directed radially relative to the grinding wheel so as to allow predetermining a desired cylindrical or conical shape.




If now the grinding wheel and the regulating wheel are dressed “from behind”, geometric errors are inevitably generated when errors occur during the pivotal movement about the A-axis and/or the B-axis. These dressing errors, in turn, result in contour errors on the worked workpieces which, again, can only be corrected by a complicated iterative readjustment of the A-axis and the B-axis.




WO 96/05940 discloses an external cylindrical surface grinding machine in which the workpieces are chucked between tips. In this prior machine tool, two grinding wheels are provided one besides of the other. The two grinding wheels together with their associated drives are each seated on a separate slide. The slides, in turn, may be displaced along the X- and the Z-direction.




Both slides of this prior art grinding machine are provided with dressing rollers. By appropriately advancing and retracting the dressing rollers and by approaching the two slides with respect to each other, the dressing roller on the one slide will dress the grinding wheel on the other slide and vice versa. However, also in this prior art grinding machine the dressing rollers are positioned on the rear side of the grinding wheels, i.e. on the side opposite the workpiece.




For that reason also this prior art grinding machine has the disadvantage mentioned above.




Another grinding machine for centerless grinding is disclosed in EP 0 616 870 A1. In this prior art grinding machine, dressing tools for the grinding wheel and the regulating wheel, respectively, are positioned in front of the slide carrying the grinding wheel and its associated drive. One of the dressing tools is stationary and the other dressing tool may be transported on the respective other slide.




Further, EP 0 449 767 A1 discloses a grinding machine for centerless grinding of still more conventional design having dressing tools on the side of the grinding wheel and the regulating wheel, respectively, opposite the center median plane.




It is, therefore, an object underlying the invention to improve a grinding machine of the type specified at the outset and being intended to be used for centerless grinding of workpieces, such that the disadvantages mentioned above are avoided. In particular, the dressing of the grinding wheel and/or of the regulating wheel shall become possible without sacrificing further space on the machine. In particular, the invention shall make it possible to perform dressing on the wheels without any contour errors on the workpiece at all or with only negligible such contour errors, even if the machine is subjected to varying temperatures and/or positioning errors should occur during the pivotal movement about the A- and/or B-axis.




SUMMARY OF THE INVENTION




According to the grinding machine specified at the outset, this object is achieved in that the positions are located in the area of the longitudinal plane.




The object underlying the invention is thus entirely solved. If, namely, the positions are in the area of the longitudinal plane, this means that the dressing process occurs in the area of engagement of the wheels (grinding wheel and regulating wheel), i.e. essentially at the point where the two wheels are in contact with the workpiece during a machining operation.




This has the essential advantage that the entire assembly is concentrated in the area of the longitudinal median plane, in particular in front of the wheels, so that no additional space is required behind the grinding wheels and their associated drives, respectively. Above all, the invention has the advantage that the contour errors explained above are minimized and, mostly, entirely eliminated because the dressing operation is effected at a position where the later engagement of the workpiece takes place. Therefore, for simply geometric reasons no errors of the type discussed above may occur.




The precision of the grinding machine may, hence, be substantially improved with relatively simple design measures.




In preferred embodiments of the invention, the longitudinal plane is the longitudinal median plane of the grinding machine, wherein, as known per se, the slides may be disposed on opposite sides of the longitudinal median plane.




This measure has the advantage that the dressing tools are disposed between opposite wheels so that no further space is required.




In further embodiments of the invention, kinematic variations and inversions of the sequence of motion of the various elements involved are possible.




For example, according to an embodiment of the invention, it is possible to make the first and/or the second dressing tool displaceable.




According to a first variation of this embodiment, this is made by disposing the first and/or the second dressing tool on a third slide which, preferably, is adapted to be displaced along an axis extending parallel to the longitudinal plane.




This measure has the advantage that the dressing movement is effected along the Z-axis by displacing the third slide, so that the first and the second slide for the grinding wheel and for the regulating wheel must not be displaced during the dressing operation. It is particularly preferred in this context when the two slides are not adapted to be displaced at all along the Z-axis which is sufficient for many applications with respect to the processing of the workpieces so that a substantial simplification of the machine is obtained which, in turn, results in lower manufacturing costs.




