This invention relates generally to embodiments of a gripping and pushing device for inserting a medical instrument, such as a catheter, into a patient's body.
Elongated medical instruments are inserted into a patient's body to perform a wide variety of procedures. Catheters, for example, are often inserted into a subject to drain fluids, or used to deliver and implant a medical device, such as a stent or a prosthetic valve, at a location inside a subject. Cardiac catheterization, such as for performing angioplasty or implanting a prosthetic heart valve, can involve the use of a relatively long catheter that is advanced through a patient's vasculature to access the heart. In one approach, for example, the catheter can be advanced through a femoral artery and the aorta to access the heart.
Control and advancement of catheters, especially for cardiac catheterization, is difficult because of their construction. The user must frequently manipulate, or torque, the catheter shaft on the proximal end to facilitate advancement of the catheter with a desired orientation on the distal end. To provide the needed control over the movement of the catheter, it is necessary that these tubular catheters be made somewhat rigid. However, catheters must be flexible enough to navigate through the body lumen to arrive at the desired location within the body where the medical procedures will be performed. An overly rigid catheter shaft will not easily track, or follow, a guidewire. Because of their length, it is often necessary for the practitioner to grasp the relatively narrow shaft of the catheter at a location near the entry point into the patient's vasculature rather than the handle at the very proximal end of the catheter to avoid buckling of the shaft. Unfortunately, it is often difficult to obtain and maintain a sure grip on the relatively narrow shaft for the necessary control and grasping the shaft with a tight grip causes user fatigue.
Therefore, what has been needed is a device that improves a practitioner's ability to insert and control advancement of a medical instrument through a patient's body.
The present disclosure is directed to embodiments of a gripping and pushing device for use with a medical instrument that is insertable into a patient's body. In particular embodiments, the gripping and pushing device is placed on a relatively narrow, elongated structure of the medical instrument, such as a shaft or tubular member. Instead of gripping the shaft directly, a practitioner can squeeze or grip the gripping and pushing device, which in turn grips the medical instrument and transfers pushing, pulling and/or rotational motion of the practitioner's hand to the shaft. The gripping and pushing device provides a larger gripping area for the practitioner to allow the practitioner to maintain a better grip and control over the medical instrument with less fatigue as the medical instrument is pushed into the patient's body, torqued, or otherwise manipulated within the patient's body.
To enhance the gripping force of the device against the shaft of the medical instrument, the device can include at least one gripping layer secured to an inner surface of a deflectable portion of the device. Gripping the deflectable portion causes the deflectable portion to deflect radially inwardly toward the shaft and press the gripping layer against the shaft. The gripping layer can be formed from a material having a greater coefficient of friction than the deflectable portion. In particular embodiments, the gripping layer is secured to the inner surface of the deflectable portion at axially spaced apart attachment locations (such as with a suitable adhesive) so as to define unsecured portions between the attachment locations. The unsecured portions of the gripping layer are axially deformable. Thus, when gripping and pushing forces are applied to the device, the unsecured portions can “bunch up” or form non-linear segments that further enhance the effective gripping force of the gripping layer against the shaft.
In one representative embodiment, a gripping and pushing device for a medical instrument comprises an elongated main body defining a lumen. The elongated main body comprises one or more deflectable portions that can be pressed radially inwardly toward a shaft of the medical instrument extending through the lumen. One or more elastomeric gripping layers can be secured to the inner surface of a respective deflectable portion at axially spaced apart attachment locations. The one or more gripping layers are axially deformable relative to the one or more deflectable portions between the attachment locations when manual pressure is applied to the one or more deflectable portions to press the one or more gripping layers against the shaft and move the shaft longitudinally into a patient's body.
In another representative embodiment, a method of inserting a medical instrument into the body of a patient comprises gripping a gripping and pushing device disposed on a shaft of the medical instrument. The gripping and pushing device comprises at least one elongated deflectable portion and at least one gripping layer secured to an inner surface of the deflectable portion at axially spaced attachment locations, wherein gripping the gripping and pushing device causes the deflectable portion to deflect toward the shaft and press the gripping layer against the shaft. While gripping the gripping and pushing device, the gripping and pushing device is pushed toward the patient to advance the medical instrument into the patient's body.
In another representative embodiment, a medical assembly comprises a delivery apparatus for delivering a prosthetic device into a patient's body. The delivery apparatus comprises a handle and an elongated shaft extending from the handle. The assembly further comprises a gripping and pushing device disposed on the shaft of the delivery apparatus. The gripping and pushing device comprises an elongated main body defining a lumen through which the shaft extends. The elongated main body comprises at least one deflectable portion and at least one gripping layer secured to an inner surface of the deflectable portion at axially spaced apart attachment locations so as to define one or more unsecured portions of the gripping layers between the attachment locations. The deflectable portion is deflectable from a non-deflected position with the gripping layer radially spaced from the shaft and a deflected position with the gripping layer engaging the shaft.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatuses, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present, or problems be solved.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.
