1. Field of the Invention
The present invention is directed towards a belt use in papermaking, more particularly, a grooved belt having rebates for use in the press section of a papermaking machine.
2. Description of the Prior Art
During the papermaking process, a cellulosic fibrous web is formed by depositing a fibrous slurry, that is, an aqueous dispersion of cellulose fibers, onto a moving forming fabric in the forming section of a paper machine. A large amount of water is drained from the slurry through the forming fabric, leaving the cellulosic fibrous web on the surface of the forming fabric.
The newly formed cellulosic fibrous web proceeds from the forming section to a press section, which includes a series of press nips. The cellulosic fibrous web passes through the press nips supported by a press fabric, or, as is often the case, between two such press fabrics. In the press nips, the cellulosic fibrous web is subjected to compressive forces which squeeze water therefrom, and which adhere the cellulosic fibers in the web to one another to turn the cellulosic fibrous web into a paper sheet. The water is accepted by the press fabric or fabrics and, ideally, does not return to the paper sheet.
The paper sheet finally proceeds to a dryer section, which includes at least one series of rotatable dryer drums or cylinders, which are internally heated by steam. The newly formed paper sheet is directed in a serpentine path sequentially around each in the series of drums by a dryer fabric, which holds the paper sheet closely against the surfaces of the drums. The heated drums reduce the water content of the paper sheet to a desirable level through evaporation.
It should be appreciated that the forming, press and dryer fabrics all take the form of endless loops on the paper machine and function in the manner of conveyors. It should further be appreciated that paper manufacture is a continuous process which proceeds at considerable speeds. That is to say, the fibrous slurry is continuously deposited onto the forming fabric in the forming section, while a newly manufactured paper sheet is continuously wound onto rolls after it exits from the dryer section.
Contemporary papermaking fabrics are produced in a wide variety of styles designed to meet the requirements of the paper machines on which they are installed for the paper grades being manufactured. Generally, they comprise a woven base fabric. The base fabrics may be woven from monofilament, plied monofilament, multifilament or plied multifilament yarns, and may be single-layered, multi-layered or laminated. The yarns are typically extruded from any one of the synthetic polymeric resins, such as polyamide and polyester resins, used for this purpose by those of ordinary skill in the paper machine clothing arts.
The woven base fabrics themselves take many different forms. For example, they may be woven endless, or flat woven and subsequently rendered into endless form with a woven seam. Alternatively, they may be produced by a process commonly known as modified endless weaving, wherein the widthwise edges of the base fabric are provided with seaming loops using the machine-direction (MD) yarns thereof. In this process, the MD yarns weave continuously back-and-forth between the widthwise edges of the fabric, at each edge turning back and forming a seaming loop. A base fabric produced in this fashion is placed into endless form during installation on a paper machine, and for this reason is referred to as an on-machine-seamable fabric. To place such a fabric into endless form, the two widthwise edges are brought together, the seaming loops at the two edges are interdigitated with one another, and a seaming pin or pintle is directed through the passage formed by the interdigitated seaming loops.
Further, the woven base fabrics may be laminated by placing at least one base fabric within the endless loop formed by another, and by needling a staple fiber batt through these base fabrics to join them to one another. One or more of these woven base fabrics may be of the on-machine-seamable type. This is now a well known laminated press fabric with a multiple base support structure.
In any event, the woven base fabrics are in the form of endless loops, or are seamable into such forms, having a specific length, measured longitudinally therearound, and a specific width, measured transversely thereacross.
Traditional press sections include a series of nips formed by pairs of adjacent cylindrical press rolls. Recently, the use of long press nips has been found to be advantageous over the use of nips formed by pairs of adjacent rolls. The longer the web can be subjected to pressure in the nip, the more water can be removed there, and, consequently, the less will remain to be removed through evaporation in the dryer section.
In long nip presses of the shoe type variety, the nip is formed between a cylindrical press roll and an arcuate pressure shoe. The latter has a cylindrically concave surface having a radius of curvature close to the cylindrical press roll. When roll and shoe are brought into close physical proximity, a nip is formed which can be five to ten times longer in the machine direction than one formed between two press rolls. This increases the so-called dwell time of the fibrous web in the long nip while maintaining the same level of pressure per square inch pressing force used in a two-roll press. The result of this long nip technology has been a dramatic increase in dewatering of the fibrous web in the long nip when compared to conventional roll nips on paper machines.
A long nip press of the shoe type requires a special belt. This belt is designed to protect the press fabric supporting, carrying, and dewatering the fibrous web from the accelerated wear that would result from direct, sliding contact over the stationary pressure shoe. Such a belt must be made with a smooth impervious surface that rides, or slides over the stationary shoe on a lubricating film of oil. The belt moves through the nip at roughly the same speed as the press fabric.
Belts of such variety are made, for example, by impregnating a woven base fabric, which takes the form of an endless loop, with a synthetic polymeric resin. Preferably, the resin forms a coating of some predetermined thickness on the inner surface of the belt, so that the yarns from which the base fabric is woven may be protected from direct contact with the arcuate pressure shoe component of the long nip press.