According to another variant of this embodiment, the first and/or the second dressing tool may, however, also be disposed on the respective other slide, i.e. the first dressing tool may be disposed on the second slide and/or the second dressing tool may be disposed on the first slide.




This measure has the advantage that the dressing process is effected by simply utilizing machine axes so that no separate drives are necessary for the dressing assembly (separate dressing axis or axes, respectively).




According to another modification of this variant, the respective dressing tool is disposed on a movable arm such that the dressing tool preferably is positioned within the peripheral contour of the regulating wheel or the grinding wheel, respectively, and outside that peripheral contour when in a dressing position.




This measure has the advantage that the sequence of motion may be simplified and that collisions between the dressing tool and the respective other slide or the respective other dressing tool or the workpiece may be avoided because when the dressing tool is not needed, it will be displaced into its retracted position.




In this embodiment it is further preferred when the arm is adapted to be pivoted about an axis or is adapted to be shifted along an axis.




It had already been mentioned that the displaceability of the dressing tools on the one hand and of the slides on the other hand depend on each other. In any case it is necessary to ensure a relative displaceability with respect to the X-axis and the Y-axis.




If, according to the above-discussed embodiments of the invention, the dressing tools are disposed on the slide and the dressing operation is executed by reciprocally approaching the slides relative to one another, similarly as discussed in WO 96/05940 discussed at the outset, it is necessary that the slides are adapted to be displaced not only along the Z-axis but also along the X-axis.




According to further embodiments of the invention, the first dressing tool is disposed stationarily and the first slide is adapted to be displaced along a first axis extending parallel to the longitudinal plane as well as along a second axis extending under right angles relative to the longitudinal plane.




This measure, too, has the advantage that the dressing operation may be executed solely by making displacements along the machine axes without the necessity of separate dressing axes.




According to this embodiment of the invention it is further preferred when the first and/or the second dressing tool and the support are structurally integrated on a common console.




This measure has the advantage that the components that are provided in the area of the longitudinal median plane anyway, are utilized for several purposes, namely when the console is utilized for supporting the support on the one hand and, on the other hand, serves as a basis for one or two dressing tools.




Correspondingly or alternatively or in addition, the machine may be configured such that the first and/or the second dressing tool together with a feeding assembly for the workpieces are structurally integrated on a common console.




According to further embodiments of the invention, it is preferred when the axes of the grinding wheel and of the regulating wheel lie in the same plane as the points of engagement of the dressing tools on the grinding wheel and on the regulating wheel.




This measure has the advantage already mentioned at the outset that a very high precision may be obtained when the grinding wheel and the regulating wheel are dressed exactly at the same position where they come into engagement with the workpiece at a later moment in time.




The same holds true if according to a preferred variation of this embodiment, as known per se, the plane is disposed below the points of engagement of the grinding wheel and the regulating wheel on the workpiece by a predetermined amount. In exceptional cases, however, it may also be disposed above these points of engagement.




Moreover, embodiments of the invention are preferred in which not two separate dressing tools are utilized but, instead, the first and the second dressing tool are structurally integrated into a common dressing tool.




This method has the advantage that the machine is less complicated and the dimensions of the grinding machine may be reduced.




The grinding machine according to the present invention may be used for various centerless grinding processes, namely for external cylindrical surface grinding, internal cylindrical surface grinding, plunge grinding or angular plunge grinding.




It goes without saying that the features mentioned before and those that will be explained hereinafter, may not only be used in the particularly given combination, but also in other combinations or alone, without leaving the scope of the present invention.











BRIEF DESCRIPTION OF THE DRAWINGS




Embodiments of the invention are shown in the drawing and will be discussed in further detail in the subsequent description.





FIG. 1

shows a highly schematic side elevational view of a first embodiment of a grinding machine according to the invention, for centerless external cylindrical surface grinding;





FIGS. 2 and 3

show further schematic top plan views of the machine of

FIG. 1

in a dressing position (

FIG. 2

) and in a working position (FIG.


