The present technology relates to food waste disposers, and more particularly, to grinding mechanisms for food waste disposers.
Food waste disposers are used to comminute food scraps into particles small enough to safely pass through household drain plumbing. Referring to
The grinding section 16 includes a grinding mechanism that accomplishes the comminution and is typically composed of a rotating shredder plate and a stationary grind ring.
Referring to
Current household food waste disposers tend to have a grinding section that is fabricated as a molded part, and a circumferential grinding ring which is separately formed and mechanically inserted into the molded part at its inside diameter. The grinding ring is usually made of steel, and the portions of the steel ring which are not actively used in the grinding process represent potential material waste, especially to the extent they are not strictly necessary for the grinding process and are instead used to join the actual grinding features together in a connective capacity that is redundant within the overall structure of the disposer. Production of the grind ring as a single part (or a small number of relatively large, curved parts), also requires a separate material fabrication operation. The assembly of such a grind ring into the grind chamber or enclosure also requires an additional operation, with its corresponding capital, labor, and material-handling costs. Finally, the tooling costs and lead-times associated with a stationary grind ring can present barriers to quickly implementing meaningful and incrementally-adjustable changes in performance, through the variation (e.g. of the number and type) of the grind-engaging features, and the parallel usage of multiple such variant ring designs adds inventory cost.
Food waste disposers, grinding sections for food waste disposers, and method of manufacturing grinding sections for food waste disposers are disclosed herein.
In accordance with at least one aspect a food waste disposer is provided that includes a grinding section having a grinding section housing that has an internal wall that defines a food receiving area. The food waste disposer also includes a plurality of projections formed in the internal wall into the food receiving area. The food waste disposer further includes a plurality of grinding inserts. Each grinding insert is attached to one of the projections.
In accordance with a second aspect, a grinding section for a food waste disposer is provided that includes a grinding section housing having an internal wall that defines a food receiving area. The grinding section also includes a plurality of projections formed in the internal wall into the food receiving area. The grinding section further includes a plurality of grinding inserts. Each grinding insert is attached to one of the projections.
In accordance with a third aspect, a method of manufacturing a grinding section for a food waste disposer is provided. The method includes a step of molding a grinding section housing internal wall that defines a food receiving area and a plurality of projections formed in the internal wall into the food receiving area. The method also includes providing a plurality of grinding inserts, and attaching each of the plurality of grinding inserts to one of the projections.
Specific example embodiments have been chosen for purposes of illustration and description, and are shown in the accompanying drawings, forming a part of the specification. The example embodiments and related components and methods encompassed herein are not limited in their applications to the details of construction, arrangements of components, or other aspects or features illustrated in the drawings. Like reference numerals are used to indicate like components.
Food waste disposers of the present technology may be configured to be installed under a sink, such as in a home or other desired location.
Food waste disposers of the present technology may have a food conveying section 12, a motor section 14, and a grinding section 16 disposed between the food conveying section and the motor section as shown in
Generally, food waste disposers of the present technology have a grinding section that includes a grinding section housing. The grinding section housing has an internal wall that defines a food receiving area. A plurality of projections formed in the internal wall, which may be integrally formed in the internal wall, and face into the food receiving chamber. The grinding section also includes a plurality of grinding inserts, wherein each grinding insert is attached to one of the projections. In at least some examples, grinding sections of the present technology can be fabricated as a molded part including the internal wall and the projections.
Food waste disposers of the present technology do not have a conventional stationary grinding ring that is separately fabricated and then inserted into the grinding section housing. Instead, food waste disposers of the present technology may be fabricated by attaching grinding inserts to the projections during the molding operation. This may eliminate the need for connective material to form a complete ring, or ring segments, thereby saving the portion of that material which is redundant to the requirements of the disposer structure. It may also eliminate the need for a post-molding assembly operation for the insertion of a stationary grinding ring into the enclosure that forms the grinding section. The use of projections and grinding inserts may also simplify the introduction of incrementally-adjustable changes in grinding performance by permitting such changes to be a function of the introduction of grinding inserts (e.g. changes in number and/or type), in lieu of dedicated tooling to form each ring configuration. The use of grinding inserts may also allow multiple variants to be produced using each insert type, which may permit differentiation with regard to the grinding-feature system at lower inventory cost than if each such system were implemented with a different grinding ring.
