The present disclosure relates to a grinding machine for robot-supported grinding, in particular to a compact, light grinding machine for mounting onto a manipulator.
In robot-supported grinding apparatuses a grinding tool (e.g. an electrically driven grinding machine with a rotating grinding disc) is guided by a manipulator, for example, by an industrial robot. In this process, the grinding tool can be coupled to the TCP (Tool Center Point) of the manipulator in various ways, enabling the manipulator to adjust the tool to virtually any position and orientation. Industrial robots are generally position-adjusted, which allows for a precise movement of the TCP along the desired trajectory. In order to achieve good results from the robot-supported grinding, many applications require that the processing force (grinding force) be regulated, which is difficult to carry out with sufficient accuracy using conventional industrial robots. The large, heavy arm segments of an industrial robot possess too much inertia for a controller (closed-loop controller) to be able to react quickly enough to variations in the processing force. To solve this problem, a linear actuator that is smaller than the industrial robot and that couples the TCP of the manipulator to the grinding tool can be arranged between the TCP of the manipulator and the grinding tool. The linear actuator only regulates the processing force during grinding (that is, the contact force between the tool and the workpiece), while the manipulator moves the grinding tool together with the linear actuator in a position-controlled manner along a specifiable trajectory.
Conventional orbital or eccentric action grinding machines are comparably inefficient as they are designed to be used for manual work. The robot can operate more quickly and can apply more force, which requires more grinding power. The small and compact construction design of orbital or eccentric action grinding machines can also cause heat-related problems. Furthermore, flexural forces of hoses and cables can produce disturbing forces that alter the processing force during grinding and which, nevertheless, cannot be eliminated by the controller.
The inventors have set themselves the objective of developing a compact grinding machine that is suitable for robot-supported grinding and that allows for a comparably precise adjustment of the processing force during grinding.
A grinding machine is described which is suitable for a robot-supported grinding process. In accordance with one embodiment, the grinding machine comprises a housing, a motor arranged in the interior of the housing, a fan wheel arranged on a motor shaft of the motor in the interior of the housing and a backing pad coupled to the motor shaft for receiving a grinding disc. The backing pad has openings for suctioning grinding dust into the interior of the housing. The grinding machine further comprises an outlet arranged in a wall of the housing for discharging the grinding dust out of the interior of the housing and a check valve arranged in the wall of the housing. The check valve allows air to escape from the interior of the housing, prevents, however, air from being suctioned into the interior of the housing.
Further, an apparatus for robot-supported grinding is described. In accordance with one embodiment, the apparatus comprises a manipulator, a grinding machine, a linear actuator that couples the grinding machine to a TCP of the manipulator, and a extraction system connected to an outlet in the housing of the grinding machine.
Finally, a method for cooling a grinding machine that has a rotatable backing pad for receiving a grinding disc is described. In accordance with one embodiment, the method comprises creating a vacuum in the interior of the housing of the grinding machine using a extraction system that is connected to the interior of the housing via an air outlet in a wall of the housing. The vacuum causes an air stream to flow through the openings in the backing pad that suctions grinding dust into the interior of the housing. The dust is then discharged over the outlet in the wall of the housing. At the same time, the air stream also cools a motor arranged in the interior of the housing. For cases in which the extraction system is inactive, the method comprises creating an additional air stream to cool the motor through the openings in the backing pad employing a fan wheel, thereby creating a stagnation pressure in the interior of the housing which causes a check valve arranged in the wall of the housing to open so the additional air stream can flow out.