3


);





FIGS. 4

to


6


show top plan views, similar to those of

FIGS. 2 and 3

, on another embodiment of an external cylindrical surface grinding machine according to the invention, in three separate operational positions;





FIG. 7

shows a further top plan view, similar to that of

FIGS. 2

to


6


, however, for a third embodiment of the invention; and





FIG. 8

shows another depiction, similar to that of

FIGS. 2

to


7


, for a fourth embodiment of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In

FIGS. 1

to


3


reference numeral


10


as a whole designates a grinding machine for centerless external cylindrical surface grinding of workpieces. Grinding machine


10


rests on a machine bed


12


which, in turn, is supported via feed


14


on a floor


16


. On machine bed


12


a first slide


18


is disposed carrying a grinding wheel


20


with its associated drive (not shown). Grinding wheel


20


is rotatable about a first axis


21


.




A second slide


22


carries a regulating wheel


24


being rotatable about a second axis


25


, as well as the associated drives (not shown).




A workpiece


26


is positioned between wheels


20


and


24


, in the area of a longitudinal median plane


28


of grinding machine


10


.




Slides


18


and


22


are supported on cross slides


30


and


32


, as indicated at


34


and


36


.




According to the nomenclature used in the grinding machine industry, both slides


18


and


22


are adapted to be displaced along a Z-axis extending parallel to the longitudinal median plane


28


, as well as along a X-axis extending under right angles thereto. The corresponding axes are depicted in the top plan views of

FIGS. 2 and 3

. In the technology of grinding machines for centerless grinding of workpieces, it is, further, wellknown to at least pivot regulating wheel


24


about an axis A extending parallel to the X-axis. Moreover, another pivotal movement about a vertical B-axis also extending under right angles thereto, is well-known. For illustration purposes, axes A and B are shown in FIG.


1


.




If regulating wheel


24


is pivoted about the A-axis, an axial feed force is generated relative to workpiece


26


by means of which the workpieces


26


are axially transported during through-feed grinding, namely through the grinding gap between grinding wheel


20


and regulating wheel


24


. Pivoting regulating wheel


24


about the B-axis effects that workpieces


26


are aligned radially relative to grinding wheel


20


, thus permitting to predetermine a desired cylindrical or conical shape.




A console


38


is located between slides


18


,


22


, i.e. in the area of longitudinal median plane


28


. Console


38


extends along longitudinal median plane


28


. Console


38


at its input is connected to a feeding assembly


39


for workpieces


26


, as indicated in

FIG. 2

in dashed lines, or is structurally integrated with same.




Console


38


on its upper side carries a support rail


40


which, as is known per se, is configured with a slope on its upper surface. Support rail


40


, as clearly shown in

FIG. 1

, carries workpieces


26


.




On the side of console


38


opposite feeding assembly


39


, a corresponding discharge assembly


41


is arranged in Z-direction. Discharge assembly


41


receives finished workpieces


26


during through-feed grinding and transports same away. Discharge assembly


41


, too, may be structurally integrated with console


38


.




It goes, however, without saying that workpieces


26


may also be brought otherwise into the area of support rail


40


and brought away therefrom, respectively. Feeding assembly


39


as well as discharge assembly


41


may be entirely separate units having no mechanical connection to console


38


whatsoever.




Further, a stand


42


clearly shown in

FIG. 1

is positioned on console


38


. Stand


42


has a U-shaped cross-section. Two parallel arms


44


and


46


extend vertically and upwardly from stand


42


. A first arm


44


carries a first dressing tool


48


for the grinding wheel


20


. A second arm


46


, in contrast, carries a second dressing tool


50


for dressing the regulating wheel


24


.




As one may further see from

FIG. 1

, axes


21


and


25


of grinding wheel


20


and regulating wheel


26


lie in the same, essentially horizontal plane


52


. The points of engagement of dressing tools


48


and


50


, when they engage grinding wheel


20


and regulating wheel


24


, respectively, preferably also lie within that plane


52


.




In contrast thereto, the axis of workpiece


26


is indicated somewhat above plane


52


, as indicated in

FIG. 1

with a vertical offset H. This measure is well-known in the technology of centerless grinding of workpieces and needs not to be further discussed in detail in the present context.




In grinding machine


10


according to

FIGS. 1

to


3


, therefore, dressing tools


48


and


50


are stationary, namely in the shown embodiment in that they are rigidly mounted on the stationary console


38


. However, it goes without saying that dressing tools


48


and


50


may also be disposed in the area of the feeding assembly


39


or of the discharge assembly


41


.