As shown, the projections 114 collectively form a series of teeth. The internal wall 110 may form a circle, the circumference of which may define and enclose the food receiving area 106. The projections 114 may be formed in the internal wall in a repeating pattern, such as at spaced intervals, around the circumference of the internal wall 110. As best shown in
Each of the projections 114 may be in the form of a tooth formed in the internal wall 110, facing into the food receiving area 106, and each projection 114 may be molded vertically, essentially vertically, curved, sloped, or biased at an angle. With respect to the direction of rotation R1, each projection 114 has a first edge 118, which is a leading edge, and a second edge 120, which is a trailing edge. Between the leading and trailing edges, the grinding section 102 includes notches 122 formed in the internal wall 110. The notches 122 form channels into which food particles may enter and fall downwardly into the food conveying section 124 (
In the example shown in
As shown in
Each grinding insert 116 has a second side edge that is an external side edge 130 and a bottom edge 132. In some examples, one of the external side edge 130 or the bottom edge 132 may protrude beyond the projection 114 into the food receiving area 106. In other examples, both the external side edge 130 and the bottom edge 132 may protrude beyond the projection 114 into the food receiving area 106.
As shown, the projections 206 collectively form a series of teeth. The internal wall 202 may form a circle, the circumference of which may define and enclose the food receiving area 204. The projections 206 may be formed in a repeating pattern, such as at spaced intervals, around the circumference of the internal wall. As best shown in
Each of the projections 206 may be in the form of a tooth formed in the internal wall 202, facing into the food receiving area 204, and each projection 206 may be molded vertically, essentially vertically, curved, sloped, or biased at an angle. With respect to the direction of rotation R2, each projection 206 has a first edge 208, which is a leading edge, and a second edge 210, which is a trailing edge. Each projection 206 also has a front edge 212, which faces into the food receiving area 204. The grinding section 200 also includes notches 222 formed in the internal wall 202 between the projections 206. The notches 222 form channels into which food particles may enter and fall downwardly into the food conveying section 124 (
The grinding section 200 also includes a plurality of grinding inserts 214. Each grinding insert 214 is attached to one of the projections 206. Each grinding insert 214 may be made of any suitable metal or composite material, including without limitation steel. Each grinding insert 214 may be individually formed by being stamped, or by any other suitable forming technique. The grinding inserts 214 may be robotically placed from a feeding mechanism, and may be attached to the projections by being insert-molded. Each of the grinding inserts 214 may be attached to the projections in any suitable manner, and may be oriented vertically or biased at an angle.
In the example shown in
The second leg 218 of the grinding insert 214 may be configured to abut or engage with the front edge 212 of a projection 206. The projection 206 may have an indent or slot to receive the second leg 218. The second leg 218 has an outer edge 220 that is be configured to abut at least a portion of the first edge 208 of the projection 206. The outer edge 220 may be flush with the front edge 212 and/or the first edge 208 of the projection 206, or may protrude radial inwardly beyond the projection 206 into the food receiving are 204.
As shown, the projections 306 collectively form a series of teeth. The internal wall 302 may form a circle, the circumference of which may define and enclose the food receiving area 304. The projections 306 may be formed in a repeating pattern, such as at spaced intervals, around the circumference of the internal wall. The projections 306 may be formed by varying the thickness of the grinding section housing to form the projections in the same manner as described above with respect to
Each of the projections 306 may be in the form of a tooth formed in the internal wall 302, facing into the food receiving area 304, and each projection 306 may be molded vertically, essentially vertically, curved, sloped, or biased at an angle. With respect to the direction of rotation R3, each projection 306 has a first edge 308 and a second edge 310, each of which may be a leading or trailing edge depending upon the direction of rotation R3. Each projection 306 also has a front edge 312, which faces into the food receiving area 304. The grinding section 300 also includes notches 322 formed in the internal wall 302 between the projections 306. The notches 322 form channels into which food particles may enter and fall downwardly into the food conveying section 124 (
The grinding section 300 also includes a plurality of grinding inserts 314. Each grinding insert 314 is attached to one of the projections 306. Each grinding insert 314 may be made of any suitable metal or composite material, including without limitation steel. Each grinding insert 314 may be individually formed by being stamped, or by any other suitable forming technique. The grinding inserts 314 may be robotically placed from a feeding mechanism, and may be attached to the projections by being insert-molded. Each of the grinding inserts 314 may be attached to the projections in any suitable manner, and may be oriented vertically or biased at an angle.
