GRINDING STABILIZING ADDITIVE FOR VERTICAL ROLLER MILLS

Information

  • Patent Application
  • 20240150237
  • Publication Number
    20240150237
  • Date Filed
    December 01, 2023
    a year ago
  • Date Published
    May 09, 2024
    7 months ago
Abstract
Method for grinding a solid in a vertical roller mill (VRM) and a cement composition prepared by the disclosed methods. A method comprises grinding a solid comprising a cement clinker under a water spray in the presence of a grinding stabilizing additive, wherein the grinding stabilizing additive comprises: (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:
Description
BACKGROUND OF THE INVENTION

Vertical Roller Mills (“VRM”) work by grinding materials using rollers that exert force on the solid being ground, typically placed on a rotating bed or table. VRMs are believed to have advantages over ball mills, such as lower energy consumption, smaller footprint, faster setup, greater product outputs, and often more control over particle size distribution.


One problem of VRMs is milling instability. When the grinding process of VRMs begins to de-stabilize, the VRM structure can begin to shake and create vibrations that can be felt in adjacent buildings, even considerable distances from the mill. This vibration can damage the VRM, so the mill will be shut down if the vibrations exceed a preset limit.


It is current practice to spray water onto the grinding bed (the layer of material passing under the grinding rollers) of a VRM to stabilize the mill. However, while grinding cement, this practice has serious negative consequences for the properties of the cement due to reaction of the cement with water (known as pre-hydration). Use of a grinding aid allows water spray to be reduced, which reduces pre-hydration and thus improves cement properties such as strength and setting time. Thus, there is a need for additives and processes that can reduce the amount of water needed to stabilize the mill.


SUMMARY OF THE INVENTION

It is well known that pre-hydration of cement has a deleterious effect on cement properties, and the magnitude of these negative effects increases as the amount of pre-hydration increases. These negative effects include: reduction of compressive strengths at all ages, with the greatest reductions at early ages; delayed mortar and concrete setting times; reduced bulk powder handling properties such as flowability, lump formation, and blockage; reduced mortar and concrete slump; inconsistent chemical additive and admixture performance.


Therefore, steps should be taken to reduce pre-hydration of the cement as much as possible. In particular, when manufacturing cement in a VRM, the water spray onto the grinding table should be kept as low as possible, meaning that the water spray should be no more than is needed to ensure stable operation of the mill.


It has now been discovered that certain additives surprisingly reduce the level of water spraying required for stabilization of VRM during milling process, and, consequently, reduce the pre-hydration level of cement compositions produced by VRM milling.


In one example embodiment, the present invention is a method for grinding a solid in a vertical roller mill (VRM). The method comprises: grinding a solid comprising a cement clinker under a water spray in the presence of a grinding stabilizing additive, wherein the grinding stabilizing additive comprises: (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:




embedded image




    • wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++; (ii) a glycol; or a mixture of (i) and (ii). The water spray level is reduced by at least 5% compared to a control.





In another example embodiment, the present invention is a method for manufacturing a cement composition. The method comprises grinding a solid comprising a cement clinker in a vertical roller mill (VRM) under a water spray in the presence of a grinding stabilizing additive, thereby preparing the cement composition; wherein the grinding stabilizing additive comprises: (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:




embedded image


Wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++; (ii) a glycol; or a mixture of (i) and (ii). The pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%.


In another example embodiment, the present invention is a cement composition prepared by any of the methods disclosed herein.


In another example embodiment, the present invention is a cement composition, comprising ground solid particles and a grinding stabilizing additive, wherein the grinding stabilizing additive comprises (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:




embedded image




    • wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++; and (ii) a glycol; or a mixture of (i) and (ii); wherein the pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%.





In another example embodiment, the present invention is an additive composition for grinding a cement clinker in a Vertical Roll Mill (VRM), comprising a mixture of ethanol diglycine (EDG) and tripropylene glycol (TPG).





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.



FIG. 1 is a plot of a change (in percent relative to a control) of compressive strength of a mortar made with cement A at Day 1 post mortar preparation as a function of C3A content. Na2-EDG was added to the samples at 0.02% by weight of the cementitious material.



FIG. 2A is a plot of compressive strength (in MPa) of a mortar made with cement A sample at Day 1 post mortar preparation as a function of the carboxyl functionality (COO—) content (expressed in parts-per-million relative to cement weight). The carboxyl functionality is provided by the listed additives.



FIG. 2B is a plot of compressive strength (in MPa) of a a mortar made with cement B sample at Day 1 post mortar preparation as a function of the content of the additive (in weight percent).



FIG. 3 is a plot of “volume fraction” of the particles in a ground cement sample as a function of particle size in micrometers. Filled circles indicate cement compositions that include 0.02% by weight Na2-EDG additive; white squares—cement compositions without an additive.



FIG. 4A and FIG. 4B, collectively, represent Table 1 of Example 1.



FIG. 5, panel A, shows the NMR spectrum of Sample A, described in Example 6. FIG. 5, panel B, shows the NMR spectrum of Sample B, described in Example 6.



FIG. 6 depicts a plot representing thermogravimetric analysis of three cements produced in a VRM with different amounts of water spray.





DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention follows.


The conventional cement chemist's notation uses the following abbreviations:

    • CaO=C
    • SiO2=S
    • Al2O3=A
    • Fe2O3=F
    • Under this notation, the following abbreviations are used:
    • tricalcium silicate=C3S
    • dicalcium silicate=C25
    • tricalcium aluminate=C3A
    • tetracalcium aluminoferrite=C4 AF


As used herein, “alkyl” means an optionally substituted saturated aliphatic branched or straight-chain monovalent hydrocarbon radical having the specified number of carbon atoms. Thus, “(C1-C4) alkyl” means a radical having from 1-4 carbon atoms in a linear or branched arrangement. “(C1-C4)alkyl” includes methyl, ethyl, propyl, isopropyl, n-butyl and tert-butyl.


As used herein, “alkanolamine” means an alkyl, typically a C1-C6 alkyl, functionalized with at least one amino group and at least one hydroxyl group. A “tertiary alkanolamine” includes an amino group in which all three hydrogens are replaced with a substituent, typically, an optionally substituted C1-C6 alkyl. Examples of tertiary alkanolamines include triethanolamine or TEA, diethanol isopropanolamine or DEIPA, ethanol diisopropanolamine or EDIPA, and tri-isopropanolamine or TIPA (typically used as conventional grinding aids in cement production).


As used herein, the term “amino acid” refers to a compound having both an amino —NH2 and a carboxy —CO2H functionalities. The term includes both a naturally occurring amino acid and a non-natural amino acid. The term “amino acid,” unless otherwise indicated, includes both isolated amino acid molecules (i.e. molecules that include both, an amino-attached hydrogen and a carbonyl carbon-attached hydroxyl) and residues of amino acids (i.e. molecules in which either one or both an amino-attached hydrogen or a carbonyl carbon-attached hydroxyl are removed). The amino group can be alpha-amino group, beta-amino group, etc. For example, the term “amino acid alanine” can refer either to an isolated alanine H-Ala-OH or to any one of the alanine residues H-Gly-, -Gly-OH, or -Gly-. Unless otherwise indicated, all amino acids found in the compounds described herein can be either in D or L configuration or a mixture. The term “amino acid” includes salts thereof


An amino acid can be modified with additional functional groups. Examples of the additional functional groups include additional amino groups, additional carboxyl groups, and hydroxyl groups. Such modified amino acids can be referred to as “amino acid derivatives.” Examples of such amino acid derivatives include amino acids that include two carboxyl groups and one alcohol group, such as ethanol diglycine (EDG). As used herein, the term “EDG” includes salts of ethanol diglycine, such as, for example, sodium EDG or di-sodium EDG.


As used herein, “glycol” refers to any one of an alkyl polyol compounds formed by oligomerization or polymerization of an alkyl diol via an ether bond formation. In example embodiments, a glycol is a polymer or an oligomer of a C2-C4 alkyl diol. For example, a glycol suitable to be used in this invention includes diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, or mixtures thereof. The term “glycol,” as used herein, can also refer to “glycol bottoms,” i.e. mixed glycols typically comprised of ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol, often with color and other impurities.


As used herein, the term “glycerin” refers to propane-1,2,3-triol, both in purified and in crude form. For example, “glycerin,” as used herein, can refer to a crude glycerin, such as a byproduct obtained in the manufacture of biodiesel.


As used herein, “acetic acid” refers to a compound having the structural formula CH3COOH. Salts of acetic acid (acetate salts) include salts of the alkali metals (Group I of the periodic table, such as sodium and potassium), and salts of alkali-earth metals (Group II of the periodic table, such as Ca2+). Preferred among these are sodium, potassium, and calcium acetate.


As used herein, “gluconic acid” refers to the compound having the following structural formula:




embedded image


Salts of gluconic acid include ammonium salts, alkali metal salts (sodium and potassium), alkali-earth metal salts (calcium), and salts of iron, zinc, and aluminum.


As used herein, “sucrose” refers to a disaccharide combination of the monosaccharides glucose and fructose with the formula C12H22O11.


As used herein, “corn syrup” refers to syrup made from cornstarch, consisting of dextrose, maltose, and dextrins.


As used herein, “molasses” refers to thick, dark brown syrup obtained from raw sugar during the refining process.


As used herein, a “chloride salt” refers to an alkali metal (Group I of the periodic table, e.g., sodium or potassium) or an alkali-earth (Group II of the periodic table, e.g., calcium) salts of hydrochloric acid.


As used herein, a “thiocyanate salts” refers to an alkali metal (Group I of the periodic table, e.g., sodium or potassium) or an alkali-earth (Group II of the periodic table, e.g., calcium) salts of thiocyanic acid.


As used herein, a “nitrite salt” refers to an alkali metal (Group I of the periodic table, e.g., sodium or potassium) or an alkali-earth (Group II of the periodic table, e.g., calcium) salts of nitrous acid (HNO2).


As used herein, a “nitrate salt” refers to an alkali metal (Group I of the periodic table, e.g., sodium or potassium) or an alkali-earth (Group II of the periodic table, e.g., calcium) salts of nitric acid (HNO3).


As used herein, an “alkali sulfate” refers to an alkali metal (Group I of the periodic table, e.g., sodium or potassium) or an alkali-earth (Group II of the periodic table, e.g., calcium) salts of sulfuric acid (H2SO4).


As used herein, an “alkali carbonate” refers to an alkali metal (Group I of the periodic table, e.g., sodium or potassium) or an alkali-earth (Group II of the periodic table, e.g., calcium) salts of carbonic acid (H2CO3).


The term “amine,” as used herein, means an “NH3,” an “NH2Rp,” an “NHRpRq,” or an “NRpRqRs” group. The term “amino”, as used herein, refers to a mono-, bi-, or trivalent radical of the amine. In either the amine or amino groups, Rp, Rq, Rq can each be a C1-C6 alkyl, optionally substituted with the one or more hydroxyl groups or amino groups. The term “diamine” as used herein, means a “RpRqNANRsRt” group, wherein Rp, Rq, Rs, and Rt can each be a hydroxyl(C1-C6)alkyl and moiety A can be a C1-C4 alkylene. Examples of a diamine include tetrahydroxylethylene diamine (THEED).


As used herein, the term “carbohydrate” refers to polysaccharide cement additives, usually used as cement retarders. Examples include celluloses, exemplified by carboxymethylated hydroxyethylated celluloses, gum arabic and guar gum. Gum arabic is a product of an acacia tree of tropical Africa and is entirely soluble in water. Guar gum is derived from the seed of an annual plant which is cultivated in India. These products consist mainly of a polysaccharide of galactose and mannose.


As used herein, the term “a haloacetic acid,” unless specifically indicated, refers to any one of mono-, di-, or tri-substituted acetic acid analogs, or a mixture thereof. For example, the “chloroacetic acid” refers to any one of the following compounds or a mixture thereof: Cl—CH2—COOH, Cl2CH—COOH, or Cl3C—COOH.


As used herein, the phrase “under alkaline condition” refers to the reaction conditions where the pH of the reaction mixture is greater than 7.


As used herein, the phrase “room temperature” refers to the temperature of about 21 to 25° C.


The content of all components in the compositions described below is indicated relative to the dry weight of the composition.


The terms “cement composition” or “cementitious powder” is used herein to designate a binder or an adhesive that includes a material that will solidify upon addition of water (hydraulic cementitious material), and an optional additive. Most cementitious materials are produced by high-temperature processing of calcined lime and a clay. When mixed with water, hydraulic cementitious materials form mortar or, mixed with sand, gravel, and water, make concrete. The terms “cementitious material,” “cementitious powder,” and “cement” can be used interchangeably.


Cement compositions includes mortar and concrete compositions comprising a hydraulic cement. Cement compositions can be mixtures composed of a cementitious material, for example, Portland cement, either alone or in combination with other components such as fly ash, silica fume, blast furnace slag, limestone, natural pozzolans or artificial pozzolans, and water; mortars are pastes additionally including fine aggregate, and concretes are mortars additionally including coarse aggregate. The cement compositions of this invention are formed by mixing certain amounts of required materials, e.g., a hydraulic cement, water, and fine or coarse aggregate, as may be applicable for the particular cement composition being formed.


As used herein, the term “clinker” refers to a material made by heating limestone (calcium carbonate) with other materials (such as clay) to about 1450° C. in a kiln, in a process known as calcination, whereby a molecule of carbon dioxide is liberated from the calcium carbonate to form calcium oxide, or quicklime, which is then blended with the other materials that have been included in the mix to form calcium silicates and other cementitious compounds.


