The present application claims priority under 35 U.S.C. §119 to Japanese Patent Applications No. 2002-230534, filed on Aug. 7, 2002 and No. 2002-230536, filed on Aug. 7, 2002. The contents of these applications are incorporated herein by reference in their entirety.
1. Field of the Invention
The present invention relates to a grinding method of and a grinding machine for grinding a workpiece with a rotatable grinding wheel wherein coolant is reliably supplied to a grinding point by cutting off air layer flowing on a circumferential surface of the grinding wheel.
2. Description of the Related Art
It is typically known for a grinding machine to grind a workpiece by a grinding wheel rotated at high speed.
The high pressure supplying method of coolant or the perpendicular method of coolant of the typically known grinding machine can not reliably and efficiently cut off said air layer flowing on the circumferential surface of the grinding wheel. And also, in the high pressure supplying method of coolant or the perpendicular method of coolant of the typically known grinding machine, since coolant is compulsorily supplied to reach the circumferential surface against air layer flowing on the circumferential surface, it therefore needs inevitably high pressure and large volume of coolant. Where the high pressure or the large volume coolant is used, it needs not only a huge cost maintaining clean in coolant but also make an environmental problem in a waste process of the large volume of coolant. And also, in the ecology grinding of the typically known grinding machine, stream of supplied coolant is week because of the small amount of coolant so that it is difficult for supplying coolant reliably with a disturbance by air layer flowing on the circumferential surface of the grinding wheel.
The applicant filed the patent application to cut off air layer flowing on a circumferential surface of a grinding wheel at an upper stream position of a rotational direction of the grinding wheel from a grinding point. In a grinding machine grinding a workpiece by the grinding wheel rotated at high speed of this application, air jet is blown transversally from one side to the other side of the grinding wheel along the circumferential surface at the upper stream position of the rotational direction of the grinding wheel from the grinding point in order to cut off said air layer flowing on the circumferential surface of the grinding wheel reliably to supply coolant to the grinding point. When said air jet is blown transversally along the circumferential surface from said one side to the other side of the grinding wheel, coolant flown with said air jet on the circumferential surface of the grinding wheel from the grinding point is blown by said air jet so that mist of coolant is scattered to atmosphere around over the grinding machine to cause a bad environment in a factory.
In view of the previously mentioned circumstances, it is an object of the present invention to provide a grinding method or a grinding machine preventing mist of coolant from scattering with air jet to atmosphere.
It is second object of the present invention to provide a grinding method or a grinding machine reliably preventing mist of coolant from scattering with air jet to atmosphere by recovering mist of coolant by means of an absorbing equipment, a separator and a discharge port.
It is third object of the present invention to provide a grinding method or a grinding machine reliably preventing mist of coolant from scattering with air jet to atmosphere by a fixed position of a recovering port.
It is fourth object of the present invention to provide a grinding method or a grinding machine reliably and efficiently preventing mist of coolant from scattering with air jet to atmosphere by facing a recovering port to mist of jet.
It is fifth object of the present invention to provide a grinding machine reliably and efficiently preventing mist of coolant from scattering with air jet to atmosphere by shielding almost all of a grinding wheel.
It is another object of the present invention to provide a grinding machine reliably and efficiently preventing mist of coolant from scattering with air jet to atmosphere by a unitary construction of supplying coolant and air jet and recovering them.
It is other object of the present invention to provide a grinding machine reliably and efficiently preventing mist of coolant from scattering with air jet to atmosphere by reducing a volume of coolant with an assistance of lubrication oil.
In order to achieve the above and other objects, the present invention provides a grinding method of or a grinding machine for grinding a workpiece with a rotatable grinding wheel by the way of cutting off air layer flowing on a circumferential surface of the grinding wheel by blowing hydraulic jet transversally from one side to the other side of the grinding wheel along the circumferential surface at an upper stream position of a rotational direction of the grinding wheel from the grinding point, and by the way of collecting mist of coolant blown by the hydraulic jet through a recovering port mounted on a wheel guard covering a part of said grinding wheel. Said hydraulic jet blown transversally from one side to the other side of the grinding wheel along the circumferential surface at the upper stream position of the rotational direction of the grinding wheel from the grinding point can cut off air layer flowing on the circumferential surface of the grinding wheel. Mist of coolant mixed hydraulic jet with coolant is flowing within a wheel guard and collected by a recovering port. Thereby, coolant flowing with air layer is reliably prevented from being scattered from the wheel guard to atmosphere in the stage of mist.