Various embodiments will now be described in greater detail by means of the examples illustrated in the figures. The illustrations are not necessarily true to scale and the embodiments are not to be limited to the aspects illustrated here. Instead importance is given to illustrating the basic principles underlying the embodiments. In the figures, like reference signs designate corresponding parts. The figures show:
Before describing various embodiments in detail, an example of a robot-supported grinding apparatus will be described. This comprises a manipulator 1, for example, an industrial robot, and a grinding machine 10 with a rotating grinding tool (e.g. an orbital grinding machine), wherein the tool is coupled to the so-called tool center point (TCP) of the manipulator 1 via a linear actuator 20. In the case of an industrial robot that possesses six degrees of freedom, the manipulator can be constructed of four segments 2a, 2b, 2c and 2d, each of which is connected via the joints 3a, 3b and 3c. The first segment is usually rigidly connected to a base 41 (which, however, need not necessarily be the case). The joint 3c connects the segments 2c and 2d. The joint 3c may be biaxial, allowing for a rotation of segment 2c around a horizontal axis of rotation (elevation angle) and a vertical axis of rotation (azimuth angle). The joint 3b connect the segments 2b and 2c and allows the segment 2b to carry out a swivel movement relative to the position of the segment 2c. The joint 3a connects the segments 2a and 2. The joint 3a may be biaxial, thereby (as in the case of joint 3c) allowing for a swivel movement in two directions. The TCP is at a fixed position relative to segment 2a, whereas the latter generally also has a rotating joint (not shown) that allows the segment 2a to rotate around a longitudinal axis A (in
The manipulator 1 is generally position-adjusted, i.e. the robot controller can determine the pose (position and orientation) of the TCP and can move it along a previously defined trajectory. In
As previously mentioned, the contact force FK (also called processing force) between tool (grinding machine 10) and workpiece 40 can be adjusted using the (linear) actuator 20 and a force controller (which, for example, can be implemented in the controller 4) to correspond to a specifiable desired value. This contact force is a reaction to the actuator force with which the linear actuator 20 presses against the workpiece surface. If no contact between the workpiece 40 and the tool takes place, the actuator 20, because of the absence of contact force on the workpiece 40, comes to rest against an end stop (not shown here as it is integrated in the actuator 20). Position adjustment of the manipulator 1 (which can also be implemented in the controller 4) can be carried out completely independently of the force adjustment of the actuator 20. The actuator 20 is not responsible for positioning the grinding machine 10, but only for adjusting and maintaining the desired contact force during the grinding process and for recognizing when contact between tool and workpiece takes place.
The actuator may be a pneumatic actuator, i.e. a double-acting pneumatic cylinder. However, other pneumatic actuators such as, e.g. bellow cylinders and air muscles may also be used. Alternatively, (gearless) direct electric drives may also be considered. Here it should be pointed out that the effective direction of the actuator 20 need not necessarily follow along the longitudinal axis A of segment 2a of the manipulator. In the case of a pneumatic actuator, adjusting the force can be carried out with a control valve or a controller (implemented in the controller 4) and a compressed air tank using commonly known methods. The precise manner of this implementation, however, is of no importance for the further description and need not be explained here in detail. Grinding machines generally possess an extraction system for vacuuming up grinding dust. A connection 15 for a hose of an extraction system is shown in
As mentioned earlier, the inertia of the grinding machine may be an issue with regard to a precise adjustment of the contact force (processing force). Designing the grinding machine to be smaller and more compact, however, results in increased power densities, which in turn results in increased heat dissipation (and correspondingly high temperatures) in comparatively small spaces. In the case of an orbital grinding machine, the excess heat partially arises, on the one hand, in the electromotor of the grinding machine (e.g. ohmic losses, iron losses, friction losses in the bearings) and, on the other hand, in the eccentric bearings that allow for the orbital movement. In the examples shown here, a compact construction design is achieved, inter alia, by combing the cooling and extraction systems. This means, when in “normal” operation, the air stream generated by the grinding dust extraction system is also used for cooling.
As stated, grinding machines, in particular orbital grinding machines, can be coupled to an extraction system for extracting grinding dust. The extraction system—similar to a vacuum cleaner—generates a vacuum and is coupled to the interior of the housing 11 via a hose. In the present example, the hose of the extraction system can be connected to the air outlet 15. During a grinding operation air is suctioned through the openings 17 into the interior of the housing 11, whereby grinding dust is transported into the interior of the housing, and then out through the air outlet 15. The flow of the air stream through the housing 11 is depicted by a dashed arrow in
The air stream generated by the extraction system simultaneously cools the interior of the housing while transferring heat from the motor 12 and the eccentric bearing 16. Due to the compact construction design of the grinding machine, this cooling is needed to keep it from overheating. Without such cooling, temperatures of over 150° can result in damage to the motor or the mechanical components. When in operation, however, the danger exists that the extraction system, for one reason or another, might not function properly, for example, if an operator forgets to turn on the extraction system or because an air hose has come loose, etc. This generally does not present a problem with conventional grinding machines because, on the one hand, thanks to their less compact construction design, less waste heat is produced and, on the other hand, extraction and cooling are two mutually independent subsystems. The grinding machine construction design described here, however, with combined cooling and extraction, depends on a functioning extraction system if no additional measures have been provided to prevent the grinding machine from overheating when the extraction system is not working. If the extraction system fails, the axial wheel fan 13 is not always capable of generating sufficient heat convection, in particular if the resistance against the air stream flowing through the air outlet 15 is too high. This may be the case, e.g. if the extraction system is connected to the air outlet 15 via a hose but the extraction system has been turned off or fails.
At mentioned at the beginning, a compact and light construction design of the grinding machine can help to reduce inertia forces and improve the control of the contact force. A further aspect to be considered when controlling the contact force is the role played by disturbing forces caused by the bending of cables and hoses. These disturbing forces act parallel to the actuator 20 (between grinding machine 10 and TCP of the manipulator 1) and therefore cannot be easily compensated by the actuator.