As used herein, the term “Portland cement” include all cementitious compositions which meet either the requirements of the ASTM (as designated by ASTM Specification C150), or the established standards of other countries. Portland cement is prepared by sintering a mixture of components including calcium carbonate (as limestone), aluminum silicate (as clay or shale), silicon dioxide (as sand), and miscellaneous iron oxides. During the sintering process, chemical reactions take place wherein hardened nodules, commonly called clinkers, are formed. Portland cement clinker is formed by the reaction of calcium oxide with acidic components to give, primarily tricalcium silicate, dicalcium silicate, tricalcium aluminate, and a ferrite solid solution phase approximating tetracalcium aluminoferrite.


After the clinker has cooled, it is pulverized together with a small amount of gypsum (calcium sulfate) in a finish grinding mill to provide a fine, homogeneous powdery product known as Portland cement. Due to the extreme hardness of the clinkers, a large amount of energy is required to properly mill them into a suitable powder form. Energy requirements for finish grinding in a ball-mill can vary from about 40 to 80 kWh/ton and from 20-40 kWh/ton in a vertical roller mill depending upon the nature of the clinker. Several materials such as glycols, alkanolamines, aromatic acetates, etc., have been shown to reduce the amount of energy required and thereby improve the efficiency of the grinding of the hard clinkers. These materials, commonly known as grinding aids (also referred to herein as “grinding agents”), are processing additives which are introduced into the mill in small dosages and interground with the clinker to attain a uniform powdery mixture. In addition to reducing grinding energy, the commonly used processing additives are frequently used to improve the ability of the powder to flow easily and reduce its tendency to form lumps during storage.


Clinker production involves the release of CO2 from the calcination of limestone. It is estimated that for each ton of clinker produced, up to one ton of CO2 is released to the atmosphere. The utilization of fillers such as limestone or clinker substitutes such as granulated blast furnace slags, natural or artificial pozzolans, pulverized fuel ash, and the like, for a portion of the clinker allow a reduction on the emitted CO2 levels per ton of finished cement. As used herein, the term filler refers to an inert material that has no later age strength enhancing attributes; the term “clinker substitute” refers to a material that may contribute to long term compressive strength enhancement beyond 28 days. The addition of these fillers or clinker substitutes to form “blended cements” is limited in practice by the fact that such addition usually results in a diminution in the physical strength properties of the resultant cement. For example, when a filler, such as limestone, is blended in amounts greater than 5%, the resultant cement exhibits a marked reduction in strength, particularly with respect to the strength attained after 28 days of moist curing (28-day strength). As used herein, the term “blended cements” refers to hydraulic cement compositions containing between 2 and 90%, more conventionally between 5 and 70%, fillers or clinker substitute materials.


As used herein, the term “fine aggregate” refers to particulate material used in construction whose size is less than 4.75 mm. The term “coarse aggregate” refers to particulate material used in construction that is larger than about 2/16 inch.


In a first example embodiment, the present invention is a method of making a cement composition. The method comprises grinding a cement clinker and a strength-enhancing agent, thereby producing a hydraulic cementitious powder.


In a first aspect of the first example embodiment, the strength-enhancing agent is present in the hydraulic cementitious powder in an amount of from 0.001% to 0.09% based on dry weight of the hydraulic cementitious powder. The strength-enhancing agent is a compound represented by the following structural formula:




embedded image


wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, and K+. In an example embodiment, R* is Na+, K+, or ½ Ca++.


In a second aspect of the first example embodiment, the method of the first example embodiment further includes adding to the cement clinker at least one supplemental cementitious material selected from the group consisting of: fly ash, granulated blast furnace slag, limestone, calcined clay, natural pozzolans and artificial pozzolans.


In a third aspect of the first example embodiment, the cement clinker includes C3A in the amount of 0.3% to 9.0%, for example, 0.3% to 7.0% based on dry weight of cement clinker. The content of the total aluminate phase (C3A) can be determined by quantitative X-ray diffraction using the Rietveld refinement method.


In a fourth aspect of the first example embodiment, the method further includes grinding with the strength enhancement agent and the cement clinker at least one supplemental component selected from a grinding aid, a set retarding agent, or a set accelerating agent.


In a fifth aspect of the first example embodiment, the method is as described above with respect to the first through the fourth aspects of the first example embodiments, further comprising grinding with the strength enhancement agent and the cement clinker at least one grinding aid. In various aspects, the strength enhancement agent is present in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, and the at least one grinding aid is added in the amount of from 0.001% to 0.06% based on dry weight of the hydraulic cementitious powder. In one aspect, the strength enhancement agent is present in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, and the at least one grinding aid is added in the amount of from 0.001% to 0.1% based on dry weight of the hydraulic cementitious powder.


In a sixth aspect of the first example embodiment, the method is as described above with respect to the first through the fourth aspects of the first example embodiments, further comprising grinding with the strength enhancement agent and the cement clinker at least one grinding aid and a set retarding agent. In various aspects, the strength enhancement agent is present in the amount of 0.001-0.03% based on dry weight of the hydraulic cementitious powder; the at least one grinding aid is added in the amount of from 0.001% to 0.06% based on dry weight of the hydraulic cementitious powder; the set retarding agent is added in the amount of 0.001-0.03% based on dry weight of the hydraulic cementitious powder. In other aspects, the strength enhancement agent is present in the amount of 0.001-0.03% based on dry weight of the hydraulic cementitious powder; the at least one grinding aid is added in the amount of from 0.001% to 0.1% based on dry weight of the hydraulic cementitious powder; the set retarding agent is added in the amount of 0.001-0.03% based on dry weight of the hydraulic cementitious powder.


In a seventh aspect of the first example embodiment, the method is as described above with respect to the first through the fourth aspects of the first example embodiments, further comprising grinding with the strength enhancement agent and the cement clinker at least one grinding aid and a set accelerating agent. In various aspects, the strength enhancement agent is present in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, the at least one grinding aid is added in the amount of from 0.001 to 0.06% based on dry weight of the hydraulic cementitious powder, the set accelerating agent is added in the amount of from 0.001% to 0.2% based on dry weight of the hydraulic cementitious powder. In other aspects, the strength enhancement agent is present in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, the at least one grinding aid is added in the amount of from 0.001 to 0.1% based on dry weight of the hydraulic cementitious powder, the set accelerating agent is added in the amount of from 0.001% to 0.2% based on dry weight of the hydraulic cementitious powder.


In an eighth aspect of the first example embodiment, the method is as described above with respect to the first through the fourth aspects of the first example embodiments, further comprising grinding with the strength enhancement agent and the cement clinker at least one grinding aid, a set retarding agent, and a set accelerating agent. In various aspects, the strength enhancement agent is present in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, the at least one grinding aid is added in the amount of from 0.001% to 0.06% based on dry weight of the hydraulic cementitious powder, the set retarding agent is added in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, and the set accelerating agent is added in the amount of 0.001% to 0.2% based on dry weight of the hydraulic cementitious powder. In other aspects, the strength enhancement agent is present in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, the at least one grinding aid is added in the amount of from 0.001% to 0.1% based on dry weight of the hydraulic cementitious powder, the set retarding agent is added in the amount of from 0.001% to 0.03% based on dry weight of the hydraulic cementitious powder, and the set accelerating agent is added in the amount of 0.001% to 0.2% based on dry weight of the hydraulic cementitious powder.


In a ninth aspect of the first example embodiment, the method is as described above with respect to any of the first through eighth aspects, and further the strength enhancing agent is ethanol diglycine (i.e. N-(2-hydroxyethyl)iminodiacetic acid) (EDG) or a salt thereof (e.g. sodium, potassium).


In a tenth aspect of the first example embodiment, the method is as described above with respect to any of the fourth through ninth aspects, and further the grinding aid is one or more of a glycol (e.g., diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol, tetra propylene glycol), glycerin, a C1-C6 alkanolamine (e.g., TEA, DEIPA, and TIPA), acetic acid or an acetic acid salt (e.g., sodium acetate).


In an eleventh aspect of the first example embodiment, the method is as described above with respect to the fourth through sixth and eighth and ninth aspects, and further the set retarding agent is one or more of a gluconate salt (e.g. sodium gluconate), a molasses, sucrose, or a corn syrup.


In a twelfth aspect of the first example embodiment, the method is as described above with respect to the fourth, fifth, seventh, eighth, and ninth aspects, and further the set accelerating agent is one or more of a thiocyanate salt (e.g. sodium, potassium, calcium) or a chloride salt (sodium, potassium, calcium).


In a thirteenth aspect of the first example embodiment, the method is as described above with respect to the fourth embodiment, and further the strength enhancing agent is EDG or a salt thereof (e.g. sodium, potassium), the grinding aid is the glycol (e.g., diethylene glycol, DEG), the set retarding agent is sodium gluconate, and the set accelerating agent is sodium thiocyanate.


In a fourteenth aspect of the first example embodiment, the method is as described above with respect to any of the aspects of the first example embodiment, further including grinding the cement clinker and the strength-enhancing agent with an alkali sulfate (e.g., sodium sulfate). In an additional aspect of the first example embodiment, the method is as described above with respect to any of the aspects of the first example embodiment, further including grinding the cement clinker and the strength-enhancing agent with an alkali sulfate and/or an alkali carbonate (e.g., sodium sulfate, sodium carbonate, sodium bicarbonate).


In a fifteenth aspect of the first example embodiment, the strength-enhancing agent is made by a process comprising: reacting a monohaloacetic acid chosen from monochloroacetic acid and monobromoacetic acid, or a salt thereof, with a alkanolamine chosen from ethanolamine, isopropanolamine, and isobutanolamine under alkaline conditions to generate the strength-enhancing agent represented by the structural formula




embedded image




    • wherein: R1 is (C1-C4)alkyl-OH; and R2 and R3 , each independently, represent —CH2COOR*, where R* is defined above with respect to the first aspect of the first example embodiment. For example, the haloacetic acid or its salt is chloroacetic acid or its salt, and R1 is —CH2CH2OH.





In any of aspects of the first example embodiment, the content of Na2O equivalent in the hydraulic cementitious material is less than or equal to 0.7% by weight of the hydraulic cementitious powder. The content of Na2O equivalents in cement is determined as follows, in weight percent: % Na2O equivalent=% Na2O+0.658*% K2O, where the values of % Na2O and % K2O in cement can be determined using either X-ray fluorescence (XRF) or inductively coupled plasma mass spectroscopy (ICP-MS).


In a second example embodiment, the present invention is a composition prepared by the method of any one aspect of the first example embodiment.


In a third example embodiment, the present invention is an additive composition, comprising (A) a strength-enhancing agent represented by the following structural formula:




embedded image


and (B) at least one grinding aid selected from one or more of a glycol (e.g., diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol, tetra propylene glycol), glycerin, or acetic acid or a salt thereof, wherein the additive composition is a liquid.


The strength-enhancing agent of the third example embodiment is described above with respect to the first example embodiment.


In a first aspect of the third example embodiment, the weight ratio of the strength enhancing agent to the grinding aid in the additive composition is from 1:9 to 9:1. In another aspect of the third example embodiment, the weight ratio of the strength enhancing agent to the grinding aid in the additive composition is from 1:19 to 19:1.


In the second aspect of the third example embodiment, the additive composition is as described above with respect to any of the aspects of the second example embodiment, further comprising a set retarding agent, a set accelerating agent, or a mixture thereof


In the third aspect of the third example embodiment, the additive composition is as described above with respect to any of the aspects of the second example embodiment, and further the strength enhancing agent is N-(2-hydroxyethyl)iminodiacetic acid (EDG) or a salt thereof (e.g. sodium, potassium).


In the fourth aspect of the third example embodiment, the additive composition is as described above with respect to any of the aspects of the second example embodiment, and further the at least one grinding aid is diethylene glycol.


In the fifth aspect of the third example embodiment, the additive composition is as described above with respect to any of the aspects of the second example embodiment, further comprising sodium gluconate or sodium thiocyanate.


In the sixth aspect of the third example embodiment, the additive composition is as described above with respect to any of the aspects of the second example embodiment, further comprising an alkali sulfate (e.g., sodium sulfate). In the another aspect of the third example embodiment, the additive composition is as described above with respect to any of the aspects of the second example embodiment, further comprising an alkali sulfate and/or an alkali carbonate (e.g., sodium sulfate, sodium carbonate, sodium bicarbonate).


In a fourth example embodiment, the present invention is a cementitious composition comprising a cementitious binder obtained by grinding a cement clinker with the additive composition of any aspect of the third example embodiment.


In a fifth example embodiment, the present invention is a cement composition, comprising a hydraulic cementitious powder, said hydraulic cementitious powder including tricalcium aluminate (C3A) in an amount of from 0.3% to 9.0% based on dry weight of the hydraulic cementitious powder; a strength-enhancing agent, said strength-enhancing agent being present in an amount of from 0.001% to 0.09% based on dry weight of the hydraulic cementitious powder, and at least one grinding aid selected from a glycol (e.g., diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol, tetra propylene glycol), glycerin, or acetic acid or an acetate salt (e.g., sodium or potassium acetate).


The strength-enhancing agent of the fifth example embodiment is described above with respect to the first example embodiment.


In a sixth example embodiment, the present invention is an additive composition for use in grinding with a cement clinker, said composition comprising (A) a strength-enhancing agent and (B) at least one grinding aid selected from one or more of a glycol, glycerin, or acetic acid or an acetate salt, wherein the additive composition is a liquid. The strength-enhancing agent of the sixth example embodiment is described above with respect to the first example embodiment.


In a seventh example embodiment, the present invention is a mixture of a cement clinker and the additive composition of any aspect of the third example embodiment.


In an eighth example embodiment, the present invention is a method for making a strength-enhancing agent, comprising reacting a haloacetic acid chosen from one or more of a chloroacetic acid and a bromoacetic acid, or a salt thereof, with one or more alkanolamines of the structural formula (I)




embedded image




    • under alkaline conditions, to generate the strength-enhancing agent represented by structural formula (II)







embedded image




    • wherein each R10 is independently chosen from H, (C1-C4)alkyl-OH, provided that in structural formula (I) at least one group R10 is not H; R20 is chosen from(C1-C4)alkyl-OH, and —C(R4)2COOM+; and R30 is —C(R4)2COOM+; each R4 is independently chosen from hydrogen, Br, and Cl; and M+ is H+, Na+, K+, or ½ Ca++.