If dressing tools


48


and


50


are stationary, the dressing operation must be executed by corresponding displacement of the wheels


20


and


24


to be dressed. In the embodiment shown in

FIGS. 1

to


3


, this does not present any problems because wheels


20


and


24


are adapted to be displaced on their slides


18


and


22


along the Z-axis as well as along the X-axis.





FIG. 2

shows a dressing operation for which slides


18


and


22


are displaced sufficiently to the left hand side by displacing same along the Z-axis. Simultaneously, slides


18


and


22


are approached along the X-direction towards dressing tools


48


and


50


so that these come into engagement with the surface of wheels


20


and


24


. Wheels


20


and


24


may now be dressed such that they are displaced along dressing tools


48


and


50


once or several times by displacing slides


18


and


22


along the Z-direction and by being in engagement with the latter.




As soon as the dressing operation according to

FIG. 2

is terminated, wheels


20


and


24


are driven away from dressing tools


48


and


50


along the X-direction and, in the embodiment shown, may be displaced to the right hand side with their slides


18


and


22


for then working on a workpiece


26


that had been made ready in the meantime on support rail


40


. In

FIG. 3

all displaced or shifted components are designated with their reference numeral to which an apostrophe was added.




In

FIGS. 4

to


6


a second embodiment of a grinding machine according to the present invention is designated with reference numeral


60


. Grinding machine


60


again has a first slide


62


for a grinding wheel


64


as well as a second slide


66


for a regulating wheel


68


. A support rail


70


is also provided between wheels


64


and


68


for supporting workpieces


72


to be machined (FIG.


6


). Support rail


70


extends along a longitudinal median plane


74


of grinding machine


60


.




A first arm


76


is disposed on second slide


66


. First arm


76


is adapted to be shifted in the direction of an axis


77


extending parallel to the X-axis. First arm


76


at its front side carries a first dressing tool


78


for dressing grinding wheel


64


.




A second arm


80


is disposed on first slide


62


and is adapted to be pivoted about an axis


82


. Axis


82


extends parallel to the Z-axis. Second arm


80


carries a second dressing tool


84


for dressing regulating wheel


68


.




In the operational position shown in

FIG. 4

grinding wheel


64


and regulating wheel


68


face each other. Second arm


80


on first slide


62


is in its extended position and protrudes far beyond the peripheral contour of grinding wheel


64


. In that position first slide


62


may be displaced with the left hand side in

FIG. 4

, i.e. along the Z-axis and may then be displaced downwardly along the X-axis, as indicated with arrows


86


. By doing so it becomes possible to dress regulating wheel


68


at its periphery alone by displacing first slide


62


. Of course, the X-displacement may, as an alternative, also be effected by displacing second slide


66


in the X-direction.




Considering that first slide


62


is adapted to be displaced both in the X- and in the Z-direction, it is only necessary in the grinding machine


60


of

FIGS. 4

to


6


for second slide


66


that it is adapted to be displaced along the X-axis. It is not necessary to make it displaceable also along the Z-axis.




In order to also enable to dress grinding wheel


64


, first slide


62


is displaced to the right hand side along the Z-axis, as shown in FIG.


5


. In

FIG. 5

all displaced elements are designated with the same reference numerals as in

FIG. 4

, however, an apostrophe is added.




Grinding wheel


64


′ now faces first arm


76


with first dressing tool


78


. First slide


62


′ is now displaced downwardly along the X-direction until first dressing tool


78


comes into engagement with the peripheral surface of grinding wheel


64


′. Subsequently, first slide


62


′ is displaced with the left hand side in the Z-direction, such that first dressing tool


78


runs along the outer periphery of grinding wheel


64


. For that purpose, first arm


76


, if need be, may:also be extended in the direction of axis


77


in the X-direction upwardly.




As an alternative, the X-movement may also be configured by correspondingly displacing second slide


66


.




From

FIG. 5

one may further see that second arm


80


′ was pivoted away about axis


82


′ so that second dressing tool


64


′ is now within the peripheral contour of grinding wheel


64


′ and, hence, is no obstacle when grinding wheel


64


is displaced.




Finally,

FIG. 6

shows a third operational position of grinding machine


60


′. In

FIG. 6

the moved elements are designated with their reference numeral and a double apostrophe is added.