Second aspect of the present invention is a grinding method or a grinding machine absorbing mist of coolant by an absorbing equipment, separating mist of coolant by a separator and discharging hydraulic coolant from a wheel guard. The absorbing equipment is connected to the recovering port. Thereby, mist of coolant mixed hydraulic jet with coolant is absorbed by the absorbing equipment from the recovering port so that it is not scattered to atmosphere. The separator is connected between the recovering port and the absorbing equipment to separate said mist of said coolant from air jet. Thereby the mist of coolant absorbed by the absorbing equipment is separated from air jet so that the mist of coolant can separated from air to be prevented from scattering to atmosphere. The discharge port is mounted on a lower portion of said wheel guard and discharging hydraulic coolant from said wheel guard. Thereby, a part of mist of coolant is changed to hydraulic coolant stayed at the bottom of the wheel guard and said hydraulic coolant is discharged from the discharge port. So that coolant flowing with air layer is reliably prevented from being scattered from the wheel guard to atmosphere in the stage of mist by the way of the absorbing equipment, the separator and the discharge port.
Third aspect of the present invention is that said recovering port is formed on an upper portion of a back area of the wheel guard. Said mist of coolant is flowing from a point blown by hydraulic jet to be scattered within the wheel guard and is mainly flown by the rotation of the grinding wheel to the back area so that the recovering port fixed at the back area of the wheel guard can reliably collect mist of coolant. Thereby, coolant flowing with air layer is reliably prevented from being scattered from the wheel guard to atmosphere in the stage of mist by the way of the fixed position of the recovering port.
Fourth aspect of the present invention is that said recovering port is mounted on the wheel guard at the other side of the grinding wheel to face to said blown hydraulic jet. Mist of coolant is immediately corrected and recovered by the recovering port just after cutting off air layer so that coolant flowing with air layer is reliably and efficiently prevented from being scattered from the wheel guard to atmosphere in the stage of mist by the way of facing the recovering port to mist of jet.
Fifth aspect of the present invention is that shield means are provided in the wheel guard. One shield means are a baffle plate mounted on the wheel guard and facing to the grinding wheel with a small clearance at an upper stream position of the rotational direction of the grinding wheel from a point of the hydraulic jet. Thereby, since air layer is cut off by the baffle plate first and then cut off by hydraulic jet at second time in order to be reliably cut off so that coolant is reliably supplied to grinding point without disturbance by air layer flowing on the circumferential surface of the grinding wheel. Besides, the baffle plate has both elongated side portions and both side surfaces of the side portions also cut off air layer flowing on a side surface of the grinding wheel. Another shield means are a guard body and a cover. The guard body shields one side surface of the grinding wheel at a side of a wheel slide and the circumferential surface of said grinding wheel, and the cover shields an opening portion of the grinding wheel at a side of the other side of the grinding wheel. A front wall of the guard body and a front wall of the cover cooperate to form a slit when said cover is pivoted to close the opening portion. Thereby, the wheel guard is an almost sealed construction to shield almost all of the grinding wheel by the guard body and the cover to project only a part of a front portion of the grinding wheel around the grinding point from the wheel guard through the slit formed in a front portion of the wheel guard so that, since only the part of the front portion of the grinding wheel projects through the slit formed on a front wall of the wheel guard, mist of coolant can be almost shielded within the wheel guard without scattering to atmosphere. And also thereby, the cover can be easily pivoted to open the opening portion in order to change the grinding wheel.
Another aspect of the present invention is that the grinding machine provides a coolant supplying device being a unitary construction of a coolant supplying portion, a hydraulic jet supplying portion and a hydraulic jet recovering portion. Since relative position of a coolant nozzle of the coolant supplying portion, a hydraulic jet nozzle of the hydraulic jet supplying portion and a recovering port member of the hydraulic jet recovering portion are fixed at suitable and stable relation so that it can be possible that supplying coolant and air jet and recovering them are performed correctly and constantly in a stable condition.
Other aspect of the present invention is that the grinding machine provides an ecology grinding equipment. The ecology grinding equipment consists of the coolant nozzle facing directly to the workpiece for supplying a small amount of said coolant to cool the workpiece, a compressed air nozzle opening to the circumferential surface of the grinding wheel at an upper stream of the rotational direction of the grinding wheel from the grinding point, and a nozzle mounted on the compressed air nozzle and connecting to a lubrication tank to drop lubrication oil to the compressed air nozzle in order to lubricate the grinding wheel at the grinding point. Thereby, air layer flowing on the circumferential surface is cut off by hydraulic jet so that the atomized lubrication oil is stuck with the circumferential surface efficiently, therefore, coolant flowing with air layer is reliably prevented from being scattered from the wheel guard to atmosphere in the stage of mist by the way of dramatically reducing a total volume of coolant to almost 1/100 of the conventional coolant volume with an assistance of lubrication oil.