As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B,”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.”
As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
The present disclosure is directed to embodiments of a gripping and pushing device for use with a medical instrument that is insertable into a patient's body. The illustrated embodiment is described in the context of inserting a delivery apparatus or catheter into a patient's vasculature. However, it should be understood that the embodiments disclosed herein can be used with any of various medical instruments to perform any of various medical procedures, such as administration of medication or fluids, implantation of prosthetic devices, drainage of fluids, to name a few examples. Some examples of medical instruments (other than catheters) that can be used with the disclosed embodiments include but are not limited to, needles, stylets, cannulas, endoscopic devices, laparoscopic instruments, and/or combinations thereof.
In general, the gripping and pushing device is placed on a relatively narrow, elongated structure of the medical instrument, such as a shaft or tubular member. Instead of gripping the shaft directly, a practitioner can squeeze or grip the gripping and pushing device, which in turn grips the medical instrument and transfers pushing, pulling and/or rotational motion of the practitioner's hand to the shaft. The gripping and pushing device provides a larger gripping area for the practitioner to allow the practitioner to maintain a better grip and control over the medical instrument with less fatigue. This can be especially helpful when the practitioner is wearing gloves made from latex or other polymers, the outer surface of which can become slippery if covered in blood, saline, or other fluid.
The shaft 108 can be sized and shaped to be advanced through the patient's vasculature to a desired implantation site for the prosthetic device. For example, for delivering a prosthetic heart valve in a transfemoral procedure, the shaft 108 is pushed through a femoral artery and the aorta in a retrograde direction to access the heart. In another transfemoral procedure, the shaft 108 is pushed through a femoral vein and the inferior vena cava in an antegrade direction to access the heart. For transfemoral delivery of a prosthetic valve to the heart, the shaft 108 can have a length of 48 inches or longer.
The introducer 104 can include a housing 110 and an elongated sheath 112 extending distally from the housing 110. In use, the sheath 112 can be inserted first into the access location of the patient's vasculature (e.g., a surgical cut down of a femoral artery) and the shaft 108 of the delivery apparatus 102 can then be inserted through the introducer 104 and into the patient's vasculature. The housing 110 can have one or more seals (not shown) that can engage the shaft 108 and therefore minimize blood loss during the procedure. The introducer 104 facilitates the initial introduction of the delivery apparatus into the vasculature and can protect against trauma to the vessel where the delivery apparatus is inserted. In some applications, however, the delivery apparatus 102 may be inserted directly into the patient's vasculature without the use of the introducer 104. Further details of the delivery apparatus 102 and the introducer 104 are described in U.S. Patent Application Publication 2013/0030519, which is incorporated herein by reference.
As further shown in
As best shown in
Although in the illustrated embodiment the pushing device includes two slots 206, 208 and two legs 210, 212, the pushing device can be formed with any number of slots and legs in alternative embodiments. In other embodiments, the body 202 need not be formed with separate legs 210, 212 but is otherwise deformable or deflectable to allow opposing portions of the body 202 to be pressed against the shaft 108 during use. In one implementation, for example, the main body can have a substantially C-shaped cross-section (in a plane perpendicular to the length of the main body) defining one slot extending partially or along the entire length of the main body, wherein opposing sides of the main body are deflectable and can be pressed against the shaft 108 during use. In another implementation, the main body can have a substantially circular cross-section without any slots (or another closed annular shape) and is sufficiently flexible to allow opposing sides of the main body to be pressed inwardly against the shaft 108.
The inner tube 218 can be formed with a longitudinal slit 220 that is aligned with the first slot 206. In this manner, the pushing device 200 can be placed on the shaft 108 from the side by pushing the shaft 108 laterally through the first slot 206 and the slit 220 such that the shaft 108 extends co-axially through the inner tube 218 and the lumen 204 of the body. Conversely, the pushing device 200 can be removed the shaft 108 by simply by pulling the pushing device 200 laterally away from the shaft 108 so that the shaft 108 slides through the slit 220 and the first slot 206. In other embodiments, the inner tube 218 need not be formed with a slit 220, in which case the pushing device 200 would be placed on the shaft 108 by threading an end of the shaft co-axially through the inner tube 218.
