The invention relates to a gripping device as specified in the introductory parts of claims 1 and 15, as well as to a method for operating the gripping device as specified in the introductory parts of claims 20 and 21.
In the manipulation of workpieces with automated manipulation systems, so-called robots, where the workpieces are seized and lifted by means of a gripping device from a made-ready position and then have to be fed to a manufacturing system where they are worked, problems often occur with the feed from a stack of cut or punched flat workpieces such as metal sheets, for example due to surface contamination caused by a film of cutting or punching oil, causing the sheets to adhere to each other, so that two or more sheets are picked up from the stack by the gripping device, for example a suction or magnetic gripper, instead of only one single sheet, leading to interference with the production process.
Possibilities for remedying such a situation are known in the prior art, one such possibility being to equip the gripping device with a weight sensor in order to determine the weight of the seized sheets lifted on the gripping device with the help of the parameters stored in a computer, and to then separate the workpieces, if necessary.
Another possibility offered by the prior art is to carry out an optical measurements, for example of the thickness after the sheet has been seized, and to then determine the number of workpieces seized based on the weight with the help of the parameters stored in a computer, in order to subsequently separate the workpieces, if need be.
Furthermore, ultrasound, eddy current and magnetic measuring methods are known, by which the total weight is determined, and the further course of action is then determined as in connection with an optical measurement.
Moreover, it is known also to divide the workpieces into single pieces before they are seized if such pieces stick together. However, the devices required for such separation require high expenditure in terms of mechanical components, and their operation is connected with increased controlling expenditure.
Now, the problem of the invention is to offer a gripping device for a manipulation system that permits quick recognition of the number of workpieces picked up by the gripping device, and which can be realized with a low weight and compact design.
Said problem of the invention is resolved with the features specified in the characterizing part of claim 1. The surprising benefit gained with such features is that in addition to the control as to whether the workpiece seized is a single part or a number of parts, a further control possibility is given in that it is possible to determine via the vibration behavior whether the seized workpiece is the correct part, because the vibration is dependent upon both the material and the dimension, so the correct conclusions can be drawn in this way as well. Furthermore, the control is carried out directly on the gripper head, which permits dispensing with additional travel distances of the manipulation system and to save cycle time, and higher productivity of the manufacturing system is achieved.
However, an embodiment as defined in claim 2 is feasible as well because the data decisive for a vibration analysis on the sized workpiece are determined directly on the excitation source based on the excitation pulse, which avoids interfering influences and permits using for the analysis a smaller vibration bandwidth for the basic data, which in turn increases the process safety.
The embodiment according to claim 3 is advantageous in that the frequency spectrum of the vibration in the workpiece is evaluated by comparison with stored data directly on the gripper head, so that no large amounts of data required for an analysis will not additionally load the communication system and in particular a bus system available for control measures of the manipulation system and the gripper head.
Possible is also an embodiment according to claim 4, which permits a higher memory and computer capacity.
The embodiment according to claim 5, is beneficial as well in that it dispenses with electrical line connections.
Furthermore, the embodiment according to claim 6 is advantageous in that is offers an interference-proof excitation source for generating vibration in the workpiece.
According to the design characterized in claim 7, it is possible to employ a sensor element that has been successfully used for high application frequency.
Another advantageous embodiment is specified in claim 8, which permits the realization of a compact design and where the excitation source and measurement source act via a contact point and the gripper geometry thus has no influence of the result of the analysis.
According to the solution specified in claim 9, the frequency spectra determined by the acceleration sensor are comparable independently of the frequency curve.
An efficient communication and energy supply system is obtained according to the further developed embodiments as defined in claims 10 and 11.
Furthermore, advantageous embodiments in which any influence of the vibration frequency due to holding forces of the gripping means is avoided, are specified in claims 12 and 13.
The embodiment according to claim 14 is beneficial in that it offers a self-sufficient detector system that can be selectively fitted on gripper heads with different configurations.