Various other objects, features and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description of the preferred embodiments when considered in connection with the accompanying drawings, in which:
A preferred first embodiment of a grinding method and a grinding machine according to the present invention will be described referring to
On the wheel slide 11 is fixed a wheel guard 20 covering the grinding wheel G. The wheel guard 20 consists of a guard body 21 and a cover 23, the guard body 21 shields one side surface Ga and a circumferential grinding surface Gc of the grinding wheel G at a side of the wheel slide 11. The cover 23 is pivoted on a hinge 22 at the back portion thereof to shield an opening portion 24 of the guard body 21 at the other side surface Gb of the grinding wheel G to be clamped by bolts 25 or other suitable clamping method such as lever clamping mechanism and so on. When the grinding wheel G is changed to new one, the bolts 25 are un-screwed and the cover 23 is moved pivotally on the hinge 22 to release the opening portion 24. Referring to
On the upper portion of the guard body 21 a coolant nozzle 31 of a coolant supplying device 30 is mounted to supply coolant to at least one of a grinding point P grinding the workpiece W and a outer peripheral surface of the workpiece W. Referring to
The operation of the above-constructed first embodiment of the present invention will be explained hereinafter.
The workpiece W is rotated during supported by both centers of the head stock and the tail stock 18. The wheel slide 11 is advanced by the servo motor 12 to grind the workpiece W by the grinding wheel G rotated at high speed in the stage that coolant is supplied to the grinding point P through the coolant nozzle 31. Air is supplied through the opened switch valve 33 from the pressurized air source 34 to the air jet nozzle 32 and thereby air jet 35 is blown from a side to the grinding surface Gc at the upper stream position of the rotational direction of the grinding wheel G across the grinding surface Gc from one side surface Ga to the other side surface Gb. Air layer 36 flowing on the circumferential surface Gc of the grinding wheel G is cut off by said air jet 35. Therefore, almost all of air layer 35 can not reach to the grinding point P so that coolant is reliably supplied to the grinding point P in keeping contact with the circumferential grinding surface Gc without being disturbed by air layer 36.
A part of coolant is led into the wheel guard 20 in keeping contact with the circumferential grinding surface Gc after passing the grinding point P and coolant reaches to air jet 35 to be blown thereby to become mist scattered in the wheel guard 20. A part of mist is changed to hydraulic coolant stayed at the bottom of the wheel guard 20 and hydraulic coolant is discharged from the discharge port 40. Air including remaining atomized coolant is absorbed through the outlet recovering port 37 by the absorbing equipment 38 to the separator 39. Atomized coolant is flowed into the separator 39 in tangential direction to be whirled at high speed and to be separated hydraulic coolant from air. Separated hydraulic coolant is recovered to the coolant supplying device 30 through a tapered bottom surface and a discharged port of the separator 39. Thereby, coolant flowing with air layer 36 is reliably prevented from being scattered from the wheel guard 20 to atmosphere in the stage of mist by the way of the outlet recovering port 37 formed on the upper portion of the back area of the wheel guard 20 and the discharge port 40 formed on the bottom portion of the wheel guard 20.
Because air layer 36 flowing on the circumferential surface is first cut off to be reduced by the baffle plate 41 positioned at the upper stream position of the wheel rotational direction from the set position of the air jet nozzle 32, air jet 35 can reliably and efficiently cut off said reduced air layer 36 at second time so that coolant from the nozzle 31 can be reliably supplied to the grinding point P without disturbance by air layer 36. In detail, air layer 36 flowing on the circumferential surface Gc of the grinding wheel G is cut off to be reduced by the blind end 42c of the opening groove 42 of the shuffle plate 41 with the small clearance to the circumferential surface Gc and air layer flowing on the side surface Ga, Gb is cut off to be reduced by the side surface 42a, 42b of the opening groove 42 of the shuffle plate 41 with the small clearance to the side surface Ga, Gb in order to reduce air layer 36 flowing on the circumferential surface Gc more over, cutting off two times reliably and efficiently air layer 36 flowing on the circumferential surface Gc. Thereby, coolant flowing with air layer 36 is reliably prevented from being scattered from the wheel guard 20 to atmosphere in the stage of mist by the way of shielding almost all of the surface Ga, Gb and Gc of the grinding wheel G by the guard body 21, the cover 23, the shield projection 29 efficiently to collect all of mist of coolant.
