The present disclosure relates to improvements in apparatus for grinding the hard metal inserts or working tips of rock drill bits (percussive or rotary), tunnel boring machine cutters (TBM) and raised bore machine cutters (RBM) and more specifically, but not exclusively, for grinding the cutting teeth or buttons of a rock drill bit or cutter.
In drilling operations the cutting teeth (buttons) on the drill bits or cutters become flattened (worn) after continued use. Regular maintenance of the drill bit or cutter by regrinding (sharpening) the buttons to restore them to substantially their original profile enhances the bit/cutter life, speeds up drilling and reduces drilling costs. Regrinding should be undertaken when the wear of the buttons is optimally one third to a maximum of one-half the button diameter.
Manufacturers have developed a range of different manual and semi-automatic grinding machines including hand held grinders, single arm and double arm grinding machines and grinders designed specifically for mounting on drill rigs, service vehicles or set up in the shop.
These types of machines utilize a grinding machine having a spindle or rotor rotated at high speed. A grinding cup or grinding pin, mounted on the end of the rotor or spindle, grinds the button and typically the face of the bit/cutter surrounding the base of the button to restore the button to substantially its original profile for effective drilling. In addition to the rotation of the grinding cup, these types of grinding machines may include features where the grinding machine is mounted at an angle to the longitudinal axis of the button and the grinding machine is rotated to provide orbital motion with the center of rotation lying in the center of the grinding cup. When grinding the buttons, the centering aspects of the grinding machine tend to center the grinding machine over the highest point on the button.
Longstanding problems with these types of grinding machines are vibration and noise due to high rotational speeds, wear, the requirement for large compressors for pneumatic systems and long grinding times per button, in the larger sizes.
The grinding cups conventionally consist of a cylindrical body having top and bottom surfaces. The bottom or working surface consists of a diamond/metal matrix having a centrally disposed recess having the desired profile for the button to be ground. The rim around the recess may be adapted, for example by bevelling, to remove steel from the face of the bit around the base of the button.
Water and/or air, optionally with some form of cutting oil, is provided to the grinding surface to flush and cool the surface of the button during grinding.
The grinding cups are provided in different sizes and profiles to match the standard sizes and profiles of the buttons on the drill bits or cutters. Typically the button diameter varies from 6 mm up to 26 mm.
Several different methods have been used to connect and retain the grinding cups on to the grinding machine. The grinding cups were conventionally held in the grinding machine by inserting an upright hollow stem projecting from the top surface of the grinding cup into a chuck for detachable mounting. Special tools such as chuck wrenches, nuts and collets are necessary to insert, hold and to remove the grinding cup into and out of the chuck.
To eliminate the need for chuck wrenches etc. the use of a shoulder drive on the grinding cups was developed. A diametrically extending recess at the free end of a hollow drive shaft of the grinding machine co-operates with a shoulder or cam means on the adjacent top surface of the grinding cup to provide the drive means. The stem of the grinding cup, in order to provide axially and radial support, is inserted into the hollow drive shaft and maybe held in place by one or more O-rings either located in a groove in the interior wall of the drive shaft or on the stem of the grinding cup. See for example Swedish Patent No. B 460,584 and U.S. Pat. No. 5,527,206.
An alternative to the shoulder drive is shown, for example, in Canadian Patent 2,136,998. The free end of the stem of the grinding cup is machined to provide flat drive surfaces on the stem that are inserted into a corresponding drive part in the channel of the output drive shaft into which the stem is inserted. The grinding cup is retained in place by a spring biased sleeve which forces balls mounted in the wall of the output drive shaft into an annular groove on the stem of the grinding cup.
Other innovations are illustrated in U.S. Pat. No. 5,639,273 and U.S. Pat. No. 5,727,994. In these patents, the upright stem has been replaced with a centrally disposed hexagonal cavity provided in the top surface of the grinding cup. The cavity is shaped and sized to permit the output drive shaft of a grinding machine to be inserted into the cavity. The end of the output drive shaft has an end section having a corresponding hexagonal cross section to fit into the hexagonal cavity to provide the drive means. A second section of the output drive shaft having a circular cross section to fit into the cavity to provide axial and radial support.