The problem of the invention is also resolved according to the embodiment characterized in claim 15, in that control over the number of workpieces seized by the gripping device and also the correct positioning of the workpiece, as well as the determination as to whether the correct workpiece has been seized is achieved via the determination of the weight.
A beneficial embodiment is specified also in claim 16 in that high measuring accuracy is achieved.
According to the advantageous embodiment specified in claim 17, workpieces adhering to each other can be directly separated without any additional devices and prolongation of the cycle time.
Finally, the embodiments specified in claims 18 and 19 are advantageous in that a compact and module-like structure of the gripper head is achieved.
The problem of the invention is also a method as specified in the introductory parts of claims 20 and 21 for operating a gripping device for a manipulation system, by which the pick-up of several workpieces adhering to one another is effectively avoided.
Said problem of the invention is effectively resolved by means of the measures specified in claims 20 and 21. Now, the surprising benefit of the solution as defined by the invention lies in that recognition of a workpiece takes place directly on the gripping device, so that no complicated additional equipment is required and travel distances of the manipulating system increasing the cycle time in the production process are avoided.
For the sake of better understanding, the invention s explained in greater detail in the following with the help of the exemplified embodiments shown in the drawings, in which:
It is noted here by way of introduction in the different embodiments described in the following, identical components are provided with identical reference number or component designations, whereby the disclosures contained throughout the specification are applicable in the same sense to identical components and identical component designations. Furthermore, positional data selected in the specification such as, for example “top”, “Bottom”, “laterally” etc. relate to the directly described and shown figure, and have to be applied to the new position where a position has changed. Moreover, individual features and combinations of features in the different exemplified embodiments shown and described herein may represent independent inventive solutions or solutions as defined by the invention.
The problem often occurring in this connection is that due to a film of oil on the surface 11 of the workpieces 2 stored in the stack 3, the workpieces adhere to each other, so that two or more of the workpieces 2 are jointly lifted from the stack as shown in
For resolving this problem, the gripping device 1 as defined by the invention comprises a detection system 12 consisting of a pulse emitter 13 and a vibration sensor 15 arranged with a spacing 14 from the pulse emitter. In the exemplified example show, the pulse emitter is formed by an impact tappet 17, which is actuated by an electromagnet 16. Said impact tappet is controlled by the controlling device 10 in order to excite by means of an impact pulse a vibration in the workpiece 2. The vibration sensor 15 provided for detecting the vibration is, for example an acceleration sensor 18, which is placed with a preset force onto the workpiece seized by the gripping device 1 by means of a contact-pressure exerting device 19. The acceleration sensor 18 is connected by cable with a memory module and/or analytical module via a bus system 21. In connection with the exemplified example shown, the memory module and/or analytical module is an external computer, which is preferably integrated in the controlling device 10. It is noted that the data transmission naturally may take place wirelessly as well.
However, an embodiment is possible also where the memory and analytical module 20 is directly arranged on the gripper head 6 in order to directly evaluate the data determined by the acceleration sensor 18 on site, so that the bus system 21 is relieved and the data transmitted to the controlling device 10 via the bus system 21 for the evaluation as to whether a single or more of the workpieces 2 have been picked up can be limited to the information pulses “Yes/No”.
The process for the recognition as to whether one single or more of the workpieces 2 have been picked up is described in the following.
After the workpiece 2 has been lifted from the stack 3, the pulse emitter 3 is controlled, which, with its striking tappet 17, strikes the surface 11 of the workpiece 2 with a minimum of contact time, and thereby puts the workpiece 2 into vibration. The vibration spectrum is recorded b means of the acceleration sensor 18 and processed in the memory and/or analytical module 20 by means of Fourier transformation, and compared with a vibration spectrum stored for the workpiece 2 in the memory and/or analytical module 20. This reference curve of the vibration curve is determined on a workpiece in an acquisition process, or determined for a preset number of workpieces 2 in a so-called teach-in process carried out in front-end equipment, and the data of the reference curves are stored in the memory and/or analytical module 20. There is no need for explaining in greater detail that the vibration behavior of the workpiece 2 is influenced by the material, the dimensions and the gripping position of the gripping means, and quite significantly, of course, whether only one single workpiece 2 or several of such workpieces have been seized by the gripping device 1.