Secured to the inner surface of each leg 210, 212 is an inner gripping layer, or gripping strip, 214. As best shown in
As best shown in
Referring to
The body 202 desirably comprises a material with sufficient flexibility and/or elasticity to be easily compressed under manual pressure allowing the internal gripping layers 214 to contact the shaft 108 when gripping pressure is applied and revert back to the non-deflected state under its own resiliency when gripping pressure is released. Any of various suitable materials, such as any of various metals (e.g., stainless steel) or polymeric materials can be used to form the body 202, such as but not limited to Nylon, Pebax, and/or combinations thereof. The legs 210, 212 can have roughened or textured inner and outer surfaces to enhance adherence with the gripping layers 214 and improve gripping by a user's hand. The inner gripping layers 214 desirably comprise an elastomeric material that can deform when manual pressure is applied to the legs 210, 212. In some embodiments, the gripping layers 214 are formed from a material that is relatively more elastic and/or deformable than the legs 210, 212 and has a relatively greater coefficient of friction with respect to the shaft 108 than the legs and a relatively low shore A hardness. Any of various suitable elastomers can be used for forming the gripping layers 214 such as, for example, low hardness silicone rubber.
The inner tube 218 can be made from any of various suitable materials, such as any of various polymeric materials, such as but not limited to Nylon, Pebax, PTFE, and/or combinations thereof. In some embodiments, the inner tube 218 can be made from a low-friction material and can have a relatively low coefficient of friction with respect to the shaft 108 compared to the gripping layers 214 to promote sliding of the pushing device 200 relative to the shaft when the legs 210, 212 are not in contact with the shaft. In some embodiments, the inner tube 218 can include an inner liner or layer of low friction material, such as PTFE, to reduce sliding friction with the shaft 108.
In some embodiments, the outer surface of the body 202 can be provided with gripping layers (not shown) similar to gripping layers 214 to enhance a user's grip on the body 202. For example, elongated gripping layers can be placed along the outer surface of the legs 210, 212 in alignment with the gripping layers 214. The gripping layers on the outer surface of the body can be formed from the same materials as the gripping layers 214 (e.g., silicone rubber).
In use, the pushing device 200 is placed on the shaft 108 of the delivery apparatus 102 as shown in
The legs 210, 212 of the pushing device 200 can then be squeezed between the fingers 228 (e.g., a thumb and an index finger) to press the gripping layers 214 against the shaft 108. While maintaining manual pressure against the legs 210, 212, the pushing device 200 is advanced distally in the direction of arrows 232, which pushes the shaft 108 through the introducer 104 and into the patient's vasculature. As illustrated in
After the pushing device 200 has been moved distally to a location at the introducer 104 (which is effective to insert the shaft 108 partially into the patient's vasculature), manual pressure can be released from the legs 210, 212 (which can revert back to their non-deflected state), and the pushing device 200 can be slid proximally relative to the shaft 108 and away from the patient a desired distance, such as by grasping the inner tube 218 or the distal end portion 222 of the body and retracting the pushing device relative to the shaft. Thereafter, the physician can again grasp the legs 210, 212 and use the pushing device 200 to push the shaft 108 further into the patient's vasculature. The process of retracting the pushing device and using the pushing device to push the shaft further into the patient's body can be repeated as needed until the handle 106 can be effectively used to push or otherwise manipulate the shaft without buckling.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application is a continuation of U.S. patent application Ser. No. 16/222,992, filed Dec. 17, 2018, which in turn is a continuation of U.S. patent application Ser. No. 15/232,722, filed Aug. 9, 2016, now U.S. Pat. No. 10,179,046, which claims the benefit of U.S. Provisional Patent Application No. 62/205,567, filed Aug. 14, 2015. Each of these applications is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
519297 | Bauer | May 1894 | A |
2009825 | Wappler | Jul 1935 | A |
4035849 | Angell et al. | Jul 1977 | A |
4592340 | Boyles | Jun 1986 | A |
4726369 | Mar | Feb 1988 | A |
4858810 | Intlekofer | Aug 1989 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5137517 | Loney et al. | Aug 1992 | A |
5176698 | Burns et al. | Jan 1993 | A |
5192297 | Hull | Mar 1993 | A |
5266073 | Wall | Nov 1993 | A |
5325746 | Anderson | Jul 1994 | A |
5325845 | Adair | Jul 1994 | A |
5325868 | Kimmelstiel | Jul 1994 | A |
5358496 | Ortiz et al. | Oct 1994 | A |
5392778 | Horzewski | Feb 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5423331 | Wysham | Jun 1995 | A |
5554185 | Block et al. | Sep 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5632760 | Sheiban et al. | May 1997 | A |
5634475 | Wolvek | Jun 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5824044 | Quiachon et al. | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5908405 | Imran et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5961536 | Mickley et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
6019777 | Mackenzie | Feb 2000 | A |
6027510 | Alt | Feb 2000 | A |
6030349 | Wilson | Feb 2000 | A |