In a first aspect of the eighth example embodiment, the chloroacetic acid is monochloracetic acid or a salt thereof; the compound represented by structural formula (I) is ethanolamine represented by the following structural formula HO—CH2—CH2—NH2; and the strength-enhancing agent represented by structural formula (II) is sodium ethanol-diglycine (Na2-EDG)




embedded image




    • wherein the monochloracetic acid or a salt thereof and the ethanolamine are reacted in the presence of sodium hydroxide at above room temperature.





In another aspect, the monochloracetic acid or a salt thereof and the ethanolamine are reacted in the presence of sodium hydroxide at any temperature at which the reaction process can be carried out, for example at or above room temperature. The temperature of reaction can be chosen depending on a particular condition to reduce the process of the present invention to practice. For example, when the higher productivity of the process is desirable, higher temperature, such as at above the room temperature can be chosen, whereas the higher EDG content is desired, the lower temperature, such as at the room temperature or below, is preferably applied. The temperature of the manufacturing process is suitably controlled depending on the preferences of the product and the production process. It is noted that the neutralization of chloroacetic acid with alkali generates heat that can either be used or controlled as the reaction temperature chosen above.


In a ninth example embodiment, the present invention is a strength-enhancing agent made by the methods according to the any aspect of the eighth example embodiment. It is contemplated that the strength enhancing agent according to the ninth example embodiment can be used in the methods and compositions according to any aspects of the first to the seventh example embodiments.


In a tenth example embodiment, the present invention is an additive composition, comprising a first component; and a cement additive component, wherein the cement additive component is one or more agent chosen from a glycol, glycerol, acetic acid or a salt thereof, an alkanolamine, an amine, a carbohydrate, a water-reducing additive, an air-entraining agent, a chloride salt, a nitrite salt, a nitrate salt, and a thiocyanate salt; and the first component is prepared according to the eighth example embodiment and any aspect thereof.


In a first aspect of the tenth example embodiment, the additive composition is in liquid form.


In an eleventh example embodiment, the present invention is a concrete composition, comprising the additive composition according to the tenth example embodiment and any aspect thereof; cement; a fine aggregate; a coarse aggregate, and at least one supplemental cementitious material chosen from fly ash, granulated blast furnace slag, limestone, calcined clay, natural pozzolan, and artificial pozzolan.


In a twelfth example embodiment, the present invention is a method of making a concrete composition, comprising preparing a reaction mixture according to the fifteenth aspect of the first example embodiment or the eighth example embodiment and any aspect thereof, adding the reaction mixture without purification to a cement clinker; and grinding the cement clinker and the reaction mixture, thereby producing a hydraulic cementitious powder.


It has now been discovered that, unlike traditional strength-enhancers (e.g., TEA, DEIPA, EDIPA, TIPA), the strength-enhancing agents described herein (e.g., ethanol diglycine in acid or salt form) do not involve increasing the solubility of iron in the hydrated cement, and, therefore do not cause yellow staining on finished products.


Other strength enhancing agents, such as TEA, DEIPA, EDIPA and TIPA, while improving strength, tend to increase the amount of air entrained in the cement. In some instances, adding such agents can lead to set cement compositions with large porosity and poor finished surfaces. Although incorporation of air detraining agents (ADA), such as those illustrated in U.S. Pat. No. 5,156,679, incorporated herein by reference in its entirety, enable reduction in the air content, the formation and release of bubbles from the cement compositions cannot be eliminated.


The amino acid derivatives described herein can simultaneously improve early strength, without entraining large air voids. This is desirable as it can lead to cement compositions, such as Portland cement concrete, with lower porosities and better finished surfaces.


A particular advantage of the additive of the invention is that it may be either interground or intermixed with the cement. As used herein, the terms “interground” and “intermixed” refer to the particular stage of the cement processing in which the amino acid derivatives described herein, for example EDG, are added. They may be added to the clinker during the finish grinding stage and thus interground to help reduce the energy requirements and provide a uniform free flowing cement powder with reduced tendency to form lumps during storage. It is also possible to add the subject additives as an admixture to powdered cement either prior to, in conjunction with, or after the addition of water when causing the hydraulic setting of the cement. Further, the amino acid derivatives of this invention may be supplied in a pure concentrated form, or diluted in aqueous or organic solvents, and may also be used in combination with other chemical admixtures, including but not limited to: accelerating admixtures, air entrainers, air detrainers, water-reducing admixtures, retarding admixtures (as defined in ASTM C494) and the like, and mixtures thereof. The additive according to the invention may be used with ordinary cement or with blended cements.


Example embodiments of the invention, including the strength-enhancing agents made by reacting a haloacetic acid or a salt thereof with an alkanolamine, provide additive compositions for facilitating cement grinding, and provide early cement strength enhancement, without generating the attendant disadvantages of producing hazardous products as would be expected from current commercial processes that involve monoethanolamine, formaldehyde, and sodium cyanide starting materials.


One skilled in the art, using the preceding detailed description, can utilize the present invention to its fullest extent. The following examples are provided to illustrate the invention, but should not be construed as limiting the invention in any way except as indicated in the appended claims. All parts and percentages are by weight unless otherwise indicated and additives are expressed as percent active ingredient as solids based weight of dry cement (% s/c). Compressive strengths of the cement samples were determined in accordance with EN method 196-1. Examples 1 through 19, below were prepared using commercially available cements and clinkers.


In a thirteenth example embodiment, the present invention is a method for grinding a solid in a vertical roller mill (VRM).


Vertical Roller Mills (“VRMs”) work by grinding materials using rollers or rotating members (e.g., 2-8 in number) that press downwards (typically under hydraulic or pneumatic force) upon a rotating table. The table is rotatable about a vertical axis and is generally circular in nature. The table may have flat or annular channels where the particles are ground by the downward pressure of the rollers.


Materials to be ground (e.g., cement clinker) are dropped, via a hopper or sluice, onto the center of the circular table, which rotates and allows the material to be contacted and crushed by the rollers. The particles move outwards and beyond the circumferential edge of the rotating table by centrifugal force. The particles are then carried by a flow of air to a device for separating the particles based on size (“classifier”) located above the table. If classified as being too large to pass through the classifier the particles are returned to the center of the table; or, if fine enough to pass through the classifier, they are removed from the grinding mill.


VRMs provide advantages over ball mills, such as lower energy consumption (e.g., 30%-50% more efficient), smaller footprint, faster setup, greater product outputs, and often more control over particle size distribution, however, milling instability can be problematic. For example, it is current practice to spray water onto the grinding bed (i.e., the layer of material passing under the grinding rollers) of the VRM to stabilize the mill. When the grinding process of VRMs begins to de-stabilize, the VRM structure can begin to shake and create vibrations that can be felt in adjacent buildings, even considerable distances from the mill. This vibration can damage the VRM, so the mill will be shut down if the vibrations exceed a preset limit. While adding water is effective at reducing vibrations, it can pre-hydrate the cement, which has a negative effect on its properties, including but not limited to a decrease in strength. Thus, there is a need for chemicals that can stabilize the mill, as well as permit less water spray use.


The following patents and published patent applications, the contents of which are hereby incorporated by reference, describe VRMs in detail: U.S. Pat. No. 4,715,544 (1987); U.S. Pat. No. 7,028,934 (2006); and WO2016196456A1 (Published 2016).


The method comprises grinding at least one solid in the presence of a grinding stabilizing additive, wherein the grinding stabilizing additive comprises an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula




embedded image




    • wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++.





In various aspects of the thirteenth embodiment, the method includes providing a vertical roller mill having a table with an upper surface rotatable around a vertical axis for receiving material particles to be ground into finer particles, and at least two rollers for rolling contact with the upper surface and grinding the material particles. The method can also include introducing onto the upper surface, at or near the vertical axis of rotation, a solid material to be ground (e.g., (a) cement clinker, gypsum, limestone, or a mixture thereof, (b) a supplemental cementitious material, (c) or mixture of (a) and (b)); and introducing to the solid material to be ground, either before it enters the mill or while it is on the grinding table, a grinding stabilizing additive, described below. The solid is typically ground between the rollers and the upper table surface.


Typically, the rollers are hydraulically or pneumatically actuated to exert downward pressure on the upper table surface. The ground solids are removed from the edge of the rotating table and circulated by air flow or vacuum suction to a classifier. The classifier removes the solids from the grinding operation (if they have achieved sufficient fineness) or returns the solids to the upper table surface for further grinding (if determined to have insufficient fineness).


Classifiers operate by rotating particles within an air stream and heavier ones are flung outward while the lighter ones move through the classifier and are removed from the processing area.


In a first aspect of the thirteenth embodiment, the solid comprises one or more of a cement clinker, gypsum, limestone, a supplemental cementitious matter, or a mixture thereof


In a second aspect of the thirteenth embodiment, the grinding stabilizing additive comprises ethanol diglycine (EDG), isopropanol diglycine (IPDG), disodium EDG, dipotassium EDG, disodium IPDG, dipotassium IPDG or mixture thereof, and is present in an amount of 0.001-0.04% (for example, 0.005%-0.02%) based on dry weight of solid being ground.


In a third aspect of the thirteenth embodiment, the method further includes grinding the solid in the presence of at least one supplemental additive chosen from: (A) a grinding agent chosen from a glycol (e.g., diethylene glycol, tripropylene glycol) or glycerin, in the amount of 0.001% to 0.1% based on dry weight of the solid being ground; (B) a supplemental agent chosen from a tertiary alkanolamine or an acetate salt thereof, in the amount of 0.001-0.1% based on dry weight of the solid being ground; (C) a set retarding agent chosen from gluconate salt, a molasses, sucrose, or a corn syrup, in the amount of 0.001% to 0.06% based on dry weight of the solid being ground; (D) a set accelerating agent chosen from a thiocyanate salt, chloride salt, or mixture thereof, in the amount of 0.001% to 0.2% based on dry weight of the solid being ground; (E) a dispersing agent chosen from sodium acetate, potassium acetate, in the amount of 0.005% to 0.1% based on dry weight of the solid being ground or (F) mixture thereof.


In an example embodiment of the third aspect of the thirteenth embodiment, the supplemental agent is chosen from triethanolamine (“TEA”), diethanolpropanolamine (“DEIPA”), ethanoldiisopropanolamine (“EDIPA”), triisopropanolamine (“TIPA”), the acetate of any of the foregoing (e.g., TEA acetate, DEIPA acetate, EDIPA acetate, TIPA acetate), or a mixture of any of the foregoing.


In a fourth aspect of the thirteenth embodiment, the grinding stabilizing additive comprises EDG, IPDG, disodium EDG, dipotassium EDG, disodium IPDG, dipotassium IPDG or a mixture thereof; and the method further including grinding the solid in the presence of at least one agent chosen from: (A) at least one of DEIPA, EDIPA, TIPA, TEA, DEIPA acetate, EDIPA acetate, TIPA acetate, TEA acetate, or mixture thereof; and (B) sodium acetate, potassium acetate, or mixture thereof; or a mixture of (A) and (B).


In various example embodiments of the fourth aspect of the thirteenth embodiment, any combination of the agents listed under (A) and (B) above can be used. For example, the following combinations can be used: EDG and sodium acetate; EDG and DEIPA; EDG and TIPA; EDG, DEIPA, and sodium acetate; EDG, TIPA, and sodium acetate; IPDG and sodium acetate; IPDG and DEIPA; IPDG and TIPA; IPDG, DEIPA, and sodium acetate, EPDG, TIPA, and sodium acetate.


In a fifth aspect of the thirteenth embodiment, the solid includes a supplemental cementitious material chosen from fly ash, granulated blast furnace slag, limestone, calcined clay, natural pozzolan, and artificial pozzolan.


In a sixth aspect of the thirteenth embodiment, the solid includes a cement clinker, and the method further including grinding the solid in the presence of at least two agents chosen from a grinding agent, a set retarding agent, a set accelerating agent, or a dispersing agent.


In a seventh aspect of the thirteenth embodiment, the solid includes a cement clinker; and the method including grinding the solid in the presence of a grinding agent. In example embodiments of the seventh aspect, the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, and the grinding agent is present in the amount of from 0.001% to 0.10% (for example, 0.005% to 0.02%) based on dry weight of the solid being ground.


In an eighth aspect of the thirteenth embodiment, the solid includes a cement clinker, and the method further including grinding the solid in the presence of a grinding agent, and a supplemental agent chosen from a tertiary alkanolamine or an acetate salt thereof. In example embodiments of the eighth aspect, the grinding stabilizing additive is present in the amount of 0.001-0.04% based on dry weight of the solid being ground; the grinding agent is present in the amount of from 0.001% to 0.10% based on dry weight of the solid being ground; and the supplemental agent is present in the amount of 0.001-0.04% based on dry weight of the solid being ground.


In a ninth aspect of the thirteenth embodiment, the solid includes a cement clinker, and the method further including grinding the solid in the presence of a grinding agent and a set retarding agent. In example embodiments of the ninth aspect, the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, the grinding agent is present in the amount of from 0.001 to 0.1% based on dry weight of the solid being ground, and the set retarding agent is present in the amount of from 0.001% to 0.03% based on dry weight of the solid being ground.


In a tenth aspect of the thirteenth embodiment the solid includes a cement clinker, the method further including grinding the solid in the presence of a grinding agent and a set accelerating agent. In example embodiments of the tenth aspect, the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, the grinding agent is present in the amount of from 0.001% to 0.1% based on dry weight of the solid being ground, and the set accelerating agent is present in the amount of from 0.001% to 0.2% based on dry weight of the solid being ground.