Some manufacturers, in order to provide grinding cups that are compatible for use with other manufacturers' grinding machines provide adapters that connect their grinding cup to the output drive shaft of competitors' grinding machines.
Regardless of the method of connecting the grinding cup to the output drive shaft of the grinding machine, it is important to optimize the operational stability of the grinding cup. Lack of operational stability often results in vibration and resonance during grinding. Vibration and/or resonance also directly results in increased rates of wear to all moving parts such as bearings, joints, etc. of the grinding apparatus and can potentially interfere with settings within the operating control circuits of the grinding apparatus. In addition, lack of operational stability results in increased wear to all key drive/contact surfaces of the output drive shaft (rotor) and grinding cup which provide consistent, proper alignment between grinding cup and or adapter and the rotor during operation. Operational instability and associated vibration and/or resonance is a major contributor to the deterioration of the preferred built-in profile of the cavity in the grinding section of the grinding cup. This directly results in deterioration in the profile of the restored button. The net effect being a substantial loss in the intended overall drilling performance of the drill bit or cutter used.
These known drive systems provide means to axially and radially support the grinding cup in the grinding machine and separate drive means for transfer of torosional forces to rotate the grinding cup.
Accordingly the present disclosure provides a grinding cup for detachable connection to the output drive shaft of a grinding machine for grinding buttons on drill bits or cutters, said grinding cup having top and bottom surfaces and consisting of a lower grinding section and an upper body section co-axial with said grinding section to form said grinding cup with a centrally disposed recess formed in the bottom surface of the grinding section having the desired profile for the button to be ground; the improvement characterized by said body section having a centrally disposed upright drive section formed on the top surface of the grinding cup, said drive section shaped and sized to both driveably engage within a corresponding recess at end of the output drive shaft of said grinding machine and provide axial and radial support and retaining means for detachably connecting the grinding cup to the output drive shaft of the grinding machine wherein said drive section has a non-circular cross section and is tapered from the top surface of the grinding cup to the free end of the drive section.
Another embodiment provides a series of grinding cups for grinding working tips of rock drill bits, wherein said working tips have a diameter of about 6 mm to 26 mm and a desired profile, each of said grinding cups in said series having a lower grinding section and an upper body section connected to form a grinding cup having top and bottom surfaces, a centrally disposed recess formed in the bottom surface of said grinding cup having the desired profile and diameter of the working tip, combination drive means and support means provided on the upper body section of said grinding cup that cooperates with the output drive shaft of a grinding machine, wherein the combination drive means and support means consists of an upright section centrally located on the top surface of the grinding cup in the form of a truncated elliptic cone sized to engage with a corresponding elliptic conical recess at the free end of the output drive shaft of the grinding machine, retaining means provided in conjunction with the drive means for detachable connection of the grinding cup to the output drive shaft of the grinding machine during use.
Another embodiment of the present invention consists of a holder device for detachable connection of a grinding cup to a grinding machine, said grinding machine having a pneumatically, hydraulically or electrically driven motor which drives an output shaft. Suitably connected to the output shaft by any conventional means is a holder device of the present invention. The holder device may be an integral extension of the output shaft or a separate attachment. The holder device consists of a rotatable drive member having a free end adapted to extend axially away from the the grinding machine. The drive member is provided with a recess at its free end with a coaxial passageway extending from the recess the length of the drive member or part thereof and through which coolant fluid may be directed to a grinding cup supported thereon. The recess has a non-circular cross section and is tapered inwardly from the free end of the drive member.
Further features of the invention will be described or will become apparent in the course of the following detailed description.
In order that the disclosure may be more clearly understood, embodiments will now be described in detail by way of example, with reference to the accompanying drawings, in which:
With reference to the
In the grinding apparatus 1 shown in
In the embodiment of the grinding apparatus 20 shown the grinding machine 22 is carried by support system 24 which includes an arm or lever system 27 attached to the frame 28.
