The present invention relates to sensors, specifically, capacitive grip sensors and systems.
Grip sensors are useful in a variety of applications. Some grip sensors have a variety of shortcomings. Among these shortcomings are a) the placement of exposed wires along the circumference of the grip; b) the requirement that the surface of the grip deform in order to register an event; c) the requirement for specific hand placement in order to register a grip, and/or detection of pressure applied to specific portions of the grip; and d) in many instances, the sensor element is sufficiently delicate that the choice of topcoats and the application of these topcoats is limited out of concern that the sensor element will be compromised during assembly. A need exists for an apparatus which overcomes these shortcomings.
Embodiments of the present invention provide robust capacitive grip sensors that may be used in a variety of applications, such as but not limited to barbell and dumbbell spotting apparatus. Apparatus as disclosed herein and efficiently measure the presence of a human grip without requiring deformation of a gripped surface area.
So that those having ordinary skill in the art will have a better understanding of how to make and use the disclosed systems and methods, reference is made to the accompanying figures wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that when an element is referred to as being “coupled” or “connected” to another element, it can be directly coupled or connected to the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly coupled” or “directly connected” to another element, there are no intervening elements present. Like numbers refer to like elements throughout. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
With reference to
The substrate 10 may be any material typically used as a handle or grip for a device. The substrate 10 may be elongated. It will be apparent that the cross-section of the substrate 10 is not limited to a circular cross-section, as shown, but may have any suitable cross-section. The first and second electrically non-conductive layers 20 and 40 may be the same or different material. In one or more embodiments the first electrically non-conductive layer 20 and/or the second electrically non-conductive layer 40 are a ceramic material such as but not limited to a ceramic coating commercially available from Cerakote® of White City, OR. For example, Cerakote® H-900 Electrical Barrier ceramic coating is a suitable material. The thickness of the first electrically non-conductive layer 20 may be from 0.5-3 mm. In one embodiment the thickness of the first electrically non-conductive layer 20 is 2 mm. The thickness of the second electrically non-conductive layer 40 may be from 0.5-3 mm. In one embodiment the thickness of the second electrically non-conductive layer 40 is 2 mm.
It will be apparent to those skilled in the art when the substrate 10 is an electrically non-conductive material, such as wood, non-conductive plastic, ceramic rubber, etc., a first electrically non-conductive layer may not be required. In such cases the grip sensor 15 may include, a plurality of strands of conductive material 30 embedded in, or laid upon, the substrate 10, a non-conductive layer 40 positioned over the strands of conductive material 30, and a processor hub 50 operably coupled to the strands of conductive material 30. The grip sensor 15 may optionally include a first non-conductive layer 20.
The second non-conductive layer 40 may be patterned and may include a knurled or roughened surface to facilitate grip. As shown in
The conductive material 30 is any suitable electrically conductive material such as but not limited to copper, silver, gold, aluminum etc. There may be any number of strands of electrically conductive material 30. The thickness of each strand 30 may be any suitable thickness, such as, for example, from 18 gauge to 23 gauge (AWG). In one embodiment the thickness is 18 gauge. Each strand of electrically conductive material 30 is coupled to a processor 52, positioned on the processor hub 50, configured to detect capacitance in the respective strand of electrically conductive material 30 and compare against a predetermined threshold to determine an above or below state of capacitance, representable in binary output. Suitable processors include but are not limited to capacitive sensor processors available commercially from ISE Controls of Indianapolis, IN. The processors 52 are coupled to and powered by any suitable power source including but not limited to battery, house current, etc. The power source may be coupled to the processor hub 50 via conduit 60 or may be integrated in the processor hub 52. Each of the processors 52 supplies binary output (ON or OFF) for each of the strands of conductive material 30 being monitored. The level of capacitance sensed in each strand of electrically conductive material 30 may be used to determine the binary output, e.g., a level of capacitance above a predetermined threshold may represent an ON state, with a level of capacitance below the predetermined threshold representing the OFF state, or the reverse may be utilized (OFF is above the threshold, ON is below). Any type of circuit allowing for binary output may be utilized, including any suitable logic circuit. The output of each strand 30 is separate and independent from all other strands. In one or more embodiments a host-side processor receives via conduit 60 separate and distinct channels of output (ON or OFF) from each of the processors 52. For example, in a sensor with five strands (strands A-E) 30, strands A-E each can signal ON or OFF. The host-side processor interprets the output and makes its own determination how to handle the data based on logic programmed in the host-side processor. It will be apparent to those skilled in the art the host-side processor can be programmed in any number of ways to process the output from the processors 52. For example, and not by way of limitation, the five sensors may be assigned to variables L1, L2, L3, L4, L5 and provide signals as follows:
At T0 (no human interaction):
At T1.0 (palm of hand placed on the device)
At T2 (left hand fingers curl around the circumference of the device)
At T3 (the user lifts fingertips from the device but maintains a grip)
A host processor can process the signals to determine the presence and/or adequacy of a grip on the bar. For example, once variables L1-L5 signal ON, the host processor can signal equipment associated with the host processor to operate or not operate. The host processor may be programmed to signal equipment based on a lesser or greater number of ON signals, depending on the application. For example, the host processor may be programmed to determine an adequate grip exists based on the conditions at T3. The greater the number of electrically conductive strands and associated processors, the more sensitive the grip sensor.