In the example shown in
Each grinding insert 314 may be inserted into the projection such that the projection overlaps at least a portion of the grinding insert 314. Specifically, in this example, the grinding insert 314 may be rectangular or substantially rectangular and may be configured to be radially-oriented and be inserted into the projection 306 such that at least a portion of the grinding insert 314 is encompassed by and secured within the projection 306. In some examples, each projection 306 may be formed with an engagement feature, such as a slot or hole, configured to receive at least a portion of the grinding insert 314 to the projection 306.
Each grinding insert 314 may have an outer edge 316 that may be configured to protrude radially inwardly from the front edge 312 of the projection 306, into the food receiving area 304, by a protrusion length 318. The protrusion length 318 may be any suitable length, and may correspond to the thickness of a standard stationary grinding ring. In at least one example, the protrusion length 318 may be about 0.075 inches. In an alternative example, the outer edge 316 of the grinding insert 314 may be configured to be flush with the front edge 312 of the protrusion 306. Additionally, as shown in
Such an orientation may maximize the strength of the grinding insert against bending due to the grinding action during operation of the food waste disposer, while still anchoring the grinding insert within the projection.
As discussed with respect to the example shown in
Referring to
As shown, the projections 406 collectively form a series of teeth. The internal wall 402 may form a circle, the circumference of which may define and enclose the food receiving area 404. The projections 406 may be formed in a repeating pattern, such as at spaced intervals, around the circumference of the internal wall. The projections 406 may be formed by varying the thickness of the grinding section housing to form the projections in the same manner as described above with respect to
Each of the projections 406 may be in the form of a tooth formed in the internal wall 402, facing into the food receiving area 404, and each projection 406 may be molded vertically, essentially vertically, curved, sloped, or biased at an angle. With respect to the direction of rotation R4, each projection 406 has a first edge 408 and a second edge 410, each of which may be a leading or trailing edge depending upon the direction of rotation R4. Each projection 406 also has a front edge 412, which faces into the food receiving area 404. The grinding section 400 also includes notches 422 formed in the internal wall 402 between the projections 406. The notches 422 form channels into which food particles may enter and fall downwardly into the food conveying section 124 (
The grinding section 400 also includes a plurality of grinding inserts 414. Each grinding insert 414 is attached to one of the projections 406. Each grinding insert 414 may be made of any suitable metal or composite material, including without limitation steel. Each grinding insert 414 may be individually formed by being stamped, or by any other suitable forming technique. The grinding inserts 414 may be robotically placed from a feeding mechanism, and may be attached to the projections by being insert-molded. Each of the grinding inserts 414 may be attached to the projections in any suitable manner, and may be oriented vertically or biased at an angle.
In the example shown in
Each grinding insert 414 may be oriented at an angle with respect to the first edge 408 of the projection 406 to which it is attached. Each grinding insert 414 may have an outer edge 416, and may also have a first end 418 and a second end 420. The first end 418 of the grinding insert may be located at the first edge 408 of the projection 406, and may be flush with or protrude from the first edge 408 of the projection 406. The angled orientation of the grinding insert 414 may result in the second end 420 being located farther from the first edge 408 of the projection than the first end 418.
Referring to
As shown, the projections 506 collectively form a series of teeth. The internal wall 502 may form a circle, the circumference of which may define and enclose the food receiving area 504. The projections 506 may be formed in a repeating pattern, such as at spaced intervals, around the circumference of the internal wall. The projections 506 may be formed by varying the thickness of the grinding section housing to form the projections in the same manner as described above with respect to
Each of the projections 506 may be in the form of a tooth formed in the internal wall 502, facing into the food receiving area 504, and each projection 506 may be molded vertically, essentially vertically, curved, sloped, or biased at an angle. With respect to the direction of rotation R5, each projection 506 has a first edge 508 and a second edge 510, each of which may be a leading or trailing edge depending upon the direction of rotation R5. Each projection 506 also has a front edge 512, which faces into the food receiving area 504. The grinding section 500 also includes notches 522 formed in the internal wall 502 between the projections 506. The notches 522 form channels into which food particles may enter and fall downwardly into the food conveying section 124 (
The grinding section 500 also includes a plurality of grinding inserts 514. Each grinding insert 514 is attached to one of the projections 506. Each grinding insert 514 may be made of any suitable metal or composite material, including without limitation steel. Each grinding insert 514 may be individually formed by being stamped, or by any other suitable forming technique. The grinding inserts 514 may be robotically placed from a feeding mechanism, and may be attached to the projections by being insert-molded. Each of the grinding inserts 514 may be attached to the projections in any suitable manner, and may be oriented vertically or biased at an angle.