In an eleventh aspect of the thirteenth embodiment, the solid includes a cement clinker, and the method further including grinding the solid in the presence of a grinding agent and a dispersing agent. In example embodiments of the eleventh aspect, the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, the grinding agent is present in the amount of from 0.001% to 0.1% based on dry weight of the solid being ground, and the dispersing agent is present in the amount of 0.005% to 0.1% based on dry weight of the solid being ground.


In a twelfth aspect of the thirteenth embodiment, the method further including grinding the solid in the presence of a grinding agent chosen from diethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, glycerin, acetic acid or its salt, or a mixture thereof.


In a thirteenth aspect of the thirteenth embodiment, the method further including grinding the solid in the presence of a set retarding agent chosen from a gluconate salt, a molasses, sucrose, corn syrup, or mixture thereof.


In a fourteenth aspect of the thirteenth embodiment, the method further including grinding the solid in the presence of a set accelerating agent chosen from a thiocyanate salt, a chloride salt, or mixture thereof.


In a fifteenth aspect of the thirteenth embodiment, the grinding stabilizing additive is (a) EDG, (b) IPDG, (c) or a mixture thereof, or (d) a salt of any of (a), (b), or (c); and the method further including grinding the solid in the presence of a glycol, sodium gluconate, and a set accelerating agent chosen from sodium chloride or sodium thiocyanate.


In a sixteenth aspect of the thirteenth embodiment, the grinding stabilizing additive is EDG or an EDG salt.


In a seventeenth aspect of the thirteenth embodiment, the grinding stabilizing additive is IPDG or an IPDG salt.


In an eighteenth aspect of the thirteenth embodiment, the solid is a cement clinker, and the method further including grinding the cement clinker with an alkali sulfate.


In a fourteenth example embodiment, the present invention is a method of any of the first 1st through 17th aspects of the 13th embodiment, wherein the grinding stabilizing additive is made by a process, comprising: reacting a haloacetic acid chosen from monochloroacetic acid and monobromoacetic acid, or a salt thereof, with an alkanolamine chosen from ethanolamine, isopropanolamine, and isobutanolamine under alkaline conditions to generate the grinding stabilizing additive represented by the structural formula




embedded image




    • wherein R1 is (C1-C4)alkyl-OH; R2 and R3, each independently, represent —CH2COOR*, and R* is H, Na+, K+, or ½ Ca++.





In one aspect of the 14th embodiment, the haloacetic acid or its salt is chloroacetic acid or its salt, and R1 is —CH2CH2OH (ethanol), −CH2—CH(CH3)—OH (isopropanol), or mixture thereof.


In an additional aspects of the 13th and the 14th embodiments, the grinding stabilizing additive is disodium ethanol-diglycine or disodium isopropanol-diglycine represented by the structural formula




embedded image




    • wherein R10 is H or —CH3.





In a further aspect of the 13th and the 14th embodiment, the grinding stabilizing additive is a liquid.


In a 15th example embodiment, the present invention is an additive composition for grinding, comprising: (a) EDG, IPDG, or mixture thereof; (b) at least one alkanolamine chosen from DEIPA, EDIPA, TIPA, TEA, THEED, DEIPA acetate, EDIPA acetate, TIPA acetate, TEA acetate, THEED acetate, or a mixture thereof; (c) sodium acetate; or a mixture of any of the foregoing.


In one aspect of the 15th embodiment, the additive composition comprising components (a) and (c).


In various example embodiments of the 15th embodiment, any combination of the agents listed under (a), (b), and (c) above can be used. For example, the following combinations can be used: EDG and sodium acetate; EDG and DEIPA; EDG and TIPA; EDG, DEIPA, and sodium acetate; EDG, TIPA, and sodium acetate; IPDG and sodium acetate; IPDG and DEIPA; IPDG and TIPA; IPDG, DEIPA, and sodium acetate, EPDG, TIPA, and sodium acetate.


In a further aspect of the 13th and the 14th embodiments, the grinding stabilizing additive comprises EDG, IPDG, or mixtures of the foregoing diglycines; diethylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a 16th example embodiment, the present invention is an additive composition for grinding, comprising EDG or IPDG, or a mixtures of the forgoing diglycines; diethylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a 17th example embodiment, the present invention is an additive composition for grinding, comprising EDG, IPDG, or a mixture of the forgoing diglycines; tripropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In an 18th example embodiment, the present invention is an additive composition for grinding, comprising EDG, IPDG, or a mixture of the foregoing diglycines; at least one glycols chosen from diethylene glycol, tripropylene glycol, and tetrapropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a 19th example embodiment, the present invention is an additive composition for grinding, comprising at least one glycol chosen from diethylene glycol, tripropylene glycol, and tetrapropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a 20th example embodiment, the present invention is an additive composition for grinding, comprising tripropylene glycol and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a further aspect of the 13th and the 14th embodiments, the grinding stabilizing additive comprises EDG, IPDG, or a mixture of the forgoing diglycines; tripropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoin.g alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In yet further aspect of the 13th and the 14th embodiments, the grinding stabilizing additive comprises EDG, IPDG, or a mixture of the foregoing diglycines; at least one glycol chosen from diethylene glycol, tripropylene glycol, and tetrapropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In another aspect of the 13th and the 14th embodiments, the grinding stabilizing additive comprises at least one glycol chosen from diethylene glycol, tripropylene glycol, and tetrapropylene glycol and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In another aspect of the 13th and the 14th embodiments, the grinding stabilizing additive comprises tripropylene glycol and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a 2st example embodiment, the present invention is an additive composition for grinding, comprising tripropylene glycol (TPG); at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof and, optionally, EDG.


In a further aspect of the 13th and the 14th embodiments, the grinding stabilizing additive comprises EDG; tripropylene glycol (TPG); and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In the 15th embodiment, the present invention is a method for grinding a solid in a vertical roller mill (VRM), comprising: grinding a solid comprising a cement clinker under a water spray in the presence of a grinding stabilizing additive. In the 15th embodiment, the grinding stabilizing additive comprises: (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:




embedded image




    • wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++; (ii) a glycol; or a mixture of (i) and (ii). In the 15th embodiment, wherein the water spray level is reduced by at least 5% compared to a control.





As used herein with reference to the 15th embodiment, the term “control” means the minimum water spray level necessary to maintain an acceptable magnitude of mill vibration during grinding of a solid comprising a cement clinker, without the use of any other organic chemicals. For example, the term “control” refers to the minimum water spray level necessary to maintain an acceptable magnitude of mill vibration during grinding of a solid comprising a cement clinker, wherein neither an alkanol amino acid of Formula I




embedded image


as defined hereinabove, nor a glycol, as defined herein, is in contact with solid during grinding.


In one aspect of the 15th embodiment, the water spray level is reduced by 5% to 80% compared to a control. In another aspect, the water spray level is reduced by 5% to 80% compared to a control. In yet another aspect, the water spray level is reduced by at least 20% compared to a control. In various aspects of the 15th embodiment described herein, the water spray level is reduced by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% compared to a control. For example, the water spray level can be reduced by 20% to 80%; by 25% to 75%; by 30% to 70%; or by 40% to 60% compared to a control.


In a 16th embodiment, the present invention is a method of manufacturing a cement composition, comprising: grinding a solid comprising a cement clinker in a vertical roller mill (VRM) under a water spray in the presence of a grinding stabilizing additive, thereby preparing the cement composition. In the 16th embodiment, the grinding stabilizing additive comprises: (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:




embedded image


wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++; (ii) a glycol; or a mixture of (i) and (ii). In the 16th embodiment, the pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%.


The meaning of the term “pre-hydration level” will be explained below in Example 26.


In one aspect of the 16th embodiment, Wk is equal to or less than 0.5%. In another aspect, Wk is equal to or less than 0.3%. In various aspects of the 16th embodiment described herein, Wk is equal to or less than 1.4%, 1.3%, 1.2%, 1.1%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or any interval defined by these values.


The common aspects described below relate to both 15th and 16th embodiments generally as well as to any of the aspects thereof as described herein.


In a first common aspect, the solid comprises one or more of gypsum, a supplemental cementitious matter, or a mixture thereof.


In a second common aspect, the grinding stabilizing additive comprises ethanol diglycine (EDG), isopropanol diglycine (IPDG), disodium EDG, dipotassium EDG, disodium IPDG, dipotassium IPDG or mixture thereof; wherein the EDG, IPDG, disodium EDG, dipotassium EDG, disodium IPDG, dipotassium IPDG or a mixture thereof and is present in an amount of 0.001-0.04% based on dry weight of solid being ground.


In a third common aspect, the grinding stabilizing additive comprises diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol (TPG), tetrapropylene glycol, or a mixture thereof and is present in the amount of 0.001%-0.1% based on dry weight of solid being ground.


In a fourth common aspect, the grinding stabilizing additive comprises ethanol diglycine (EDG) present in an amount of 0.001-0.04% based on dry weight of solid being ground, tripropylene glycol (TPG), or a mixture thereof and is present in the amount of 0.001% -0.01% based on dry weight of solid being ground.


In a fifth common aspect of the 15th and 16th embodiments, the method can further include grinding the solid in the presence of at least one supplemental additive chosen from:

    • (A) a grinding agent glycerin, in the amount of 0.001% to 0.1% based on dry weight of the solid being ground;
    • (B) a supplemental agent chosen from a tertiary alkanolamine or an acetate salt thereof, in the amount of 0.001-0.1% based on dry weight of the solid being ground;
    • (C) a set retarding agent chosen from gluconate salt, a molasses, sucrose, or a corn syrup, in the amount of 0.001% to 0.06% based on dry weight of the solid being ground;
    • (D) a set accelerating agent chosen from a thiocyanate salt, chloride salt, or mixture thereof, in the amount of 0.001% to 0.2% based on dry weight of the solid being ground;
    • (E) a dispersing agent chosen from sodium acetate, potassium acetate, or mixture thereof in the amount of 0.005% to 0.1% based on dry weight of the solid being ground; and
    • (F) an air-detraining agent (ADA).


As used herein, the term “air-detraining agent” (ADA) is used interchangeably with the term “defoamer.” As stated above, air-detraining agents (ADA), such as those illustrated in U.S. Pat. No. 5,156,679, incorporated herein by reference in its entirety, enable reduction in the air content, and reduce formation and release of bubbles from the cement compositions. These terms refer to compounds or mixtures of compounds that decrease foaming and minimizes air entrainment in cement slurries, grouts, concrete, and mortars. Examples of ADA/defoamer compounds and mixtures are described in U.S. Pat. No. 5,156,679 and WO2015042031, the relevant portions of which are incorporated herein by reference.


In an example embodiment, the ADA is tri-isobutyl phosphate (TiBP), represented by the following formula:




embedded image


In a first example of the sixth common aspect, the supplemental agent is chosen from triethanolamine (“TEA”), triisopropanolamine (“TIPA”), diethanolpropanolamine (“DEIPA”), ethanoldiisopropanolamine (“EDIPA”), tetrahydroxyethyl ethylenediamine (“THEED”), the acetate of any of the foregoing, or a mixture of any of the foregoing.


In a second example of the sixth common aspect, the grinding stabilizing additive comprises EDG, IPDG, disodium EDG, dipotassium EDG, disodium IPDG, dipotassium IPDG or a mixture thereof; the method further including grinding the solid in the presence of at least one agent chosen from: (A) at least one of DEIPA, EDIPA, TIPA, TEA, THEED, DEIPA acetate, EDIPA acetate, TIPA acetate, TEA acetate, THEED acetate, or a mixture thereof; and (B) sodium acetate, potassium acetate, or mixture thereof; or a mixture of (A) and (B).


In a third example of the sixth common aspect, the grinding stabilizing additive comprises diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol (TPG), tetrapropylene glycol, or mixtures thereof; the method further including grinding the solid in the presence of at least one agent chosen from: (A) at least one of DEIPA, EDIPA, TIPA, TEA, THEED, DEIPA acetate, EDIPA acetate, TIPA acetate, TEA acetate, THEED acetate, or a mixture thereof; and (B) sodium acetate, potassium acetate, or mixture thereof; or a mixture of (A) and (B).


In a fourth example of the sixth common aspect, the grinding stabilizing additive comprises ethanol diglycine (EDG), tripropylene glycol (TPG), or a mixture thereof; the method further including grinding the solid in the presence of at least one agent chosen from: (A) at least one of DEIPA, EDIPA, TIPA, TEA, THEED, DEIPA acetate, EDIPA acetate, TIPA acetate, TEA acetate, THEED acetate, or a mixture thereof; and (B) sodium acetate, potassium acetate, or mixture thereof; or a mixture of (A) and (B).


In a seventh common aspect, the solid includes a supplemental cementitious material chosen from fly ash, granulated blast furnace slag, limestone, calcined clay, natural pozzolan, and artificial pozzolan.


In a fifth example of the sixth aspect, the method further includes grinding the solid in the presence of at least two agents chosen from a grinding agent, a set retarding agent, a set accelerating agent, or a dispersing agent.


In a sixth example of the sixth common aspect, the method includes grinding the solid in the presence of a grinding agent, and further wherein: the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, and the grinding agent is present in the amount of from 0.001% to 0.10% based on dry weight of the solid being ground. For example, the grinding agent is present in the amount of from 0.005% to 0.02% based on the dry weight of the solid being ground.


In a seventh example of the sixth common aspect, the method further including grinding the solid in the presence of a grinding agent, and a supplemental agent chosen from a tertiary alkanolamine or an acetate salt thereof, wherein: the grinding stabilizing additive is present in the amount of 0.001-0.04% based on dry weight of the solid being ground; the grinding agent is present in the amount of from 0.001% to 0.10% based on dry weight of the solid being ground; and the supplemental agent is present in the amount of 0.001-0.04% based on dry weight of the solid being ground.