As one can see, grinding wheel


64


″ and regulating wheel


68


′ again face each other and enclose between them workpiece


72


on support rail


70


. Workpiece


72


, hence, is in contact with both wheels


64


″ and


68


″. The necessary feeding movement along the X-direction is effected by displacing both slides


62


″ and


66


″.





FIG. 7

shows a third embodiment of a grinding machine


90


according to the invention, having a first slide


92


, carrying a grinding wheel


94


as well as a second slide


96


carrying a regulating wheel


98


.




As was the case with grinding machine


60


of

FIGS. 4

to


6


, the operational conditions for grinding machine


90


of

FIG. 7

are also such that first slide


62


for grinding wheel


94


is adapted to be displaced both in the X- and in the Z-direction, whereas second slide


96


for regulating wheel


98


may only be displaced along the X-direction.




In

FIG. 7

reference numeral


100


again designates a longitudinal median plane of grinding machine


90


.




A first arm


102


is disposed stationarily in the area of longitudinal median plane


100


. First arm


102


carries a first dressing tool


104


for grinding wheel


94


.




A second arm


106


, in contrast, is disposed on first slide


92


and is, hence, adapted to be displaced. Second arm


106


is adapted to be pivoted about an axis


108


extending parallel to the Z-axis. Second arm


106


carries a second dressing tool


110


for the regulating wheel


108


.




As one can easily see from

FIG. 7

, the periphery of grinding wheel


94


may easily be approached to first grinding tool


104


for dressing grinding wheel


94


by displacing first slide


92


in the X- and in the Z-direction. The dressing movement is then again exclusively effected by means of the machine axes of first slide


92


. Second arm


106


is preferably pivoted away from the position shown in

FIG. 7

by pivoting same about axis


108


, such that it does not protrude beyond the peripheral contour of grinding wheel


94


in the X-direction.




For dressing regulating wheel


98


, second arm


106


, in contrast, is extended into the position shown in FIG.


7


. Second dressing tool


110


may then be brought into engagement with the outer periphery of regulating wheel


98


in the manner already described by displacing first slide


92


in the X- and in the Z-direction. Again, as an alternative, the X-displacement may be effected also by second slide


96


.




Whereas in the embodiments of

FIGS. 1

to


7


described hereinbefore, the grinding machines


10


,


60


and


90


were each used for a centerless external cylindrical surface grinding,

FIG. 8

shows a fourth embodiment of a grinding machine


120


used for centerless angular infeed grinding.




Grinding machine


120


comprises a first slide


122


with a grinding wheel


124


, the axis


120


of which extends under an angle to the longitudinal median plane


128


of grinding machine


120


. Grinding wheel


124


, therefore, has the conventional conical design as is typical for angular infeed grinding machines.




A second slide


130


carries the regulating wheel


132


. A workpiece


134


is positioned between grinding wheel


124


and regulating wheel


132


. Workpiece


134


is disposed on a support (not shown) which, again, is mounted on a third slide


136


. Third slide


136


is adapted to be displaced along the Z-direction. In contrast, slides


122


and


130


may only be displaced along the X-direction.




For displacing third slide


136


, a linear drive


138


, also shown highly schematically, is provided which, for example, may comprise a ball screw spindle or the like. Third slide


136


runs on rails


140


.




A first arm


142


is mounted on third slide


136


. First arm


142


carries a first dressing tool


144


for the grinding wheel


124


. Moreover, a second arm


146


is also mounted on third slide


136


. Second arm


146


carries a second dressing tool


148


for regulating wheel


132


.




In the grinding machine


120


of

FIG. 8

the dressing operation is executed by displacing the wheel to be dressed along the X-direction by suitably displacing its corresponding slide, whereas the dressing movement as such is executed by displacing third slide


136


along the Z-direction.




As one may easily take from the preceding description, all kinematic configurations are possible with respect to the grinding wheel, regulating wheel and the two grinding tools, namely the displaceability along two axes, along one axis or a stationary mounting. All these alternatives may be configured in all conceivable permutations. The important point is that the dressing axes are always configured by corresponding displacement units, i.e. a feeding movement in the X-direction and a dressing movement in the Z-direction. Insofar, it is meaningless that in a particular case further motional axes may be provided for individual assemblies.