It is often desirable to provide the belt with a resin coating of some predetermined thickness on its outer surface as well as on its inner surface. Moreover, when the outer surface of the belt has a resin coating of some predetermined thickness, it permits grooves, blind-drilled holes or other cavities to be formed on that surface without exposing any part of the woven base fabric. These features provide for the temporary storage of water pressed from the web in the press nip. In fact, for some long nip press configurations the presence of some void volume, provided by grooves, blind-drilled holes or the like, on the outer surface of the belt is a necessity.
The present invention relates to shoe press belts having a plurality of grooves and rebates in the machine direction located in the resin coating on the outer surface thereof.
The present invention relates to a shoe press belt having formed on an outer surface a plurality of parallel machine direction grooves. Each groove has formed therein a plurality of conical rebates. The rebates are spaced along each groove with centers coincident with the groove center line. The positions of the rebates are stepped diagonally across parallel grooves.
A preferred embodiment of the invention will be described in the context of papermaking machine shoe press belts. However, it should be noted that the invention is applicable to process belts used in other sections of a paper machine, as well as to those used in other industrial settings where it is an advantage to have belts that facilitate dewatering.
The belt 1 of the present invention solves this problem by adding an array of conical rebates 2 to each groove 3. Advantageously, the rebate 2 is an additional void put in the belt 1 to allow water flow into the belt grooves 3 while belt 1 is still in the press nip, as shown in
Note in
In a further embodiment of the belt 1 according to the present invention, the shape of one or more of the conical rebates may be modified. As one example, the shape the conical rebate may be elongated along the machine direction of the groove. However, other types of shaping of the conical rebate are also contemplated. This shaping of the conical rebates may, for example, further enhance the previously described advantages of the inventive belt 1 (such as improved dewatering) in particular applications.
Rebate cutters 7 are aligned with groove cutters (not shown) and reciprocated in-process to give required spacing. The exact dimensions and profiles of the rebates 2 will depend upon each particular application. In this connection, it is noted that the conical rebate 2 having, for example, the above-described elongated shape, may be formed by simply delaying the cutters 7 at the bottom of their stroke typically for a fraction of a second. This would give the rebates 2 their oval or elongated shape as opposed to a pure cone, for instance.
There exist important differences between the present invention and that taught in U.S. Pat. No. 6,029,570 (“'570 patent”) The '570 patent teaches a belt having both grooves and blind drilled holes. Note however that the blind drilled holes are only coincident with at least one groove. Although the '570 patent teaches that the “grooves are coupled through the centers of the blind holes” (col. 2, lines 55–56), note that the '570 patent also teaches that the blind drilled holes are the main water storage volume, and that the grooves are almost unnecessary. Therefore, the holes do not function as conduits for water transfer into the grooves under load. Further, the blind drilled holes are cylindrical in shape and can extend beyond the depth of the grooves. More importantly, the pattern of holes to grooves is not important for the '570 belt to function.
The present invention is also different from that in foreign document DE 44 11 621. This document teaches a grooved belt having a so-called “surface void.” However, the '621 belt has, specifically, teardrop-shaped grooves which are purposely designed to close up completely under pressure and thus do not absorb water in the press nip, but rather upon leaving the nip in an attempt to control rewet of the paper sheet. Further, the '621 belt has “blind drilled” holes, not rebates, centered on the grooves. These “holes” extend only from the belt surface to the top of the specially designed groove as seen in FIGS. 3–5 and 8–10. Furthermore these “holes” are described in claim 2 as the “first area (28) beginning at the surface of the belt (20).” In the same claim, the groove is described as the “second area (30) with a greater cross section than the first area (28).”
Modifications to the above would be obvious to those of ordinary skill in the art, but would not bring the invention so modified beyond the scope of the present invention. The claims to follow should be construed to cover such situations.
Number | Name | Date | Kind |
---|---|---|---|
1925917 | Chalon | Sep 1933 | A |
4206258 | Balcar | Jun 1980 | A |
4446187 | Eklund | May 1984 | A |
4946731 | Dutt | Aug 1990 | A |
4978428 | Cronin et al. | Dec 1990 | A |
5208087 | Stigberg | May 1993 | A |
5543015 | Jermo | Aug 1996 | A |
6029570 | Matuschczyk | Feb 2000 | A |
6086719 | Hasegawa et al. | Jul 2000 | A |
6136151 | Davenport et al. | Oct 2000 | A |
6296738 | Ishii | Oct 2001 | B1 |
6416630 | Matuschczyk et al. | Jul 2002 | B1 |
6428874 | McGahern et al. | Aug 2002 | B1 |
6447648 | Slagowski et al. | Sep 2002 | B1 |
20020153116 | Honkalampi et al. | Oct 2002 | A1 |
20040069432 | Hansen | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
44 01 580 | Jun 1994 | DE |
44 01 580 | Jun 1994 | DE |
44 11 621 | Oct 1995 | DE |
196 37 477 | Mar 1998 | DE |
0 953 678 | Nov 1999 | EP |
1 136 618 | Sep 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20060011320 A1 | Jan 2006 | US |