In an eighth example of the sixth common aspect, the method further including grinding the solid in the presence of a grinding agent and a set accelerating agent, wherein: the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, the grinding agent is present in the amount of from 0.001% to 0.1% based on dry weight of the solid being ground, and the set accelerating agent is present in the amount of from 0.001% to 0.2% based on dry weight of the solid being ground.


In a ninth example of the sixth common aspect, the method further including grinding the solid in the presence of a grinding agent and a dispersing agent, wherein the grinding stabilizing additive is present in the amount of from 0.001% to 0.04% based on dry weight of the solid being ground, the grinding agent is present in the amount of from 0.001% to 0.1% based on dry weight of the solid being ground, and the dispersing agent is present in the amount of 0.005% to 0.1% based on dry weight of the solid being ground.


In an eighth common aspect, the method further including grinding the solid in the presence of a grinding agent chosen from glycerin, acetic acid or its salt, or a mixture thereof.


In a ninth common aspect, the method further including grinding the solid in the presence of a set retarding agent chosen from a gluconate salt, a molasses, sucrose, corn syrup, or mixture thereof.


In a tenth common aspect, the method further including grinding the solid in the presence of a set accelerating agent chosen from a thiocyanate salt, a chloride salt, or mixture thereof.


In an eleventh common aspect, the grinding stabilizing additive is (a) EDG, (b) IPDG, (c) or a mixture thereof, or (d) a salt of any of (a), (b), or (c); and the method further including grinding the solid in the presence of sodium gluconate, and a set accelerating agent chosen from sodium chloride or sodium thiocyanate. For example, the grinding stabilizing additive is EDG or an EDG salt.


In a twelfth common aspect, the grinding stabilizing additive is diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tripropylene glycol (TPG), tetrapropylene glycol, or mixtures thereof; the method further including grinding the solid in the presence of sodium gluconate, and a set accelerating agent chosen from sodium chloride or sodium thiocyanate. For example, the grinding stabilizing additive is tripropylene glycol (TPG).


In a thirteenth common aspect, the grinding stabilizing additive is ethanol diglycine (EDG), tripropylene glycol (TPG), or mixtures thereof; the method further including grinding the solid in the presence of sodium gluconate, and a set accelerating agent chosen from sodium chloride or sodium thiocyanate.


In a fourteenth common aspect, the method further includes grinding the solid with an alkali sulfate.


In a fifteenth common aspect, the grinding stabilizing additive includes a compound represented by the following structural formula




embedded image




    • wherein R10 is H or —CH3; tripropylene glycol (TPG), or a mixture thereof.





In a sixteenth common aspect, the grinding stabilizing additive is a liquid.


In a seventeenth common aspect, the grinding stabilizing additive comprises EDG, IPDG, or mixtures of the foregoing diglycines; diethylene glycol, tripropylene glycol or a mixture thereof; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In an eighteenth common aspect, the grinding stabilizing additive comprises EDG, IPDG, or a mixture of the forgoing diglycines; tripropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a nineteenth common aspect, the grinding stabilizing additive comprises EDG, IPDG, or a mixture of the foregoing diglycines; at least one glycol chosen from diethylene glycol, tripropylene glycol, and tetrapropylene glycol; and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a twentieth common aspect, the grinding stabilizing additive comprises at least one glycol chosen from diethylene glycol, tripropylene glycol, and tetrapropylene glycol and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a twenty first common aspect, the grinding stabilizing additive comprises tripropylene glycol and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a twenty second common aspect, the grinding stabilizing additive comprises EDG; tripropylene glycol (TPG); and at least one alkanolamine chosen from TEA, DEIPA, EDIPA, TIPA, THEED, the acetate of any of the foregoing alkanolamines, or a mixture of any of the foregoing alkanolamines and acetates thereof.


In a tenth example of the sixth common aspect, the grinding stabilizing additive comprises ethanol diglycine (EDG) in the amount of 0.0025%-0.0200% based on dry weight of solid being ground (e.g., 0.0030%-0.0200%, 0.0050%-0.0200%, 0.0075%-0.0200%, 0.0100%-0.0200%, 0.0150%-0.0200%; 0.0025%-0.0150%, 0.0025%-0.010%, 0.0025%-0.0075%, 0.0025%-0.0050%).


In a first aspect of the tenth example of the sixth common aspect, the grinding stabilizing additive further includes tripropylene glycol (TPG) in the amount of 0.0050%-0.030% based on dry weight of solid being ground (e.g., 0.010%-0.030%, 0.015%-0.030%, 0.020%-0.030%, 0.025%-0.030%, 0.005%-0.0.025%, 0.005%-0.020%, 0.005%-0.015%, 0.005%-0.010%), the method further including grinding the solid in the presence of the ADA tri-isobutyl phosphate (TiBP), wherein the TiBP is present at 0.0001% -0.0020% based on dry weight of solid being ground (e.g., 0.0005%-0.002%, 0.0010%-0.002%, 0.0015%-0.002%, 0.0001%-0.0015%, 0.0001%-0.0010%, 0.0001%-0.0005%).


In a second aspect of the tenth example of the sixth common aspect, the method further includes grinding the solid in the presence of glycerin at 0.005%-0.040% based on dry weight of solid being ground (e.g., .g., 0.010%4040%, 0.015%-0.040%, 0.020%-0.040%, 0.025%-0.040%, 0.030%-0.040%; 0.005%-0.0.035%, 0.005%-0.030%, 0.005%-0.025%, 0.005%-0.020%, 0.005%-0.015%, 0.005%-0.010%).


In a third aspect of the tenth example of the sixth common aspect, the method further includes grinding the solid in the presence of triisopropanolamine (“TIPA”) and the ADA tri-isobutyl phosphate (TiBP), wherein TIPA is present at 0.0050%—0.020% based on dry weight of solid being ground (e.g., 0.010%-0.020%, 0.015%-0.020%; 0.005%-0.015%, 0.005%-0.010%), and the TiBP is present at 0.0001% -0.002% based on dry weight of solid being ground (e.g., 0.0005%-0.002%, 0.0010%-0.002%, 0.0015%-0.002%, 0.0001%-0.0015%, 0.0001%-0.0010%, 0.0001%-0.0005%).


In a fourth aspect of the tenth example of the sixth common aspect, the method further includes grinding the solid in the presence of diethanolpropanolamine (“DEIPA”) and the ADA tri-isobutyl phosphate (TiBP), wherein DEIPA is present at 0.0050%—0.020% based on dry weight of solid being ground (e.g., 0.010%-0.020%, 0.015%-0.020%; 0.005%-0.015%, 0.005%-0.010%), and the TiBP is present at 0.0001% -0.002% based on dry weight of solid being ground (e.g., 0.0005%-0.002%, 0.0010%-0.002%, 0.0015%-0.002%, 0.0001%-0.0015%, 0.0001%-0.0010%, 0.0001%-0.0005%).


In a fifth aspect of the tenth example of the sixth common aspect, the method further includes grinding the solid in the presence of ethanoldiisopropanolamine (“EDIPA”) and the ADA tri-isobutyl phosphate (TiBP), wherein EDIPA is present at 0.0050%—0.020% based on dry weight of solid being ground (e.g., 0.010%-0.020%, 0.015%-0.020%; 0.005%-0.015%, 0.005%-0.010%), and the TiBP is present at 0.0001% -0.002% based on dry weight of solid being ground (e.g., 0.0005%-0.002%, 0.0010%-0.002%, 0.0015%4002%, 0.0001%-0.0015%, 0.0001%-0.0010%, 0.0001%-0.0005%).


In an eleventh example of the sixth common aspect, the grinding stabilizing additive comprises tripropylene glycol (TPG) in the amount of 0.0025%-0.030% based on dry weight of solid being ground (e.g., 0.005%-0.030%, 0.010%4030%, 0.015%-0.030%, 0.020%-0.030%, 0.025%-0.30%; 0.0025%-0.025%, 0.0025%-0.020%, 0.0025%-0.015%, 0.0025%-0.010%, 0.0025%-0.005%), the method further comprising grinding the solid in the presence of the ADA tri-isobutyl phosphate (TiBP), wherein TiBP is present at 0.0001% -0.002% based on dry weight of solid being ground (e.g., 0.0005%4002%, 0.0010%-0.002%, 0.0015%-0.002%, 0.0001%-0.0015%, 0.0001%-0.0010%, 0.0001%-0.0005%).


In a first aspect of the eleventh example of the sixth common aspect, the method further includes grinding the solid in the presence of triethanolamine (“TEA”), wherein TEA is present at 0.0025%—0.020% based on dry weight of solid being ground (e.g., 0.005%-0.020%, 0.010%-0.020%, 0.015%-0.020%; 0.0025%-0.015%, 0.0025%-0.010%, 0.0025%-0.005%).


In a second aspect of the eleventh example of the sixth common aspect, the method further includes grinding the solid in the presence of triisopropanolamine (“TIPA”), wherein TIPA is present at 0.0025%—0.020% based on dry weight of solid being ground (e.g., 0.010%-0.020%, 0.015%-0.020%; 0.005%-0.015%, 0.005%-0.010%).


In a third aspect of the eleventh example of the sixth common aspect, the method further includes grinding the solid in the presence of diethanolpropanolamine (“DEIPA”), wherein DEIPA is present at 0.0025%—0.020% based on dry weight of solid being ground (e.g., 0.010%-0.020%, 0.015%-0.020%; 0.005%-0.015%, 0.005%-0.010%).


In a fourth aspect of the eleventh example of the sixth common aspect, the method further includes grinding the solid in the presence of ethanoldiisopropanolamine (“EDIPA”), wherein EDIPA is present at 0.0025%—0.020% based on dry weight of solid being ground (e.g., 0.010%-0.020%, 0.015%-0.020%; 0.005%-0.015%, 0.005%-0.010%).


In a 17th example embodiment, the present invention is a cement composition prepared by the method of any of the forgoing aspects of the 15th and 16th example embodiments.


In an 18th example embodiment, the present invention is a cement composition, comprising ground solid particles and a grinding stabilizing additive, wherein the grinding stabilizing additive comprises: (i) an alkanol amino acid compound or a disodium or dipotassium salt thereof having the structural formula:




embedded image




    • wherein R1 is (C1-C4)alkyl-OH; and R2 and R3, each independently, is (C0-C3)alkyl-COOR*, wherein R* is H, Na+, K+, or ½ Ca++; and (ii) a glycol; or a mixture of (i) and (ii); wherein the pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%.





In a nineteenth example embodiment, the present invention is an additive composition for grinding a cement clinker in a Vertical Roll Mill (VRM), comprising a mixture of ethanol diglycine (EDG) and tripropylene glycol (TPG).


In a first aspect of the 19th example embodiment, EDG and TPG are present in the mixture in a weight ratio of EDG:TPG of 10:90 to 90:10. For example, EDG:TPG weight ratio can be 15:85, 20:80, 25:75, 30:70, 35:65, 40:40, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20, or 85:15.


In a second aspect of the 19th example embodiment, the additive composition for grinding a cement clinker in a VRM can further include an air-detraining agent (ADA)/defoamer. An example of an ADA is tri-isobutyl phosphate (TiBP). The ADA, for example, TiBP, can be present in the mixture in the amount of 0.5% to 5% by weight of TPG. For example, TiBP can be present in the mixture in the amount of 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, or 4.5% by weight of TPG.


In a twentieth example embodiment, the present invention is an additive composition for grinding a cement clinker in a Vertical Roll Mill (VRM), comprising a mixture of tripropylene glycol (TPG) and tri-isobutyl phosphate (TiBP).


In various aspects of the 20th example embodiment, the additive composition can further include any one or more of the following additional components: triisopropanolamine (“TIPA”), triethanolamine (“TEA”), diethanolpropanolamine (“DEIPA”), and ethanol diglycine (EDG) (for example, monosodium EDG or disodium EDG).


In one aspect of the 20th example embodiment, the additive composition further include at least one additional component chosen from: (A) a glycol chosen from diethylene glycol, polyethylene glycol, monopropylene glycol, dipropylene glycol, tetrapropylene glycol, or a mixture thereof; (B) glycerin; (C) a tertiary alkanolamine chosen from triethanolamine (“TEA”), triisopropanolamine (“TIPA”), diethanolpropanolamine (“DEIPA”), ethanoldiisopropanolamine (“EDIPA”), tetrahydroxy ethyl ethylenediamine (“THEED”), an acetate salt of any of the foregoing, or a mixture of any of the foregoing; (D) a set retarding agent chosen from gluconate salt, a molasses, sucrose, or a corn syrup; (E) a set accelerating agent chosen from a thiocyanate salt, chloride salt, or mixture thereof; and (F) a dispersing agent chosen from sodium acetate, potassium acetate, or mixture thereof


In a twenty-first example embodiment, the present invention is an additive composition for grinding a cement clinker in a Vertical Roll Mill (VRM), comprising a mixture of ethanol diglycine (EDG) and glycerin.


In a twenty-second example embodiment, the present invention is an additive composition for grinding a cement clinker in a Vertical Roll Mill (VRM), comprising a mixture of (i) ethanol diglycine (EDG), (ii) tri-isobutyl phosphate (TiBP), and (iii) one or more tertiary alkanolamine or an acetate salt thereof. In one aspect of the 22nd example embodiment, the tertiary alkanolamine is chosen from triethanolamine (“TEA”), triisopropanolamine (“TIPA”), diethanolpropanolamine (“DEIPA”), ethanoldiisopropanolamine (“EDIPA”), and tetrahydroxyethyl ethylenediamine (“THEED”). In another aspect of the 22nd example embodiment, an acetate salt of any of the foregoing tertiary alkanolamines is used, or a mixture of the acetate salts of any of the foregoing tertiary alkanolamines.