The embodiment in
Now referring to
For example a single device may be outfitted with grip sensors as described so that it has 10 strands of conductive material (5 on each side). Each of these is connected to its own processor 52. The processor will output either ON or OFF (binary). There are numerous examples of devices that could employ a grip sensor as disclosed herein, including but not limited to handlebars of a vehicle such as a motorcycle, a steering wheel, controls for industrial machinery, etc.
The 5 sensors on the left may be assigned to variables L1, L2, L3, L4, L5; the 5 sensors on the right may be assigned to variables R1, R2, R3, R4, R5.
At T0 (no human interaction):
At T1.0 (palm of left hand placed on the device)
At T1.1 (palm of right hand placed on the device)
At T2 (left hand fingers curl around the circumference of the device)
At T2.1 (both left and right hand fingers curl around the circumference of the device)
At T3 (the user lifts fingertips from the device but maintains a grip)
Now referring to
With reference to
Now referring to
Now referring to
Now referring to
Although the apparatus and methods of the present disclosure have been described with reference to exemplary embodiments thereof, the present disclosure is not limited thereby. Indeed, the exemplary embodiments are implementations of the disclosed systems and methods are provided for illustrative and non-limitative purposes. Changes, modifications, enhancements and/or refinements to the disclosed systems and methods may be made without departing from the spirit or scope of the present disclosure. Accordingly, such changes, modifications, enhancements and/or refinements are encompassed within the scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 17/553,900, filed Dec. 17, 2021, now U.S. Pat. No. 11,371,895, which is a continuation of U.S. patent application Ser. No. 17/221,016, filed Apr. 2, 2021, now U.S. Pat. No. 11,204,290, which is a continuation of U.S. patent application Ser. No. 16/888,077, filed May 29, 2020, now U.S. Pat. No. 11,015,990, which claims priority to U.S. Provisional Application No. 62/895,759, filed Sep. 4, 2019, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2924540 | D'Andrea | Feb 1960 | A |
3785381 | Lower et al. | Jan 1974 | A |
4531726 | Bornstein | Jul 1985 | A |
5224386 | Curtis | Jul 1993 | A |
6323846 | Westerman et al. | Nov 2001 | B1 |
6537182 | Slawinski et al. | Mar 2003 | B2 |
6749538 | Slawinski et al. | Jun 2004 | B2 |
RE40587 | McKinnon | Nov 2008 | E |
9103131 | Domage | Aug 2015 | B2 |
9979390 | Fujikawa et al. | May 2018 | B2 |
10705666 | Kring et al. | Jul 2020 | B2 |
11015990 | Davis | May 2021 | B2 |
11371895 | Davis | Jun 2022 | B2 |
11614804 | Sapozhnik | Mar 2023 | B2 |
20040173603 | Kinouchi et al. | Sep 2004 | A1 |
20080190642 | Allen et al. | Aug 2008 | A1 |
20090025475 | DeBeliso | Jan 2009 | A1 |
20090234367 | Verma | Sep 2009 | A1 |
20100038924 | Golz | Feb 2010 | A1 |
20100050780 | Aseere | Mar 2010 | A1 |
20120179328 | Goldman-Shenhar | Jul 2012 | A1 |
20120254490 | Muroyama | Oct 2012 | A1 |
20140165414 | Smith | Jun 2014 | A1 |
20170014078 | Yamazak et al. | Jan 2017 | A1 |
20170196513 | Longinotti-Buitoni et al. | Jul 2017 | A1 |
20170224280 | Bozkurt et al. | Aug 2017 | A1 |
20180113038 | Janabi-Sharifi et al. | Apr 2018 | A1 |
20180356306 | Campbell | Dec 2018 | A1 |
20190326473 | Choi et al. | Oct 2019 | A1 |
20210056831 | Visos-Ely | Feb 2021 | A1 |
20210063256 | Davis | Mar 2021 | A1 |
20210270683 | Kitamura et al. | Sep 2021 | A1 |
20210308817 | Nagaosa | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
112017003952 | May 2019 | DE |
3227163 | Oct 2017 | EP |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US2020/048716, dated Nov. 12, 2020. |
Number | Date | Country | |
---|---|---|---|
20220397468 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62895759 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17553900 | Dec 2021 | US |
Child | 17850109 | US | |
Parent | 17221016 | Apr 2021 | US |
Child | 17553900 | US | |
Parent | 16888077 | May 2020 | US |
Child | 17221016 | US |