Next the second embodiment of the present invention will be now described hereinafter referring to
The operation of the second embodiment is described hereinafter. Air jet 35 blown from the air jet nozzle 32 is mixed with coolant flowing with air layer 36 from the grinding point P to become mist of coolant. Mist of coolant is blown by air jet 35 to reach to the recovering port 43 with air jet 35 immediately after air jet 35 cuts off air layer 36 and is recovered by the absorbing equipment 38 through the separator 39. Mist of coolant is flowed into the separator 39 in tangential direction to be whirled at high speed and to be separated hydraulic coolant from air. Separated hydraulic coolant is recovered to the coolant supplying device 30 through a tapered bottom surface and a discharged port 19 of the separator 39. Therefore, mist of coolant is immediately corrected and recovered by the recovering port 43 just after cutting off air layer so that mist of coolant is reliably and efficiently prevented from being scattered from the wheel guard 20 to atmosphere.
Next the third embodiment of the present invention will be now described hereinafter referring to
The operation of the third embodiment is described hereinafter. Coolant is introduced to the coolant nozzle 48 from the coolant introducing path 49 to be discharged to the grinding point P. Said pressurized air introduced to the air jet nozzle 51 by the pressurized air introducing path 52 is blown transversally from the one side surface Ga to the other side surface Gb along the grinding surface Gc of the grinding wheel G at the upper stream position of the wheel rotational direction from the grinding point P. Air jet 35 is collected with mist of coolant blown by air jet 35 to the recovering port member 53 opened to the air jet nozzle 51 at the other side surface Gb of the grinding wheel G and mist of coolant with air is led through the air jet discharging path 54 to the separator 39 to be separated from air outside. Since the coolant supplying portion 45, the air jet supplying portion 46 and the air jet recovering portion 47 are constructed as a unit, these three portions are maintained constantly at a suitable position so that it can be possible that supplying coolant and air jet and recovering them are performed correctly and constantly in a stable condition. Therefore, coolant flowing with the air layer 36 is prevented from being scattered from the wheel guard 20 to the atmosphere in the stage of mist.
Next the fourth embodiment of the present invention will be now described hereinafter referring to
While the invention has been described in detail with reference to the preferred embodiment, it will be apparent to those skilled in the art that the invention is not limited to the present embodiment, and that the invention may be realized in various other embodiments within the scope of the claims.
For example, the recovering port member 43 of the second embodiment can be installed in the first embodiment of the present invention and said collected mist of coolant can be collected from both of the recovering port 37 and 43 by the same absorbing equipment 38 through the same separator 39. Or also, the coolant supplying device 55 of the third embodiment can be installed in the first embodiment of the present invention and mist of coolant can be collected from both of the air jet discharging path 54 and the recovering port 37 by the same absorbing equipment 38 through the same separator 39. In the above-mentioned example the fourth embodiment is equipped in the second embodiment of the present invention, however, the fourth embodiment can be installed in the first embodiment or the third embodiment. In the entire above-mentioned embodiments air jet 35 is blown transversally from one side to the other side of the grinding wheel G along the circumferential surface Gc, it can be practiced that hydraulic jet of high pressurized coolant is blown transversally from one side to the other side of the grinding wheel G along the circumferential surface Gc in order to cut off air layer flowing on the circumferential surface Gc.
Furthermore, the technological components described in this specification and illustrated in the drawings can demonstrate their technological usefulness independently through various other combinations which are not limited to the combinations described in the claims made at the time of application. Moreover, the art described in this specification and illustrated in the drawings can simultaneously achieve a plurality of objectives, and is technologically useful by virtue of realizing any one of these objectives.
Number | Date | Country | Kind |
---|---|---|---|
2002-230534 | Aug 2002 | JP | national |
2002-230536 | Aug 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6083084 | Yokogawa et al. | Jul 2000 | A |
6123606 | Hill et al. | Sep 2000 | A |
6273795 | Hatamoto et al. | Aug 2001 | B1 |
6328636 | Yoshimi et al. | Dec 2001 | B1 |
6375558 | Baratta | Apr 2002 | B1 |
6454636 | Iwabuchi | Sep 2002 | B1 |
6626743 | Boyd | Sep 2003 | B1 |
6648738 | Eto et al. | Nov 2003 | B1 |
6669532 | Mukai et al. | Dec 2003 | B1 |
20030236059 | Morita | Dec 2003 | A1 |
20040005844 | Morita et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
59-152063 | Aug 1984 | JP |
Number | Date | Country | |
---|---|---|---|
20040029510 A1 | Feb 2004 | US |