EXEMPLIFICATION
Example 1: Ethanoldiglycine Disodium Salt (Na2-EDG) Enhances Early Strength of Cements

Table 1, presented in FIG. 4A and FIG. 4B, describes cement samples tested in this example.


A variety of cements (i.e. cementitious material) have been tested in mortars (i.e. the cement composition), and the impact of 0.02% Nae-EDG by weight of the cementitious material on compressive strength has been assessed. The content of the total crystalline phases has been determined by quantitative X-ray diffraction using Rietveld refinement method. The content of sulfur element, expressed as SO3, was determined by X-ray fluorescence (XRF). The total alkali content or the content of Na2O equivalent in cement is determined as follows, in weight percent: % Na2O equivalent=% Na2O+0.658 * % K2O, where the values of % Na2O and % K2O in cement are determined using XRF. The description of the tested cements and the results of the compressive strength measurements are provided in Table 1, denoted alphabetically as Cement A to W(see FIGS. 4A and 4B).


Mortars were prepared following the EN 196-1 testing protocol, where 450 grams of cement are mixed with 225 grams of water and 1350 grams of a graded sand. Additives were added to the water before mortar mixing. The mortar prepared this way was used to cast 40×40×160 mm prismatic specimens that were submitted to compression until rupture after 1 day of curing in a moist room at 20.6° C. and more than 95% relative humidity. The rupture load was converted to compressive strength (in MPa).


The results of this experiment indicate that Na2-EDG can increase the strength of cements.


To visualize the results, the value of percent early strength increase as a function of the C3A content was plotted. FIG. 1 represents such a plot for Na2-EDG added at 0.02% by weight of the cementitious material.


Example 2: Na2-EDG Enhances Early Strength

The performance of Na2-EDG was compared to that of other additives—Na-glycine, sarcosine, and Nae-EDTA—using Cement A.


The structures of these additives are reproduced below:




embedded image


The mortars were prepared using Cement A as described above in Example 1. The additives (Sarcosine, glycine, sodium salt, EDTA, disodium salt, and EDG disodium salt) were added in varying amounts expressed as parts-per-million of the carboxylic groups (COO—), and the compressive strength of samples at Day 1 was measured. The results, presented as a plot of Day 1 compressive strength as a function of COO— content, are shown in FIG. 2A.



FIG. 2A shows that EDG is a superior enhancer of early strength when compared to the other additives.


The performance of EDG was further compared to that of bicine and TEA using Cement B. The structural formulas of bicine and TEA are reproduced below:




embedded image


Mortars were prepared using Cement B as described above. The mortar mixes were used to prepare 40×40×160 mm prismatic specimens that were tested under compression load until rupture after 24 hours of storage at 20.6° C. and greater than 95% relative humidity.



FIG. 2B is a plot of Day 1 compressive strength (in MPa) of Cement B as a function of the content of the additive (in weight percent). FIG. 2B shows that 0.005%, 0.01% and 0.02% Na2-EDG increased the 1-day strength of the cement by 0.8 MPa, 1.6 MPa, and 2.0 MPa, respectively. Bicine, added at 0.002% to 0.0075%, enhanced 1 day strength by 1.2 to 2.1 MPa, respectively. TEA added at 0.0075% and 0.015% enhanced 1 day strength by 1.9 MPa and 1.5 MPa, respectively. It is surprising that EDG had similar to superior performance to bicine and TEA, even though it contains two carboxyl groups.


Example 3: Na2-EDG Improves Grinding Efficiency of Cements

The effect of Na2-EDG additive on grinding efficiency of cementitious material was investigated in a laboratory scale ball mill. For this investigation, 3325 grams of a commercial clinker were ground in with 63.5 grams gypsum and 39.4 grams basanite (calcium sulfate hemi-hydrate) at 88-95° C. The grindings were periodically interrupted to evaluate the fineness of the cements using the Blaine air permeability apparatus, which allows assessing the specific surface area (SSA) of powders. Table 2, below, shows the Blaine SSA values for samples containing either no chemical additive or for samples containing 0.02% Na2-EDG (% weight of solids on cement). In this experiment, 0.05% water (% of cement weight) was added to the control cementitious material (no chemical additive) to account for the presence of water in the EDG additive.









TABLE 2







Blaine specific surface area values of laboratory ground cements











Dosage
Blaine SSA (cm2/g) for each grinding time (minutes)
















Additive
(% s/c)
120
150
210
250
295
325
347


















None
0.00
2173
n/a
2474
n/a
2838
n/a
2958


EDG
0.02
2333
2562
2799
2893
3017
3050
n/a





n/a: result not available






The data in Table 2 demonstrates that addition of Na2-EDG increased the specific surface area of the ground material at all grinding times comparing to the sample with no chemical additives.


The particle size distributions (PSD) of the sample of the cementitious material to which 0.02% by weight Na2-EDG was added, ground for 325 minutes, and of the sample containing no chemical additives, ground for 347 minutes, was determined using laser diffraction. This technique measures the particle size distribution by measuring the angular variation in intensity of light scattered as a laser beam passes through the dispersed powders. The data is presented in FIG. 3, which is a plot of “percent volume fraction” as a function of particle size in micrometers (i.e. the curve indicates the percent of the particles by volume at a given size in the sample). The tests were performed in a Malvem Mastersize 3000 particle size analyzer coupled with an Aero S dry dispersion unit in 1-3 grams cement samples.


It is seen that, even though ground for less time than the sample with no chemical admixtures, the curve representing the EDG sample is slightly shifted to lower particle sizes, indicating a finer distribution as compared to the sample with no chemical additives.


Example 4: Formulations With EDG Provide Higher Early Strength

Table 3 shows the impact of Na2-EDG and combinations of Na2-EDG with sodium thiocyanate, sodium gluconate, and/or diethylene glycol on the early strength of mortars prepared according to the protocol described in Example 1. Cement I was used to prepare the mortars. Table 3 shows that the combination of Na2-EDG with other components allow a further increase of 1-day strength.














TABLE 3






EDG
NaSCN
Na-gluconate
DEG
1d %



(% s/c)
(% s/c)
(% s/c)
(% s/c)
blank





















0
0
0
0
100.0%



0.01
0
0
0
106.3%



0.02
0
0
0
108.4%



0.01
0.02
0.0075
0
111.3%



0.02
0.04
0
0
113.2%



0.02
0.04
0.015
0
122.1%



0.01
0
0
0.03
103.6%



0.02
0
0.015
0
103.4%



0.0077
0.02
0.0039
0.015
118.8%



0.0116
0.03
0.058
0.0225
124.8%



0.0155
0.04
0.078
0.03
126.5%









Table 4 shows the impact of Na2-EDG and combinations with calcium chloride on the 1-day strength of mortars prepared according to the same protocol, using Cement E. The combination of Na2-EDG with calcium chloride allows a further increase of 1-day compressive strength.











TABLE 4





EDG
CaCl2
1d %


(% s/c)
(% s/c)
blank

















0
0
100.0%


0
0.03
108.8%


0
0.06
122.8%


0.01
0
112.7%


0.01
0.03
123.2%


0.02
0
118.2%


0.02
0.06
127.6%









Example 5: Addition of EDG Causes No Iron Staining

A test to evaluate iron staining of mortars was conducted.


Cement W was weighed (259 g) and deposited in a plastic cylinder; sand was then added (1350 g) and the cylinder was manually and vigorously shaken for 30 seconds to allow the two components to blend. For mixes requiring the use of EDG, previously prepared mix water solutions were added to the Hobart mortar mixing bowl at this time; otherwise, the necessary amount of water (192 g) was weighed and added to the bowl. All samples had the same water-to-cement weight ratio of 0.74. The cement and sand blend was poured onto the water (or additive-containing water) in the bowl. The mixer was turned on and mixed at its lowest speed for 30 seconds, and then it was switched to its second lowest speed and allowed to mix for an additional 30 seconds. After this time, the mixer was stopped, the paddle and bowl were removed, and the mortar was stirred slightly in two revolutions with a spoon before being deposited (approximately 400 g) in a pre-labeled plastic bag. This bag was closed in such a way that all possible air was squished out. The bag was transported to an environmentally controlled room (54% relative humidity, 24° C.) with minimal traffic and allowed to sit for 7 days. After this time, a razor was used to make a slit in the bag (approximately 2 cm) near each corner, and the bag was allowed to sit for an additional 21 days in the controlled environment. At the end of this aging period, the region where the slits were cut were visually analyzed and photographed to document the findings related to iron staining. Yellow staining is defined as a yellow to orange shade to the mortar surface in the immediate vicinity of the cut slits. Samples containing no chemical admixtures (reference) and 0.02% Na2-EDG (% cement weight) were prepared according to the above protocol, and no difference in color between the two samples were noticed, indicating that EDG does not cause yellow staining in finished products.


Example 6: Process for Making New Additive Compositions

This example describes the synthesis of ethylene-diglycine (EDG) by reacting mono-ethanolamine (MEA) with monochloracetic acid (MCA) in the presence of a sodium hydroxide (NaOH) and heat, to generate EDG and sodium chloride (NaCl).


The reaction products reported in Examples 6 through 18 included NaCl, a known strength enhancer, at 55-95% by weight of Na2-EDG. The content of NaCl can be reduced to 0% by purification.


The reaction products reported in Examples 6 through 18 included impurities (i.e. compounds other than EDG and NaCl) at up to 12% of sample weight. The content of solid impurities was up to 40% of total solids in the reaction product mixture. The content of impurities can be reduced by optimizing the manufacturing process.


The synthesis was conducted by the following procedure: 10.91 g ethanolamine (0.175 moles), 56.01 g of 50% NaOH solution (0.700 moles) and 100 g of distilled water were charged into a 250 ml four neck round bottom flask. The flask was equipped with a condenser, a mechanical stirrer and a dropping funnel. Chloroacetic acid 33.08 g (0.350 moles) was dissolved in 24 grams of water and charged into the dropping funnel. Chloroacetic acid was slowly added to the flask over a period of 7 minutes. The reaction was then heated to a temperature of 90 degrees centigrade and held at that temperature for 5 hours. Additional 28.06 grams of 50% NaOH solution was added to complete the conversion of chloroacetic acid over the course of the reaction. The pH of the final product was 12.6.


Table 5 shows the early strengths (at Day 1) of mortars prepared with cements E, F, and I, described in FIG. 4A and FIG. 4B, in the presence of the informed percentages (% weight of solids and % weight of Na2-EDG on cement weight or % s/c) of a commercial Na2-EDG-based product manufactured by the process that involves monoethanolamine, formaldehyde, and sodium cyanide starting materials (named ‘commercial’) and of a product manufactured in the laboratory by combining MEA with MCA in the presence of NaOH. Table 5 shows the similar performance of the Example 6 sample compared to the ‘commercial’ sample.













TABLE 5







Dosage of






solid






reaction






products
Na2-EDG



Cement
Source of EDG
(% s/c)
(% s/c)
1d % blank



















E

0

100.0%


E
Commercial
0.005
0.005
106.0%


E
Commercial
0.01
0.01
119.6%


E
Commercial
0.02
0.02
107.8%


E
Example 6
0.009
0.0059
112.1%


E
Example 6
0.017
0.0118
119.0%


E
Example 6
0.035
0.0236
117.0%


F

0
0
100.0%


F
Commercial
0.005
0.005
115.0%


F
Commercial
0.01
0.01
117.8%


F
Commercial
0.02
0.02
118.2%


F
Example 6
0.007
0.0044
113.6%


F
Example 6
0.015
0.0088
120.0%


F
Example 6
0.029
0.0177
126.1%


I

0
0
100.0%


I
Commercial
0.005
0.005
105.3%


I
Commercial
0.01
0.01
107.7%


I
Commercial
0.02
0.02
107.3%


I
Example 6
0.007
0.0044
114.4%


I
Example 6
0.015
0.0088
109.8%


I
Example 6
0.029
0.0177
110.2%









Table 6 shows the characterization of these two sources of EDG (‘commercial’ or Sample A, and ‘Example 6’ or Sample B). Total solids was calculated by a standard oven method by determining the weight difference after drying the sample at 125±1° C. for 25±1 minutes, run in triplicates. EDG material was tested for its chloride content by Ion Chromatography with the column for anions analysis with autosuppressor and electrochemical detection (Dionex DX-500).


Structure analysis of EDG material was performed by H1 liquid-state Nuclear Magnetic Resonance (NMR) Spectroscopy (Varian Unity INOVA 400 High resolution). FIG. 5 shows the NMR spectra of the two samples. NMR assignments (in ppm) are as follows: 2.71 (A), 2.74 (B) —NCH2-groups; 3.21 (A), 3.24 (B) Glycine-CH2-groups; 3.63 (A), 3.62 (B) —OCH2-groups.


The small differences in chemical shift between the two samples are due to differences in pH. Both samples show the major component is Na2-EDG. Minor components are disodium ethanol monoglycinate and unidentified components.












TABLE 6







Commercial EDG
Example 6 EDG



Characteristic
or Sample A
or Sample B








Total solids (%)
30.41 ± 0.07
27.56 ± 0.09



pH
12.97
12.60



Chloride (% of sample)
1.006
5.230









Examples 7-11—Synthesis of Na2-EDG

The MCA-MEA adducts were prepared by the same process as described in Example 6. Table 7 shows the amounts of MCA, MEA and alkali used for the reactions. The final products pH values are also shown.