Within the scope of the present invention, it is, above all, important that the dressing tools are disposed in the area of the longitudinal median plane and, hence, engage the dressing wheel and the regulating wheel from the inside at any time, i.e. from the space between these two wheels.




With respect to the various embodiments it was also shown that the grinding machine of the present invention may be utilized for various grinding operations within the field of centerless grinding, i.e. for external cylindrical surface grinding, for internal cylindrical surface grinding, for plunge grinding and for angular plunge grinding.



Claims
  • 1. A grinding machine for centerless grinding of workpieces disposed on a support in the area of a longitudinal plane of said grinding machine comprising:a first slide for a grinding wheel positioned laterally relative to said longitudinal plane, said first slide being adapted to be displaced along a first axis extending parallel to said longitudinal plane as well as along a second axis extending under right angles to said longitudinal plane; a second slide for a regulating wheel being likewise positioned laterally with respect to said longitudinal plane, said second slide being adapted to be displaced along said first axis as well as along said second axis; a first dressing tool for dressing said grinding wheel at a first predetermined position, said first dressing tool being disposed stationarily; and a second dressing tool for dressing said regulating wheel at a second predetermined position, said second dressing tool being likewise disposed stationarily, wherein said positions are located essentially within said longitudinal plane, and a device for executing a dressing operation by corresponding displacement of said grinding wheel and said regulating wheel relative to said first and second dressing tools that are stationarily disposed.
  • 2. The grinding machine of claim 1, wherein said longitudinal plane is a longitudinal median plane of said grinding machine, said slides being disposed on opposite sides of said longitudinal median plane.
  • 3. The grinding machine of claim 1, wherein said first dressing tool and said support are structurally integrated on a common console.
  • 4. The grinding machine of claim 1, wherein said first dressing tool and a feeding assembly are structurally integrated on a common console.
  • 5. The grinding machine of claim 1, wherein said second dressing tool and said support are structurally integrated on a common console.
  • 6. The grinding machine of claim 1, wherein said second dressing tool and a feeding assembly for said workpiece are structurally integrated on a common console.
  • 7. The grinding machine of claim 1, wherein said grinding wheel and said regulating wheel, respectively, have axes, said axes lying within a plane, points of engagement of said dressing tools on said grinding wheel and on said regulating wheel, respectively, also lying within said plane.
  • 8. The grinding machine of claim 7, wherein said points of engagement lie in an area between said grinding wheel and said regulating wheel.
  • 9. The grinding wheel of claim 7, wherein said plane is disposed below said points of engagement of said grinding wheel and said regulating wheel on said workpiece by a predetermined amount.
  • 10. The grinding wheel of claim 1, wherein said first and said second dressing tools are structurally integrated into a common dressing tool.
  • 11. The grinding machine of claim 1, wherein said machine is configured for centerless external cylindrical surface grinding.
  • 12. The grinding machine of claim 1, wherein said machine is configured for centerless internal cylindrical surface grinding.
  • 13. The grinding machine of claim 1, wherein said machine is configured for centerless plunge grinding.
  • 14. The grinding machine of claim 1, wherein said machine is configured for centerless angular plunge grinding.
Priority Claims (1)
Number Date Country Kind
199 40 687 Aug 1999 DE
CROSS REFERENCE TO RELATED APPLICATIONS

Reference is made to a first patent application of the same applicant of even date entitled “A method and an apparatus for CNC-controlled dressing of a regulating wheel of a grinding machine for a centerless grinding process on a workpiece, a method for centerless grinding and a grinding machine,” U.S. patent application Ser. No. 09/648,207) and to a second patent application of the same applicant of even date entitled “Method and machine for centerless angular plunge grinding,” U.S. patent application Ser. No. 09/648,206), the disclosures of these co-pending applications being incorporated into this application by way of reference.

US Referenced Citations (5)
Number Name Date Kind
4570386 Unno et al. Feb 1986 A
4587763 Hahn May 1986 A
5674106 Cheetham Oct 1997 A
5928065 Shih Jul 1999 A
6123605 Yano Sep 2000 A
Foreign Referenced Citations (4)
Number Date Country
0 448 509 Feb 1991 EP
0 449 767 Feb 1991 EP
0 616 870 Mar 1993 EP
WO 9605940 Feb 1996 WO