Routing the cable(s) 18 in a roughly spiral formed curve (at least partially) around the grinding machine 10 and the actuator 20 has the effect that a change in the deflection a of the actuator 20 results in a minimal change to the deflection of the cable(s) 18. Furthermore, thanks to the spiral formed cable routing, the disturbing forces along the longitudinal axis A (i.e. in the effective direction of the actuator) are, in general, reduced to a minimum. In comparison, when the cable(s) are routed in a conventional manner, that is, when the cable(s) 18 are wrapped into a loop on the side of the actuator 20, the resulting disturbing forces are much stronger and vary much more widely in strength.
The hose (not shown) that is connected to the outlet 15 (see
In the following, some important aspects of the embodiments described here will be summarized. What follows, however, is not to be understood as a complete list, but only as an exemplary list. One embodiment is directed to a grinding machine 10 that is suitable for use in a robot-supported grinding process (cf.
In another embodiment, the motor 12 is arranged in the interior of the housing 11 such that the air stream that flows from the openings 17 in the backing pad 19 and on to the outlet, and with which the grinding dust is extracted, also cools the motor 12. The air stream generated for the dust extraction is thus also used to cool the motor. In the case of an orbital grinder, the grinding machine has an eccentric bearing 16 that connects the motor shaft to the backing pad 19, enabling the backing pad 19 to carry out an orbital movement. The aforementioned air stream that flows from the openings 17 in the backing pad 19 and on to the outlet, and with which the grinding dust is extracted, also cools the eccentric bearing 16.
If suction through the outlet 15 is absent, air suctioned in through the openings 17 in the backing pad 19 by the wheel fan 13 is released through the check valve 14 (see
In order to reduce the disturbing forces that arise due to the cable(s) and hose(s) connected to the grinding machine, a cable 18 for supplying electrical energy to the motor 12 can be wrapped around the housing 11 in a roughly spiral-formed curve.
A further aspect regards an apparatus for robot-supported grinding comprising a manipulator 1 (e.g. an industrial robot), a grinding machine 10 in accordance with the examples described here, a linear actuator 20 that couples the grinding machine 10 to a TCP of the manipulator 1 and an extraction system connected to an outlet in the housing of the grinding machine (cf.
Although various embodiments have been illustrated and described with respect to one or more specific implementations, alterations and/or modifications may be made to the illustrated examples without departing from the spirit and scope of the appended claims. With particular regard to the various functions performed by the above described components or structures (units, assemblies, devices, circuits, systems, etc.), the terms (including a reference to a “means”) used to describe such components are intended to correspond—unless otherwise indicated—to any component or structure that performs the specified function of the described component (e.g., that is functionally equivalent), even if it is not structurally equivalent to the disclosed structure that performs the function in the herein illustrated exemplary implementations of the invention.
Further, the purpose of the Abstract of the Disclosure is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract of the Disclosure is not intended to be limiting as to the scope in any way.
Number | Date | Country | Kind |
---|---|---|---|
102017108426.6 | Apr 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/060054 | 4/19/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/193040 | 10/25/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3585980 | Mellor | Jun 1971 | A |
3824745 | Hutchins | Jul 1974 | A |
5170588 | Schaal et al. | Dec 1992 | A |
5231803 | Lanzer | Aug 1993 | A |
6047693 | Yamami et al. | Apr 2000 | A |
6057693 | Murphy | May 2000 | A |
6969310 | Ghilardi | Nov 2005 | B1 |
7118452 | Wood | Oct 2006 | B2 |
20040259471 | Antenen | Dec 2004 | A1 |
20050277373 | Ghilardi | Dec 2005 | A1 |
20130244551 | Liu | Sep 2013 | A1 |
20150020369 | Ryan | Jan 2015 | A1 |
20150328734 | Multhammer | Nov 2015 | A1 |
20200078940 | Evers | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
102123826 | Jul 2011 | CN |
202174475 | Mar 2012 | CN |
103802088 | May 2014 | CN |
103386642 | Sep 2015 | CN |
105109245 | Dec 2015 | CN |
106181899 | Dec 2016 | CN |
10053582 | May 2002 | DE |
102005036195 | Feb 2007 | DE |
102012211635 | Jan 2014 | DE |
0252552 | Jan 1988 | EP |
2343393 | May 2000 | GB |
S61159366 | Jul 1986 | JP |
H0947382 | Feb 1997 | JP |
2003039299 | Feb 2003 | JP |
2003053654 | Feb 2003 | JP |
2003145404 | May 2003 | JP |
2011041992 | Mar 2011 | JP |
2011098422 | May 2011 | JP |
2019130645 | Aug 2019 | JP |
2016145472 | Sep 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20210362292 A1 | Nov 2021 | US |