TABLE 7






Chloroacetic






acid
Ethanolamine

Product



(MCA)
(MEA)
Alkali addition
pH



















Example 7
0.225 mol
0.113 mol
Na2CO3 powder
 9.8


(19553-186)
(21.3 grams)
(7.02 grams)
0.676 mol






(71.67 grams)



Example 8
0.350 mol
0.175 mol
50% NaOH
12.9


(19553-188)
(33.08 grams)
(10.91 grams)
solution






1.61 mol NaOH






(90.01 grams






solution)*



Example 9
0.350 mol
0.175 mol
50% NaOH
10.8


(19553-189)
(33.08 grams)
(10.91 grams)
solution






0.7 mol NaOH






(56.01 grams






solution)



Example 10
0.350 mol
0.175 mol
NaOH pellet
 3.3


(19553-190)
(33.08 grams)
(10.91 grams)
0.35 mol NaOH






(14.00 grams






solution)



Example 11
0.350 mol
0.183 mol
NaOH pellet
NA


(19553-191)
(33.08 grams)
(11.43 grams)
0.7 mol NaOH






(28.01 grams






solution)





*0.7 mol (56.01 grams of 50% solution) of NaOH is added first, then 34 grams of 50% NaOH solution was added during the course of the reaction.


NA: not available






Example 12-18—Synthesis and Performance of Na2-EDG

The MCA-MEA adducts shown in Table 8 were prepared by similar process as described in Example 6 but under different temperatures and reaction times. Total solids was calculated by a standard oven as described in Example 6, and EDG content was determined by Ion Chromatography (IC). Set up for IC is Dionex DX-500 with column for anions analysis with auto-suppressor. EDG standard (acid form) at different concentrations was run to acquire calibration curve and, based on that, the amount of EDG (acid form) in the sample was calculated and recalculated to sodium salt form.


Table 9 shows the strength performance at 1 day of age of Examples 12-18 when tested in EN-196 mortars prepared with Cement F. Examples 12-18 show similar to superior performance compared to the ‘commercial’ sample.















TABLE 8









Theoretical








Na2-EDG





Nominal Molar


Yield (mass

EDG Yield



Ratio
Reaction
Reaction
%, based on
Na2-EDG
(% of



(MCA:MEA:NaOH)
T (° C.)
time (h)
reactor charges)
(%)
theoretical)





















Example
2:1:4
60
1
19.0%
14.60
77


12








0060-27








Example
2:1:6
60
0.5
15.5%
10.38
67


13








0060-33








Example
2:1:6
50
1
15.5%
12.34
80


14








0060-39








Example
2:1:6
40
4
15.5%
9.87
64


15








0060-41








Example
2:1:4
40
4
19.0%
12.49
66


16








0060-43








Example
2:1:4
50
2
16.6%
14.70
89


17








0060-45








Example
2:1:4
25
n/a
19.0%
15.42
81


18








0060-49



















TABLE 9







Dosage of





solid





reaction





products
1d %



Source of EDG
(% s/c)
blank




















0
100.00% 



Commercial
0.01
114.9%



Commercial
0.02
116.3%



Example 12
0.01
115.6%



Example 12
0.02
124.4%



Example 13
0.01
113.8%



Example 13
0.02
118.5%



Example 14
0.01
113.6%



Example 14
0.02
116.7%



Example 15
0.01
115.6%



Example 15
0.02
119.4%



Example 16
0.01
125.0%



Example 16
0.02
121.7%



Example 17
0.01
113.9%



Example 17
0.02
118.2%



Example 18
0.01
127.3%



Example 18
0.02
126.9%









Example 19: Formulation With EDG and Diethanolisopropanolamine (DEIPA) Provides Higher Early Strength than Formulations With Just One of These Amines

A combination of EDG, diethanolisopropanolamine (DEIPA), and calcium chloride was evaluated for its ability to enhance either early strength, or late strength, or both of a cement. The Example 19 Cement was used to prepare the mortars. The results of the QXRD and XRF analyses of the Example 19 cement are presented below in Tables 10 and 11.









TABLE 10







QXRD analysis of Example 19 Cement










Phase determined
%



by QXRD
weight













Alite
66.2



Belite
9.9



C4AF
11.0



C3A
4.3



CaO
0.1



MgO
1.0



Ca(OH)2
0.6



Calcite
0.9



Gypsum
2.6



Hemihydrate
0.0



Anhydrite
2.5
















TABLE 11







XRF analysis of Example 19 Cement










Analyte determined by XRF
Weight %






Total SO3
2.71



Total Alkali
0.47









The mortars were prepared according to the protocol described in Example 1 using the Example 19 Cement, and the results of strength measurements were expressed as a change in MPa compared to a reference cement (DMPa). The results are presented in Table 12.









TABLE 12







Strength of Example 19 Cement


















CaCl2
DMPa
DMPa
DMPa




Run
EDG ppm
DEIPA ppm
ppm
1 day
3 day
7 day
Total DMPa
Avg DMPa


















1
118
0
293
0.6
1
0.7
2.3
0.76


2
0
100
293
1.2
0.5
−0.7
1.0
0.33


3
50
58
293
1.0
1.0
1.5
3.5
1.17









Runs 1 and 2 reported in Table 12 were done with either EDG or DEIPA alone, and resulted in the average strength increase (“Avg DMPa”) of 0.76 and 0.33 MPa, respectively. Run 3 was done using a blend of EDG and DEIPA at similar total dosage. The average strength increase was 1.17 MPa.


Example 20: Effect of Selected Alkanol Amino Acid Grinding Stabilizing Additives, Selected Glycols and Selected Alkanolamines on Classifier Performance on Ground Solids

Approximately 3.3 kg of commercial cement clinker was combined with 175 g of gypsum and ground in a laboratory-scale ball mill for approximately 3 hours to create a laboratory test cement containing no chemical additives. This cement was then stored in vacuum-packed containers until testing. On the day of testing, 220 g of cement was placed into a cylindrical plastic bottle along with several small metal balls. The chemical to be tested was first diluted in 0.4 g of water and then added to the plastic bottle at the desired dosage. The bottle was tightly sealed and the rotated on its side for 10 minutes to thoroughly distribute the chemical onto the cement powder. To create a blank cement sample with no chemical, 0.4 g of pure water was added and the same procedure was followed.


To perform a classifier test, an Alpine 100 MZR zigzag classifier was used. The rotation speed of the classifier was set to 5500 rpm give a cutoff particle size of 8 μm. This speed was maintained for all tests. 200 g of cement powder was then run through the classifier, and the coarse and fine fractions were collected and weighed. A feed sample that was not run through the classifier was also kept. Two repeats were conducted for each test.


After the classifier test, the feed sample and the coarse fraction were analyzed using a Malvern MasterSizer laser particle size analyzer. Based on the particle size distributions, the Tromp curve for the test was calculated. The Tromp curve is a plot, or dataset, representing the fractional amount of material in each size range that is returned into the coarse fraction of the classifier. In this example, an ideal Tromp curve would be 100% for all sizes above 8 μm, and 0% for all sizes below 8 μm. In actual tests, such behavior is not observed. In particular, some very fine particles are always returned into the coarse fraction. To quantify this, the area of the Tromp tail was measured from a particle size of 0.5 to 3.0 μm. The particle size of 3.0 μm has the lowest percent classified to the coarse fraction, a value known as the by-pass. Table 13 lists the Tromp tail areas for the blank and for a few different additives including EDG. Note that higher Tromp tail areas indicate more fines are present in the coarse material, and thus less efficient classifier performance.









TABLE 13







Classifier Test Results.











Chemical
Dosage
Tromp area






TPG (pure grade)
200 ppm
53.5



Dow Propylene Glycol Highers
200 ppm
57.3



Triisopropanolamine (TIPA)
200 ppm
57.9



Glycerol
200 ppm
58.2



DOW TPG Bottoms
200 ppm
58.3



Diethylene glycol (DEG)
200 ppm
59.2



Diethanolisopropanolamine
200 ppm
59.6



(DEIPA)





Acetic acid
200 ppm
63.3



Triethanolamine (TEA)
200 ppm
64.0



EDG
200 ppm
69.3



Blank
No chemical
70.9









From Table 13 it can be seen that chemicals such as TIPA, DEIPA, and DEG, which are well-known and widely used grinding aids, give better classifier performance. Other glycols such as tripropylene glycol (TPG) and commercially available blends of TPG and higher order glycols (Dow Highers and Dow Bottoms) also give improved classifier performance. The characterization of the TPG Bottoms and Propylene Glycol Highers are described below in Example 22. On the other hand, EDG gives very similar performance as the blank. This indicates that EDG does not improve classifier performance, nor does it make it worse.


Example 21: Alkanol Amino Acid Grinding Stabilizing Additives and Various Propylene Glycol Additives Increase Surface Area of the Ground Solids

The same steps for preparing cement powder, applying a chemical additive, and performing a classifier test were conducted as described above in Example 20. In this case, the coarse fraction returned from the classifier was tested using a die-crush test. A cylindrical steel die with an internal diameter of 32 mm was partially assembled by inserting the bottom piston. Then 25 g of material was placed into the die, and the top piston was put into place. The assembled die was placed into a hydraulic compression machine and a compressive force of 20,000 lb was applied for 30 seconds. This force corresponds to an average pressure of 111 MPa applied to the sample, which is similar to the maximum pressure applied by the roller of a VRM.


The sample was removed from the die, now compressed into a disk shaped compact. The disk was placed into a plastic bag and broken up using finger pressure until no agglomerated particles could be felt. The powder from the die-crush test was then analyzed using a Malvern MasterSizer laser particle size analyzer, along with a sample of the same material that was not subjected to the die-crush test. In order to quantify the amount of particle comminution that occurred in the test, the surface area of the powder calculated from the PSD test by the instrument software was used. Table 14 lists the change in surface area caused by the die crush test for various chemicals. Larger surface area change indicates more particle comminution, which is beneficial for grinding.









TABLE 14







Results of die-crush testing.













Surface area



Chemical
Dosage
increase






EDG
200 ppm
14.9%



TPG (pure grade)
200 ppm
14.3%



DOW TPG Bottoms
200 ppm
12.9%



Triisopropanolamine (TIPA)
200 ppm
12.5%



Dow Propylene Glycol Highers
200 ppm
12.4%



Glycerol
200 ppm
12.4%



Diethanolisopropanolamine
200 ppm
11.3%



(DEIPA)





Blank
No chemical
11.1%



Diethylene glycol (DEG)
200 ppm
11.1%



Triethanolamine (TEA)
200 ppm
10.0%



Acetic acid
200 ppm
 9.6%









Surprisingly, the EDG performs the best in the die-crush test of all the additives tested, in that the surface area is increased by the greatest percentage. Pure TPG also performed very well in this test. Taken together, the results shown in Examples 20 and 21 indicate that EDG may improve the grinding performance by a different mechanism than other chemicals that are currently used as grinding aids. For example, diethylene glycol (DEG) is a widely used and effective grinding aid for cement clinker. DEG improves the classifier efficiency of the cement powder, resulting in less fine material returned in the coarse material (Table 13). DEG also improves the grinding efficiency of the powder (Table 14). This is not surprising because it is well known that the presence of fine particles interferes with the particle comminution process, so it follows that removal of fine particles will improve the die-crush test results. This mechanism would also apply to other additives including TIPA and commercial blended glycols.


On the other hand, this mechanism does not apply to EDG. As described above in Example 20, the EDG sample was no more efficient at removing fines during the classifier test than was the blank, yet, as described in Example 21, it improved the die-crush performance as compared to the blank and as compared to other well-known grinding additives such as DEG. Therefore, this indicates that EDG improves the crushing performance by a different mechanism. The chemicals being tested are known to adsorb onto the surface of the particles in a thin layer, which would have an effect on how easy or difficult it is for particles to rearrange and slide past each other under a load. A powder that rearranges easily may give worse crushing performance, because the particles are able to rearrange into a more stable configuration that distributes the load among a greater number of particles, resulting in less particle fracture. On the other hand, if particles have a difficult time rearranging then a smaller number of particles will support the load, resulting in high stresses and fracture in those particles. The results shown in Examples 20 and 21 suggest that EDG may improve the crushing behavior by restricting particle rearrangement.


Example 22: Analysis of TPG Bottoms and Propylene Glycol Highers

The TPG Bottoms and Propylene Glycol Highers samples were characterized using gas chromatography mass spectroscopy (GC/MS). Specifically, an Angilent 7890A+5975C Inert MSD GC/MS with a 30 m×250 μm×0.25 μm column, 280° C. front inlet temperature, and 50:1 split. The oven was kept at 35° C. for 10min and then heated up to 200° C. at a rate of 10° C/min, and then kept at 200° C. for 10min. 14 of each sample was injected into the column. The carrier gas was helium set to 1 ml/min.


The results from the GC/MS analysis showed three peaks at retention times of 15.4, 19.4, and 24.5 min. Using propylene glycol, dipropylene glycol and tripropylene glycol standards, the peak at 15.4 was identified as tripropylene glycol. The peaks at 19.4 and 24.5 also showed consistent fragment peaks similar to those seen from the tripropylene glycol, but with additional higher molecular weight fragments.


Table 15 summarizes the results of the TPG Bottoms and Propylene Glycol Highers analysis.









TABLE 15







Composition of TBP Bottoms and Propylene Glycol Highers













Higher
Higher





Propylene
Propylene





Glycol
Glycol




TPG
(19.4 min)
(24.5 min)
Total














TPG Bottoms
0.5
92.7
6.7
100


Propylene Glycol
29.4
65.5
7.6
102.4


Highers













Example 23: Tripropylene Glycol Additive Reduces Vibrations of the VRM Permitting Reduction in Water Spray Level

A field trial was conducted at a commercial VRM manufacturing a blended cement consisting of 74% clinker, 22% natural pozzolan, and 4% gypsum. At the start of the one-day experiment the plant's normal commercial grinding additive was used, which contains two grinding aids, DEIPA and glycerine. The additive dosage was supplying 115 g/ton of DEIPA and 48 g/ton of glycerine, where the units are in grams of additive per ton of raw feed to the mill. At this dosage, the mill was operating in a stable manner with low vibrations with a production rate of 82 tons/hr and a water spray level of 3.8%, expressed as mass of water per mass of raw feed.