6033381 | Kontos | Mar 2000 | A |
6143016 | Bleam et al. | Nov 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6235050 | Quiachon et al. | May 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6383171 | Gifford et al. | May 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6471672 | Brown et al. | Oct 2002 | B1 |
6500147 | Omaleki et al. | Dec 2002 | B2 |
6514228 | Hamilton et al. | Feb 2003 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6579305 | Lashinski | Jun 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6764504 | Wang et al. | Jul 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7137993 | Acosta et al. | Nov 2006 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7320702 | Hammersmark et al. | Jan 2008 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7594926 | Linder et al. | Sep 2009 | B2 |
7597709 | Goodin | Oct 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7699809 | Urmey | Apr 2010 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7959661 | Hijlkema et al. | Jun 2011 | B2 |
7972282 | Clark et al. | Jul 2011 | B2 |
8025629 | Shelton | Sep 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
RE43882 | Hopkins et al. | Dec 2012 | E |
8449606 | Eliasen et al. | May 2013 | B2 |
8475523 | Duffy | Jul 2013 | B2 |
8568472 | Marchand et al. | Oct 2013 | B2 |
9061119 | Le et al. | Jun 2015 | B2 |
9119716 | Lee et al. | Sep 2015 | B2 |
9700703 | Cude | Jul 2017 | B2 |
9795477 | Tran et al. | Oct 2017 | B2 |
D813383 | Kearns | Mar 2018 | S |
10349958 | Schaeffer | Jul 2019 | B2 |
10639451 | Kearns | May 2020 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010007082 | Dusbabek et al. | Jul 2001 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020165461 | Hayzelden et al. | Nov 2002 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030226421 | Livingston | Dec 2003 | A1 |
20040093061 | Acosta et al. | May 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040143197 | Soukup et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050070820 | Boutillette | Mar 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050096688 | Slazas et al. | May 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050149160 | McFerran | Jul 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050245894 | Zadno-Azizi | Nov 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058738 | Ponzi | Mar 2006 | A1 |
20060217687 | Bakos et al. | Sep 2006 | A1 |
20060282150 | Olson et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070066963 | Tanghoj | Mar 2007 | A1 |
20070073389 | Bolduc et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070219612 | Andreas et al. | Sep 2007 | A1 |
20070239254 | Chia et al. | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20080051630 | Levey | Feb 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080097362 | Mosler | Apr 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080294230 | Parker | Nov 2008 | A1 |
20090024428 | Hudock, Jr. | Jan 2009 | A1 |
20090069889 | Suri et al. | Mar 2009 | A1 |
20090076417 | Jones | Mar 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090192585 | Bloom et al. | Jul 2009 | A1 |
20090228093 | Taylor et al. | Sep 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090299456 | Melsheimer | Dec 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100030318 | Berra | Feb 2010 | A1 |
20100036472 | Papp | Feb 2010 | A1 |
20100036473 | Roth | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100076402 | Mazzone et al. | Mar 2010 | A1 |
20100076541 | Kumoyama | Mar 2010 | A1 |
20100082089 | Quadri et al. | Apr 2010 | A1 |
20100094394 | Beach et al. | Apr 2010 | A1 |
20100121425 | Shimada | May 2010 | A1 |
20100145431 | Wu et al. | Jun 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100174363 | Castro | Jul 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100274344 | Dusbabek et al. | Oct 2010 | A1 |
20100286664 | Haslinger | Nov 2010 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110054596 | Taylor | Mar 2011 | A1 |
20110137331 | Walsh et al. | Jun 2011 | A1 |
20110160846 | Bishop et al. | Jun 2011 | A1 |
20110306900 | Whittaker et al. | Dec 2011 | A1 |
20120073086 | Rarick | Mar 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120239005 | Conway | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20130030519 | Tran et al. | Jan 2013 | A1 |
20130231641 | Gustavsson | Sep 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
20140066905 | Young | Mar 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140364889 | Stubber | Dec 2014 | A1 |
20170065415 | Rupp et al. | Mar 2017 | A1 |
20180070927 | Hatta | Mar 2018 | A9 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180344456 | Barash et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
19532846 | Mar 1997 | DE |
19907646 | Aug 2000 | DE |
0592410 | Oct 1995 | EP |
0850607 | Jul 1998 | EP |
2815844 | May 2002 | FR |
2006138173 | Dec 2006 | NO |
9117720 | Nov 1991 | WO |
9829057 | Jul 1998 | WO |
9912483 | Mar 1999 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
02060352 | Aug 2002 | WO |
03030776 | Apr 2003 | WO |
03047468 | Jun 2003 | WO |
2004019825 | Mar 2004 | WO |
2005084595 | Sep 2005 | WO |
2006032051 | Mar 2006 | WO |
2006111391 | Oct 2006 | WO |
2005102015 | Apr 2007 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2010121076 | Oct 2010 | WO |
Entry |
---|
International Search Report for PCT/US2016/046545 dated Nov. 17, 2016. |
Number | Date | Country | |
---|---|---|---|
20220151778 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62205567 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16222992 | Dec 2018 | US |
Child | 17587843 | US | |
Parent | 15232722 | Aug 2016 | US |
Child | 16222992 | US |