This invention relates generally to dispergers for removing contaminants from recycled, or recovered, paper and packaging materials. More particularly, the present invention relates to disperger plate segments for use in such apparatus.
Recovered paper and packaging materials are subjected to several processes designed to remove ink, toner in the case of copy paper, and contaminants such as plastics generally referred to as “stickies”. The removal processes are not completely efficient and the residual ink, toner and stickies must be dispersed or else the stickies adhere to parts of the paper machine and cause holes or weak spots in new paper. Residual ink particles appear as specs in the reconstituted paper lowering its value considerably.
A machine called a disperger is used to reduce the size of the ink and stickie particles so that in subsequent paper machine operations paper qualities are minimally impacted. The general configuration of this machine is two circular discs facing each other with one disc (rotor) being rotated at up to 1800 rpm. The other disc is stationary (stator). On the faces of the discs are mounted plate segments having pyramids or teeth mounted in tangential rows. The rows are at radii chosen to allow the rotor and stator pyramids to intersect the plane between the discs so that the fiber passing from the center of the stator to the periphery of the discs must receive impacts from the rotor pyramids as they pass close to the stator pyramids. The clearance between rotor and stator pyramids is on the order of 1 to 12 mm so that the fibers are not cut but severely and alternately flexed. This action breaks the ink and toner particles into smaller particles and also breaks the stickie particles and it is thought that the fresh sticky surfaces collect fine fiber particles and are further passivated as smaller particles. Increasing the number of flexures the fibers experience has been shown to improve the particle reduction process. Adding more pyramids generally improves the efficiency of the dispersion process but the size of the pyramids that can be manufactured at reasonable costs limits this number.
Briefly stated, the invention in a preferred form is a disperger plate segment for removing contaminants from recycled, or recovered, paper and packaging materials. The segment comprises radially concentric rows of teeth, each row of teeth including teeth and channels disposed intermediate the teeth. Each of the teeth have an upper, top surface, a radially inner face extending from the channel base surface to the tooth top surface, and a radially outer face extending from the channel base surface to the tooth top surface. The teeth inner and outer faces each have a groove extending from the tooth top surface to a position intermediate the tooth top surface and the channel base surface.
The inner and outer faces of each tooth extend at an acute angle from the channel base surface to the top surface, such that the tooth has a truncated pyramid shape. A segment of the tooth top surface separates the groove of the inner face and the groove of the outer face.
Each of the teeth also has oppositely disposed leading and trailing edges. The groove of the inner face of each tooth and the groove of the outerface of each tooth define an additional leading edge and an additional trailing edge on the inner and outer faces of each tooth, respectively.
Alternatively, the invention is a disperger for removing contaminants from recycled, or recovered, paper and packaging materials. The disperger has relatively rotating, opposed first and second discs carrying plates formed by multiple segments. Each segment comprises radially concentric rows of teeth, each row of teeth including teeth and channels disposed intermediate the teeth. Each of the teeth have an upper, top surface, a radially inner face extending from the channel base surface to the tooth top surface, and a radially outer face extending from the channel base surface to the tooth top surface. The teeth inner and outer faces each have a groove extending from the tooth top surface to a position intermediate the tooth top surface and the channel base surface.
The rows of teeth of the plate carried by the first disc and the rows of teeth of the plate carried by the second disc intersect a plane disposed intermediate the first and second discs. The teeth of the plate carried by the first disc and the teeth of the plate carried by the second disc define a clearance gap having a value of 1 to 12 mm.
Each of the teeth also has oppositely disposed leading and trailing edges. The leading and trailing edges of each tooth of the plate carried by the first disc create an intersection with the leading and trailing edges of corresponding teeth of the plate carried by the second disc as the discs relatively rotate. The intersections flex fibers of the paper or packaging materials, breaking the contaminants into pieces. The grooves define an additional leading edge and an additional trailing edge on the inner and outer faces of each tooth, creating additional intersections.