The additive was then changed to an experimental additive containing only DEIPA, at a dosage of 150 g/ton of DEIPA. In previous trials, DEIPA has been observed to be a highly effective additive for stabilizing a VRM to enable greater production rate and lower water spray. After switching to this additive, the production rate of the mill could be increased to 88 tons/h and the water spray could be decreased to 2.6%, while maintaining stable mill operation with low vibrations. These changes are an indication of the advantageous properties of DEIPA for VRM use.


After running the mill as described above for approximately 3 hours, the additive was changed to a second experimental additive containing only TPG, at a dosage of 75 g/ton (half the dosage of the DEIPA). The production rate and water spray levels were maintained at the same levels as with DEIPA (88 tons/h and 2.6%, respectively). The mill was run in this configuration for more than one hour, and the mill operation remained stable with low vibrations. Thus, in this experiment it was concluded that the TPG provided equivalent benefits as DEIPA while at half the dosage.













TABLE 16







Production
Water



Component 1
Component 2
Rate
Spray
Mill


(dose)
(dose)
(tons/hour)
(%)
operation



















DEIPA
Glycerine
82
3.8
Stable, low


(115 g/ton)
(48 g/ton)


vibrations


DEIPA

88
2.6
Stable, low


(150 g/ton)



vibrations


TPG

88
2.6
Stable, low


(75 g/ton)



vibrations









In general, with grinding aid additives there is a positive dosage response, such that greater dosages provide more stability to the mill, enabling more water reduction. Therefore, it is likely that at equal dosages, TPG could allow more water reduction than DEIPA.


Example 24: Tripropylene Glycol Additive Reduces VRM Vibration

A field trial was conducted at a commercial VRM manufacturing a blended cement consisting of 81% clinker, 13% limestone, and 6% gypsum. The experiments described in this example were performed on the same day. The mill was run initially for a period of 45 minutes with no grinding aid and 4.13% water spray. Grinding vibrations were higher than is optimal for mill operation. An experimental additive containing only TPG was then introduced, at a TPG concentration of 89 ppm. As a result, the grinding vibrations reduced to a lower and more optimal level (see Table 17). After 90 minutes, the dosage of TPG was increased to 177 ppm. This further stabilized the vibrations and allowed a small water spray reduction to 4.04%. After 90 minutes, the TPG was increased again to 228 ppm. This permitted a larger decrease in the water spray level to 3.73%, and also allowed the production rate of the mill to be increased by 3 tons per hour. After 80 minutes, the TPG was increased to 287 ppm, allowing the water spray to be reduced to 3.45% and the production to be increased by 2 tons per hour. These results are summarized in Table 18.









TABLE 17







Mill vibrations with no additive and after adding TPG












Vibration
Average



Dose
range
Vibration


Additive
(g/ton)
(mm/second)
(mm/second)













None
0
3.6-8.1
5.4


TPG
89
3.2-5.8
4.2
















TABLE 18







Summary of field trial experiments described in Example 24














Water




Dose
Feed Rate
Spray



Additive
(g/ton)
(tons/hour)
(%)
Mill operation














None
0
189
4.13
Stable, moderate






vibrations


TPG
89
190
4.11
Stable, low vibrations


TPG
177
190
4.04
Stable, low vibrations


TPG
228
193
3.73
Stable, low vibrations


TPG
287
195
3.45
Stable, low vibrations









Example 25: Ethanol Diglycine Additive Additive Reduces Vibrations of the VRM Permitting Reduction in Water Spray Level

A field trial was conducted at a commercial VRM manufacturing a blended cement consisting of 74% clinker, 22% natural pozzolan, and 4% gypsum. At the start of the one-day experiment two experimental additives were applied to the mill at the same location on the feed belt. One additive containing DEIPA at a dose of 170 g/ton and the other additive contained EDG at a dose of 110 g/ton, where the units are in grams of additive per ton of raw feed to the mill. At this point the mill was operating in a stable manner with acceptable vibrations, a production rate of 81 tons/hr, and a water spray level of 3.52%, expressed as mass of water per mass of raw feed.


After 90 minutes, the dosage of DEIPA was reduced to 130 ppm. There was no change in mill vibrations. After 30 minutes the water spray was reduced to 3.33%. After a further 45 minutes the DEIPA concentration was further reduced to 63 g/ton and the water spray reduced to 2.80% with no change in mill stability. Water was then increased to 3.40% as a precaution and the DEIPA was turned off, leaving only the EDG with a dose of 110 g/ton. The mill was run for 45 minutes at this dose, and during this time period the water spray was reduced to 2.91%.


The results of this experiment are summarized in Table 19.









TABLE 19







Summary of field trial experiment described in Example 25













Production
Water



Component 1
Component 2
Rate
Spray
Mill


(dose)
(dose)
(tons/hour)
(%)
operation














EDG
DEIPA
83
3.43
Stable, low


(110 g/ton)
(170 g/ton)


vibrations


EDG
DEIPA
81
3.02
Stable, low


(110 g/ton)
(130 g/ton)


vibrations


EDG
DEIPA
82
2.80
Stable, low


(110 g/ton)
(63 g/ton)


vibrations


EDG
0
79
2.91
Stable, low


(110 g/ton)



vibrations









The experiment illustrates that the EDG provides beneficial mill stability and allows for water spray reduction, comparing favorably with the effects of DEIPA under the conditions of this example.


Cement samples were collected at various times during the trial and then tested. Table 20 shows results for the pre-hydration level, initial set time, and final set time for cement samples corresponding to the conditions described in Table 19. The pre-hydration values are quite high, this is due in large part to the presence of a natural pozzolan that contains a high amount of moisture. Overall the trends show clearly that as the water spray is reduced the initial and final set times are decreased, which is a beneficial improvement to the cement.









TABLE 20







Results for cement samples


collected during Example 3 Field Trial.
















Initial
Final




Water
Pre-
Set
Set


Component 1
Component 2
Spray
hydration
Time
Time


(dose)
(dose)
(%)
Wk (%)
(min)
(min)





EDG
DEIPA
3.43
0.885
309
392


(110 g/ton)
(170 g/ton)






EDG
DEIPA
3.02
0.893
300
392


(110 g/ton)
(130 g/ton)






EDG
DEIPA
2.80
0.911
282
386


(110 g/ton)
(63 g/ton)






EDG
0
2.91
0.872
282
354


(110 g/ton)









Example 26: Production of a Low-Prehydration Cement by VRM

Pre-hydration is an undesirable reaction between cement and water that occurs before the cement is made into concrete. With pre-hydration, the water is generally present as a vapor that adsorbs in limited quantities onto the cement surface. Under these conditions, only the most soluble phases tend to dissolve and react. In cement, these are generally the free lime (CaO), the alkali sulfate phases, and aluminate phases.


Importantly, due to the limited availability of water, pre-hydration products tend to form as a compact layer around the cement particles. This layer tends to limit the rate of dissolution of the cement particles, delaying setting and strength development. The presence of the layer can also interfere with the action of chemical additives, rendering them less effective. Thus, it may be difficult to mitigate effects of pre-hydration by using accelerators or traditional quality improving chemicals. It is only necessary that a very small fraction (less than 1%) of the cement undergo pre-hydration for the negative effects to be manifested.


The most common adjustment made by plants in response to pre-hydration is to grind the cement to a higher fineness. This has well-known disadvantages, however, such as increased energy consumption, decreased throughput, and increased water demand for the finished cement. In summary, the pre-hydration of only a small fraction of the cement during finish grinding can have quite significant effects on the properties of the cement once it is used to make concrete or mortar, and mitigating these effects after the pre-hydration has occurred can be difficult.


Pre-hydration can be measured by heating a cement sample and measuring the weight loss within a defined temperature range. Pre-hydration is most accurately measured using a thermogravimetric analysis (TGA) instrument. FIG. 6 shows TGA data for three cement samples produced in a VRM on the same day with varying amounts of water spray, and therefore varying levels of pre-hydration.


Shown in FIG. 6 are both the derivative curve (rate of mass loss vs. temperature) and the cumulative curve (mass vs. temperature). Pre-hydration is quantified for the present purposes as the parameter Wk, defined as the percentage mass loss of a cement sample as it is heated, starting just after the gypsum finishes dehydrating (about 150° C.) and finishing just before the portlandite starts to decompose (about 375° C.).


This calculation of Wk is illustrated in FIG. 6. The plots shown in FIG. 6 represent thermogravimetric analysis of three cements produced in a VRM with different amounts of water spray. The peaks in the differential weight loss curves represent decomposition of specific phases: GYP-gypsum and plaster, SYN-syngenite, and CH-portlandite. Wk is the percent mass loss after gypsum decomposes but before portlandite starts decomposing. From the cumulative curves, it can be seen that Wk increases as the sprayed water increases. The Wk calculation for the 3.5% water sample is illustrated.


It should be noted that other temperature ranges can be used to measure pre-hydration. Naturally the resulting values will be different.


While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A method of manufacturing a cement composition, comprising: grinding a solid comprising a cement clinker in a vertical roller mill (VRM) under a water spray in the presence of a grinding stabilizing additive, thereby preparing the cement composition,wherein the grinding stabilizing additive comprises:(a) tripropylene glycol (TPG) in the amount of 0.001%-0.1% based on dry weight of the solid being ground, and(b) triethanolamine (TEA) in the amount of 0.0025%-0.020% based on dry weight of the solid being ground,wherein the pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%.
  • 2. The method of claim 1 wherein the Wk is equal to or less than 0.5%.
  • 3. The method of claim 1 wherein the Wk is equal to or less than 0.3%.
  • 4. The method of claim 1 wherein, in the grinding of the solid, the solid further comprises one or more of gypsum, a supplemental cementitious matter, or a mixture thereof
  • 5. The method of claim 1, wherein the grinding stabilizing additive further comprises ethanol diglycine (EDG) present in an amount of 0.001-0.04% based on dry weight of solid being ground.
  • 6. The method of claim 1 wherein the grinding of the solid further comprises grinding in the presence of at least one supplemental additive chosen from: (A) a grinding agent glycerin, in the amount of 0.001% to 0.1% based on dry weight of the solid being ground;(B) a set retarding agent chosen from a gluconate salt, a molasses, sucrose, or a corn syrup, in the amount of 0.001% to 0.06% based on dry weight of the solid being ground;(C) a set accelerating agent chosen from a thiocyanate salt, chloride salt, or mixture thereof, in the amount of 0.001% to 0.2% based on dry weight of the solid being ground;(D) dispersing agent chosen from sodium acetate, potassium acetate, or mixture thereof in the amount of 0.005% to 0.1% based on dry weight of the solid being ground; and(E) an air-detraining agent (ADA).
  • 7. The method of claim 1 wherein, in the grinding of the solid, the grinding additive further comprises sodium acetate, potassium acetate, or mixture thereof
  • 8. The method of claim 6, wherein the grinding of the solid further comprises grinding a supplemental cementitious material chosen from fly ash, granulated blast furnace slag, limestone, calcined clay, natural pozzolan, and artificial pozzolan.
  • 9. The method of claim 5 wherein the grinding of the solid further comprises grinding in the presence of a set retarding agent chosen from a gluconate salt, a molasses, sucrose, corn syrup, or mixture thereof.
  • 10. The method of claim 5 wherein the grinding of the solid further comprises grinding the solid in the presence of a set accelerating agent chosen from a thiocyanate salt, a chloride salt, or mixture thereof.
  • 11. The method of claim 1 wherein, in the grinding of the solid, the grinding stabilizing additive further comprises sodium gluconate,and a set accelerating agent chosen from sodium chloride and sodium thiocyanate.
  • 12. The method of claim 1, wherein, in the grinding of the solid, the grinding stabilizing additive further comprises tetrapropylene glycol.
  • 13. The method of claim 6 wherein, in the grinding of the solid, the tripropylene glycol (TPG) is present in the amount of 0.0025%-0.030% based on dry weight of the solid being ground, the method further comprising grinding the solid in the presence of air-detraining agent tri-isobutyl phosphate (TiBP), wherein TiBP is present at 0.0001% -0.002% based on dry weight of the solid being ground.
  • 14. The method of claim 1 wherein the water spray level is reduced by 5% to 80% compared to grinding without the grinding stabilizing additive.
  • 15. The method of claim 1 wherein the water spray level is reduced by at least 20% compared to grinding without the grinding stabilizing additive.
  • 16. A method of manufacturing a cement composition, comprising: grinding a solid comprising a cement clinker in a vertical roller mill (VRM) under a water spray in the presence of a grinding stabilizing additive, thereby preparing the cement composition;wherein the grinding stabilizing additive comprises:(a) tripropylene glycol (TPG) in the amount of 0.001%-0.1% based on dry weight of the solid being ground, and(b) triethanolamine (TEA) in the amount of 0.0025%—0.020% based on dry weight of the solid being ground,wherein the pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%, andwherein the water spray level is reduced by 5% to 80% compared to grinding without the grinding stabilizing additive.
  • 17. The method of claim 1 wherein the grinding stabilizing additive further comprises at least one of diethanolisopropanolamine (DEIPA), ethanoldiisopropanol amine (EDIPA), triisopropanolamine (TIPA), tetrahydroxyethyl ethylene diamine (THEED), or an acetate thereof.
  • 18. A method of manufacturing a cement composition, comprising: grinding a solid comprising a cement clinker in a vertical roller mill (VRM) under a water spray in the presence of a grinding stabilizing additive, thereby preparing the cement composition;wherein the grinding stabilizing additive comprises: tripropylene glycol (TPG); andtriethanolamine (TEA),wherein the pre-hydration level of the cement composition (Wk) is equal to or less than 1.5%.
Continuations (1)
Number Date Country
Parent 16959627 Jul 2020 US
Child 18526105 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2018/012632 Jan 2018 US
Child 16959627 US