The present invention relates to a grip device, and more particularly, to a grip device which accommodates hexagonal wrenches therein which are secured to the grip device by rotating a rotary member.
The conventional connection compensating device of multi-angular wrench socket is disclosed in U.S. Pat. No. 6,791,291, and comprises a main body which is a cylindrical body. The outer circumference of the main body between two ends thereof is formed with several radially arranged flutes which extend along the circular axis of the main body by a certain length. The flutes have different cross-sectional areas. A connecting section includes a first tubular body fitted around the main body. The first tubular body is rotatable about the circular axis of the main body. The first tubular body is partially overlaid on the flutes. A geometric central axis of the profile of inner circumference of the first tubular body is not coincided with the circular axis of the main body.
However, when the hexagonal wrench is installed to the flute of the main body and the inner circumference of the first tubular body, the hexagonal wrench is likely to slip off from the flute when being rotated, unless the user's finger contacts the lateral side of the hexagonal wrench. Nevertheless, this makes the operation of the hexagonal wrench awkward and inconvenient.
The present invention intends to provide a grip device that eliminates the shortcoming mentioned above.
The present invention relates to a grip device for hexagonal wrenches and comprises a body, a rotary member, a resilient member and a fastening member. The body includes an engaging portion which includes multiple recesses, multiple first slots and an axle. The rotary member is rotatably and movably mounted to the axle. The rotary member includes a first room defined in the inner periphery of the passage through which the axle extends. A first shoulder is formed between the first room and the passage. The resilient member is mounted to the axle and the fastening member is connected to the axle. The resilient member and the fastening member are located in the first room. The resilient member is biased between the first shoulder and the head of the fastening member. An L-shaped tool has the first section thereof received in one of the recesses and the first slot of the recess. When the rotary member is moved toward the engaging portion, the first section is inserted into the first slot. The rotary member is rotated so as to seal the end opening of the recess so that the L-shaped tool is restricted by the rotary member and is not separated from the body. The users hold the body to rotate the L-shaped tool.
The rotary member is biased by the resilient member and firmly contacts the body so that when rotating the body, the rotary member is not shifted relative to the body.
The present invention will become more apparent from the following description when taken in connection with the accompanying drawings which show, for purposes of illustration only, a preferred embodiment in accordance with the present invention.
Referring to
A rotary member 20 is mounted to the engaging portion 100 and has a first end 200 and a second end 201 which is located opposite to the first. end 200. An engaging slot 22 is defined in the outside of the rotary member 2.0, and the engaging slot 22 is a pentagonal slot 22. The first end 200 faces the end face 12 of the body 10. The rotary member 20 includes a passage 21 defined axially therethrough, and the axle 13 extends through the passage 21. The rotary member 20 is rotatable relative to the axle 13 and movable along the axle 13 such that the pentagonal slot 22 is located in alignment with one of the recesses 11. The pentagonal slot 22 is sized to be equal to one of the recesses 11 that has the maximum size among the recesses 11. A first face 221, a second face 222 and a third face 223 extend from the rear position 2201 of the inner face 220 of the pentagonal slot 22, and the first, second and third faces 221, 222 and 223 extend from the first end 200 toward the second end 201 inclinedly in sequence. The slope of the third face 223 is larger than the slop of the first face 221. The slop of the first face 221 is larger than the slop of the second face 222. A fourth face 224 extends from the distal end of the third face 223 and is perpendicular to the axis of the rotary member 20. The passage 21 includes a first room 23 and a second room 25 respectively defined in the inner periphery thereof. The inner diameter of the first room 23 is larger than the inner diameter of the passage 21. A first shoulder 24 is formed between the first room 23 and the passage 21. A third room 27 is defined in the inner periphery of the passage 21. The inner diameter of the third room 27 is larger than the inner diameter of the second room 25. A second shoulder 26 is formed between the second and third rooms 25, 27. The third room 27 is defined through the second end 201 of the rotary member 20. A cover SO is mounted to the first room 23 so as to hide the resilient member 30 and the fastening member 40 in the rotary member 20. The cover 50 includes a restriction portion 51 which is in contact with the inner periphery of the second room 25 so that the enlarged head of the cover 50 contacts the second shoulder 26.
A resilient member 30 and a fastening member 40 are located in the first room 23. The resilient member 30 is mounted to the axle 13 and the fastening member 40 is connected to the connection portion 14. The resilient member 30 is biased between the first shoulder 24 and the head 41 of the fastening member 40.
As shown in
As shown in
As shown in
The advantages of the present invention are that when the tool 60 is engaged with the first slot 111, and the rotary member 20 is rotated to seal the recess 11 such that the tool 60 is restricted by the rotary member 20 and is not disengaged from the body 10. Therefore, the tool 60 is stably and firmly operated by holding and rotating the body 10.
The rotary member 20 is pushed by the resilient force of the resilient member 30 to contact the end face 12 of the body 10. When rotating the body and driving the tool 60, the rotational force cannot make the rotary member 20 to rotate and shift relative to the end face 12 of the body 10. The resilient member 30 always applies a force to the rotary member 20, and there are two steps required to rotate the rotary member 20. Therefore, the rotary member 20 is safe and reliable.
As shown in
As shown in
The recesses 11 of the body 10 have different sizes, and the engaging slot 22 of the rotary member 20 is able to be in alignment with each of the recesses 11. The pentagonal slot 22 is sized to be equal to one of the recesses 11 that has the maximum size. The grip device may be connected with the tools 60 of different sizes.
While we have shown and described the embodiment in accordance with the present invention, it should be clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2569069 | Motel | Sep 1951 | A |
2715028 | Dossie | Aug 1955 | A |
6791291 | Shimizu et al. | Sep 2004 | B2 |
10618158 | Liu | Apr 2020 | B2 |
Number | Date | Country | |
---|---|---|---|
20200398418 A1 | Dec 2020 | US |