The present invention may be better understood and its numerous objects and advantages will become apparent to those skilled in the art by reference to the accompanying drawings in which:
With reference to the drawings wherein like numerals represent like parts throughout the several figures, a portion of a substantially circular disperger plate in accordance with the present invention is generally designated by the numeral 10. Generally, a disperger has two circular discs facing each other with one disc (the rotor) 12 being rotated at up to 1800 rpm. The other disc (the stator) 12′ is stationary. Alternatively, both of the discs 12, 12′ may be rotors, with one of the discs rotating in a clockwise direction and the other rotor rotating in a counter-clockwise direction.
With reference to
The plate segment 14, 14′ is attached to the disc face 16, in any convenient or conventional manner, such as by bolts (not shown) passing through bores 18. Typically, one end of the bolt engages the disc 12, 12′ and at the other end has head structure bearing against a countersunk surface in the plate segment 14, 14′. The disc 12, 12′, only a portion of which is shown, has a center about which the disc rotates, and a substantially circular periphery. The disperger plate segments 14, 14′ are arranged side-by-side on the face 16 of the disc 12, 12′, to form a substantially annular disperger face, shown generally at 20, 20′. The face 20 forms a portion of a disperger region 21, when confronting the face 20′ of the disperger plate carried by the other disc.
Each disperger plate segment 14, 14′ has an inner edge 22 near the center of the disc 12, 12′, and an outer edge 24 near the periphery of the disc 12, 12′. The remainder of this description will refer to a single disperger segment 14, 14′, but it should be understood that all the segments 14, 14′ which define the annular plate, are preferably substantially similar. The plate segment 14, 14′ has, on its face 20, radially concentric rows 26 of pyramids or teeth 28. Since the disc 12, 12′ and plate segment 14, 14′ rotate, the refined material is directed, as a result of centrifugal force, radially outward from the inner edge 22 to the outer edge 24, predominantly through the channels 30 formed between adjacent teeth 28 in each of the rows 26.
The rows 26 are at radii 32 chosen to allow the rotor and stator teeth 28 to intersect the plane 34 between the discs 12, 12′ so that the fiber passing from the center of the stator to the periphery of the discs 12, 12′ must receive impacts from the rotor teeth 28 as they pass close to the stator teeth 28. The clearance between the rotor teeth 28 and the stator teeth 28 is on the order of 1 to 12 mm so that the fibers are not cut but severely and alternately flexed, or pinched, at they pass through the intersections 35 defined by the teeth 28 on the rotor 12 and the teeth 28 on the stator 12′. This action breaks the ink and toner particles into smaller particles and also breaks the stickie particles.
With reference to
Each groove 42, 44 further creates an additional leading edge 54 and an additional trailing edge 56, increasing the number of intersections 35 and the total intersection length of the rotor and stator. It is possible to calculate the number of intersections 35 or pinches created per time and the total length of intersections 35 or pinches per time and per revolution of the rotor. As shown in the table below, increasing the number of intersections 35 and the total intersection length increases the number of flexures the fibers experience as they pass from the center of the stator to the periphery of the discs 12, 12′.
It should be noted that the grooves 42, 44 on the rotor and stator segments 14 combine to increase the pinch meters per revolution by a factor of four (4). The open area that the fibers pass through at the periphery is unchanged since the actual number of teeth 28 is unchanged.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/542,126 filed Feb. 5, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3473745 | Soars, Jr. et al. | Oct 1969 | A |
5690286 | Dodd et al. | Nov 1997 | A |
5863000 | Gingras | Jan 1999 | A |
5893525 | Gingras | Apr 1999 | A |
5971307 | Davenport | Oct 1999 | A |
6032888 | Deuchars | Mar 2000 | A |
6311907 | Gingras | Nov 2001 | B1 |
6402071 | Gingras | Jun 2002 | B1 |
6592062 | Virving | Jul 2003 | B1 |
6607153 | Gingras | Aug 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050194482 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
60542126 | Feb 2004 | US |