In
The drive coupling is inserted into the mating drive coupling 50 on spindle assembly 45. The spindle assembly 45 has an output drive shaft 46 to which a grinding cup can be connected. The spindle assembly 45 is attached to the electric motor housing by bolts 47. Coolant water for delivery to the grinding cup surface is provided though connection 48. The electric motor 35 is preferably a three-phase motor and power is connected through connection 51 to connection box. A flexible splash cup 53 is placed around the output drive shaft 46 of spindle assembly 45. The motor can be hydraulic, electric or the like without departing from the substance of the present invention. The dimensions of the casing are such that the grinding machine may be handled manually if desired. For the latter purpose, the casing is provided with handles projecting diametrically oppositely outwardly from the casing. Suitably connected to the output drive shaft 46 by any conventional means is a holder device 54. In the illustrated embodiment in
The bottom (grinding) surface 64 of the grinding section is formed from a material capable of grinding the tungsten carbide button bits. In the embodiment, the grinding surface is formed from a metal and diamond matrix. The peripheral edge 72 in the bottom surface 64 is beveled to facilitate the removal of steel from the face of the bit around the base of the button during grinding.
The body section 62 has a base 65 having a centrally disposed upright drive section 66 formed on the top surface 67 of the base 65. The drive section 66 is shaped and sized to driveably engage within a corresponding recess (see
The upright drive section 66 has a non-circular cross section and is tapered from the top surface 67 of the base 65 to the free end 71 of the drive section 66. In the embodiment illustrated in
A passageway 73 is provided in the drive section 66. The passageway 73 is co-axial with the up-right drive section 66 and communicates with one or more openings (not shown) on the grinding surface 64 through which coolant/flushing fluid may be directed to the surface of the button being ground during grinding.
As shown in
The bottom surface 77 of base 65 on the upper body section 62 has cavity 78 formed therein sized and shaped to accommodate the cylindrical stub 76 centrally located on the top surface 74 of the grinding section 61.
In the embodiment illustrated grinding cup 60 is one in a series of grinding cups for grinding the working tips or buttons of rock drill bits wherein the working tips or buttons have a diameter of about 6 mm to 26 mm and a desired profile. The base 65 of the upper body section 62 of each grinding cup 60 in the series may be a constant height across the series of grinding cups 60a, 60b, 60c and 60d as shown in
Referring to
Retaining means may be provided in recess 106 of drive member 55 to detachably retain the grinding cup 60 so that grinding cup 60 will not fly off during use but can still be easily removed or changed after use. The retaining means may include one or more annular grooves in the interior wall of the recess 106 in drive member 55. O-rings or expansion rings may be inserted into the grooves.
In the embodiment illustrated, both the grinding cup 60 and drive member 55 are fabricated from stainless steel to prevent corrosion and to facilitate clean up after grinding.
Having illustrated and described a preferred embodiment of the invention and certain possible modifications thereto, it should be apparent to those of ordinary skill in the art that the invention permits of further modification in arrangement and detail and is not restricted to the specific semi-automatic grinding apparatus illustrated. For example the design of the upper body section of the grinding cup and the free end of the output drive shaft can be reversed. In this embodiment the free end of the output drive shaft has a non-circular cross-section and is tapered. The tapered end of the output drive shaft is sized and shaped to fit within a corresponding recess in the top surface of the upper body section of the grinding cup.
The present disclosure utilizes drive means to provide both axial and radially support and transfer torosional forces. A non-circular tapered connection provides both support and drive. The resistance of the connection to slippage improves as the feed pressure increases, resulting in a relative increase in support and drive capacity as feed increases. However the grinding cup can still be easily removed from the output drive shaft after grinding with no more than a light tap from the side.
It will be appreciated that the above description related to the preferred embodiment by way of example only. Many variations on the invention will be obvious to those knowledgeable in the field, and such obvious variations are within the scope of the invention as described and claimed, whether or not expressly described.
Number | Date | Country | Kind |
---|---|---|---|
2,870,784 | Nov 2014 | CA | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2015/000571 | 11/12/2015 | WO | 00 |