It is naturally possible to store in the memory and/or analytical module 20 the processed data of the respective vibration spectrum for different workpieces in a workpiece matrix depending on the memory capacity, and to call in such data prior to the processing of the respective workpiece 2 via a code, and to then access such data for the analysis. This permit quick retooling of a manufacturing plant and thus increases its capacity and the economy of such a production facility.
Now,
Furthermore, it is of decisive importance that a pulse emitted by the pulse emitter 13 onto the workpiece 2 impacts the latter within a contact time of about 200 ms in order to prevent any damping effect. Moreover, the pulse sensor 15 should be placed by the contact pressure-exerting device 19 (described in connection with
Furthermore, it is pointed out herewith that according to an advantageous embodiment, the detection system 12 (see
Now, the diagram of
The diagram shows that a clear distinction is possible, and that suitable measures can be implemented such as the separation of workpieces adhering to each other. Such measures can be carried out without time delay directly after the vibration has been evaluated.
The pulse emitter 13 has an impact tappet 17 that strikes the workpiece 2 seized by the gripping device 1 with a preset striking pulse with a preset energy. Furthermore, the vibration exciter 13 is provided sensor element 33, for example a piezo sensor 34. Said sensor element 33 serves for determining the acceleration of the striking tappet 17 for impacting the workpiece 2 and for determining the delay after the pulse has been applied.
The acceleration and delay data so determined are evaluated in a computer module 35 of the memory and/or analytical module 20, particularly a μ-controller; the determined acceleration and delay data are compared with reference data stored in a memory module 36, and following such comparison, it is possible to determine whether the gripping device 1 has picked up one single workpiece 2 or two or more workpieces 2 adhering to each other via an oil film 30 or a cutting burr etc., because a proportional or relative number formed based on the acceleration and delay of the striking tappet 17 is forming a clear analytical result.
In order to further refine the analytical results, it is possible, furthermore, to additionally equip the gripper head 6 equipped with the sensor element 33 as shown by dashed lines with the vibration sensor 15 described already above. For the evaluation as to whether only one single workpiece 2 or several of such workpieces have been picked up, both the result of the pulse analysis and the r4sult of the vibration analysis are used in order to achieve high analytical safety.
As the workpiece 2 is being lifted from the stack 3, values measured for the force are recorded by the pressure sensors 38 and transmitted via the measurement lines 39 to the memory and/or analytical module 20, and compared with stored weight data of the workpiece intended for further processing. It is possible to determine in this way whether the gripping device 1 picked up one single workpiece 2 or two or more workpieces 2 as shown by dashed lines, such workpieces sticking together due to, for example an oil film 37.
Furthermore, by comparing the data measured and supplied by the pressure sensors 38 as a result of the pressure forces occurring due to the weight of the workpiece 2 as indicated by the arrow 40 of at least two gripping means 7 acting on the workpiece 2, it is possible to determine whether the latter was gripped in the correct position in relation to a reference position. This is achieved via the position determined according to the force components or via a spacing 42 of the workpiece 2 with respect to the reference position.
As already described above, the memory and/or analytical module 20 is naturally connected via the cable line 31 with the controlling device 10 and the computer 22, and comprises the memory module 36. However, as stated above, wireless communication is possible as well.
In the interest of good order, it is finally noted that for the sake of better understanding of the structure of the gripping device, the latter or its components are partly shown untrue to scale and/or enlarged and/or reduced.
Furthermore, it is noted that the individual embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
A 1456/2002 | Sep 2002 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AT03/00282 | 9/25/2003 | WO | 8/12/2005 |