BACKGROUND
1. Field of the Invention
This invention is directed to a swing training or teaching device, in general, and to such a training device in the form wrist watch and strap or band to be worn on the wrist of the user and which incorporates components and assemblies for measuring the grip pressure parameter of the swing.
2. Prior Art Statement
Various sports have developed equipment that until very recently, say the last 25 years, was rather basic, if not primitive. Now that modern technology has come into the sports, the equipment and apparatuses dedicated to the sports are becoming more and more technologically advanced or sophisticated.
Improving one's swing is one of the ways golf, tennis and baseball enthusiasts can increase their proficiency. There are special clubs, bats, and racquets as well as weights, video tapes and many other techniques for utilization during practice sessions. The extant learning devices are primarily based on the feedback the athlete receives from them and thus learn the correct technique while avoiding wrong techniques.
One of the more subtle difficulties encountered by most athletes is the grip pressure of the swing. There is no absolutely correct grip pressure of the swing. Trial and error is the only reliable way to discover the swing that produces the best result. Once that discovery is made the athlete needs to development muscle and grip memory in order to repeat the swing and hence replicate the desired result.
One device known in the art that helps the golfer in some sense memorize and repeat the same golf swing that produces the desired result is a glove worn on the hand of the user as described in U.S. Pat. No. 5,733,201 by the same inventor. While the glove unit is a highly accurate and desirable device, it has the inherent drawback that it is in the form of a glove. The glove is not interchangeable to allow use by either a right-handed or left-handed golfer, there is significant variation in sizing and the glove can not be made as durable as the monitoring instrumentation attached to it.
SUMMARY OF THE INSTANT INVENTION
The system used to monitor grip pressure is contained in a device analogous to a ordinary wrist watch. The back plate of the watch is in contact with the pulse pressure points on the wrist of the wearer. As hand grip pressure varies, as when gripping say a golf club handle, baseball bat, or tennis racquet, an electronic sensing device, a battery powered piezo sensor strip, for example a Tekscan FlexiForce A201 Sensor embedded in the watch casement, sends an electronic impulse to an A/D converter. The greater the force of the grip exerted by the wearer, the higher the grip pressure value recorded by the device, and conversely, the slighter the grip pressure, the lower the value.
An LCD, deployed on the watch face, displays the grip pressure as a digital value. The system allows the wearer to SAVE a single grip pressure value in the memory. Subsequent grips are sequentially compared with the one saved in memory. The system compares each subsequent grip pressure value with the saved or benchmark grip pressure value. An audible signal alerts the wearer that he/she has used a different grip pressure from that saved. Additionally, visually displayed on the watch face are arrows indicating a stronger or weaker grip.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 displays the watch housing or casement and the pressure plate deployed at the back of the monitoring device. Note the pressure plate is made of thin metal and domed so as to more accutely sense subtle changes in in the expansion and contraction of the muscles and tendons in the wrist of the wearer.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic drawing of one embodiment of the watch housing 100 and back pressure plate of the instant invention 101. When deployed, the watch housing is held in close contact with the pulse point of wearer's wrist by a stretchable band secured by a hook and loop velcro fastner.
FIG. 2 is a block diagram of the monitoring circuit of the instant invention.
FIG. 3 is the layout of the LCD 300 showing the digital value display of the grip pressure, as well as the direction indicator of greater or lesser grip pressure than that SAVED in memory. This application of the instant invention is embodied in a multifunction application, hence the LCD illustrated displays two additional functions, swing speed and elapsed time of the swing.
FIG. 4 attempts to show the data collection process of the instant invention. From Time=0, or the start of a swing to Time=+1, or the finish of the swing, five discrete values for grip pressure, represented here by R1, . . . R5, can be recorded.
DESCRIPTION OF A PREFERRED EMBODIMENT
FIG. 1 is a representation of the outside housing 100 of the instant invention. The watch's back plate, 101 made of thin metal alloy is cinched securely to the wearer's wrist and makes contact with the pulse pressure points. The domed shape of the back plate is pliable. When the muscles and tendons in the wearer's wrist expand and contract as a result of variable grip pressure, the metal plate will similarity respond to the pressure emanating from the wearer's grip.
Inside the housing or watch casement are the various components arrayed in FIG. 2. Two very thin guage electrical wires lead from a piezo sensor strip 202 and are soldered to the pressure plate 201. The piezo strip registers pressure differentials as the wearer's grip varies when swinging a golf club, cricket bat squash racquet, or the like. The signal from the piezo sensor is driven by a 3 Volt battery 203 and thence to an A/D converter 204. The numeric values assigned to the corresponding pressure is somewhat arbitrary but they do reflect differing magnitudes, say in a range from one to ten with 10 being the maximum grip pressure recorded and 1 being the minimum amount of pressure a person could exert on the handle. The architecture of the software embedded in the microprocessor 205 transmits the grip pressure value to the LCD 206 signaling the user of the instant invention whether or not she or he has exerted the same grip pressure as on the swing they are trying to repeat. The signal is an audible alarm 207 or buzzer indicating a deviation from the pre-set grip pressure value from the best swing set in a previous trial.
FIG. 3 is relatively self explanatory except to note that the up and down icons on the LCD 300 render a non numeric representation of the direction of the deviationin grip pressure from the benchmark or SAVED swing that the user is attempting to replicate. Obviously the up arrow indicates tighter grip pressure and the down arrow, lower or looser grip pressure.
FIG. 4 graphically depicts an idealize golf swing. Empirical data indicates that the arc of the swing in the down stroke generates a curvilinear distribution of grip pressures over time. The pressure sensor deployed in the instant invention is capable of capturing up to five discrete data points in this distribution. We have tested the hypothesis that grip pressure as measured by the instant invention is highest at approximately the point of contact with the ball, at point R3 in FIG. 4. Our experiments and hypothesis testing have been limited to hitting a golf ball, but intuitively we might assume this will also hold true for swinging a baseball bat, tennis racquet, or the various other modes of swinging referred to above. Any one or some combination of the data points in the distribution may be used for the purposes of the golf application. Since the objective is to repeat the grip pressure on the swing that gives the best result, it has proven most reliable to take the arithmetic mean of the distribution as the indicator of each swing's grip pressure. Thus the mean value of grip pressure is SAVED in the memory of the device and subsequent mean values of repeated trials are compared to the SAVED value. Deviations are signalled as identified above, and the mean grip pressure values, replicating those saved confirm that a successful swing has been completed.