In the example shown in
Each grinding insert 514 may be oriented at an angle with respect to the first edge 508 of the projection 506 to which it is attached. Each grinding insert 514 may have an outer edge 516, and may also have a first end 518 and a second end 520. The first end 518 of the grinding insert may be located at the first edge 508 of the projection 506, and may be flush with or protrude from the first edge 508 of the projection 506. The angled orientation of the grinding insert 514 may result in the second end 520 being located farther from the first edge 508 of the projection than the first end 518.
In accordance with the discussion above, food waste disposers, grinding sections for food waste disposers, and methods of making grinding sections for food waste disposers are provided.
In at least one example, a food waste disposer having a grinding section, or a grinding section of or for a food waste disposer, is provided. The grinding section may include a grinding section housing having an internal wall that defines a food receiving area, a plurality of projections formed in the internal wall and facing into the food receiving area, and a plurality of grinding inserts, wherein each grinding insert is attached to one of the projections. The plurality of projections may be formed in a repeating pattern around a circumference of the internal wall. Additionally, each of the plurality of projections may have a first edge, and each grinding insert may be attached to the first edge of one of the projections. Each grinding insert may be inserted into a projection such that the projection overlaps at least a portion of the grinding insert.
Each grinding insert may be shaped in any of a variety of ways. For example, each grinding insert may be flat, such as being formed as a flat rectangle. Alternatively, each grinding insert may be “L” shaped, having a first leg and a second leg, wherein the first leg is configured to be radially-oriented and be inserted into the projection. As another example, each grinding insert may be corrugated, having a wavy or curved shape.
The grinding inserts may be inserted into the projections in any suitable manner. For example, each grinding insert may be inserted such that it abuts or protrudes from a front edge or a leading edge of the projection. Each grinding insert may have an outer edge that protrudes into the food receiving area when the insert is inserted in the projection. Each grinding insert may be inserted vertically, or substantially vertically, or at an angle. In at least one example, each grinding insert may have a first end and a second end, and each grinding insert may be attached to the projection at an angle wherein the first end of the grinding insert is located at a first edge of the projection.
In an example of a method of manufacturing a grinding section for a food waste disposer, the method may include: molding a grinding section housing internal wall that defines a food receiving area and includes a plurality of projections formed in the internal wall and facing into the food receiving area; providing a plurality of grinding inserts; and attaching each of the plurality of grinding inserts to one of the projections. The step of providing a plurality of grinding inserts may include feeding each of the plurality of pieces to a robot. The step of attaching each of the plurality of grinding inserts may include insert molding each grinding insert into one of the projections. The step of molding the grinding section housing may further include creating a slot in each of the plurality of projections. The step of attaching each of the plurality of grinding inserts may include inserting one of the grinding inserts into each slot.
From the foregoing, it will be appreciated that although specific examples have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit or scope of this disclosure. For example, there are multiple ways in which a robot could attach the inserts to the projections, including: indirectly, by placing the inserts into tooling which is then used in the process of molding the housing and its projections around the inserts; directly, by inserting one of the grinding inserts into a slot in each projection; or indirectly, by placing the inserts into fixture tooling which is then inserted into a slotted or otherwise prepared housing that has projection features capable of engaging them without a molding process. Additionally, the inserts can be attached to the projections using any suitable technique, such as: a snap-lock, staking, sonic welding, adhesive, or an overmold. An overmold could constitute an additional layer axially below and/or radially inside the projections, or could form some or all of the projections themselves, within a pre-existing molded housing, that would retain the inserted inserts and perhaps also fill any remaining voids in the insert slots. Further, depending upon the dimensions of the inserts and the projections, one or more edges of each insert may be inserted into the projection and/or the internal wall of the grinding housing. Additionally, each projection could be formed with a second horizontal step above the third thickness, to extend an axial length of a portion of the projection to receive and anchor a portion of the insert. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to particularly point out and distinctly claim the claimed subject matter.
Number | Date | Country | |
---|---|---|---|
63217966 | Jul 2021 | US |