Aspects of the disclosure generally relate to grooved wire and the fabrication of grooved wire. In particular, various aspects of the disclosure relate to apparatuses, systems, and methods for transforming standard round wire into grooved wire.
In the metallurgical industry, there is a need for improved apparatuses, systems, and methods for the processing of conventional round wire into alternative, resource-conscious and mechanically viable shapes.
The production of round wire has been a staple in metal manufacturing for centuries. Round wire lends itself advantageously to a spectrum of industries spanning from telecommunications to construction, in part because the symmetric shape exhibits uniform mechanical and electrical properties as the wire is traversed along an axial direction.
However, there is a considerable need for advancement in the apparatuses, systems, and methods dedicated to the manufacture of grooved wire.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosure. The summary is not an exhaustive overview of the disclosure. It is for illustrative purposes only and is not intended to limit or constrain the detailed description. The following summary merely presents some concepts of the invention in a simplified form as a prelude to the more detailed description provided below.
Aspects of the disclosure relate to improved apparatuses, systems, and methods for the processing of conventional round wire into alternative, resource-conscious and mechanically viable shapes.
In at least some examples described herein, a cassette comprising a set of rollers may be used to transform a standard round wire into a grooved wire. The set of rollers comprised within the cassette may include a first roller and a second roller. The first and second rollers, respectively, may comprise a groove-fabricating portion aligned circumferentially along an outer radial face of each roller. The groove-fabricating portions of the first and second rollers may further comprise a plurality of groove-forming protrusions for forming grooves on an outermost face of the standard round wire. The grooves formed on the standard round wire may be symmetric and may span the length of the wire as traversed along an axial direction of the wire.
In other embodiments, the cassette may include multiple sets of rollers wherein a first set of rollers forms grooves on the wire and a second set of rollers finishes or smooths the grooves formed by the first set of rollers. In still other embodiments, the cassette may include multiple sets of rollers wherein a first set of rollers forms grooves on the wire and a second set of rollers deepens the grooves formed by the first set of rollers
The details of these and other aspects of the disclosure are set forth in the accompanying drawings and descriptions below. Other features and advantages of aspects of the disclosure may be apparent from the descriptions and drawings.
These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, claims, and drawings. The present disclosure is illustrated by way of example, and not limited by, the accompanying figures in which like numerals indicate similar elements.
While this invention is susceptible of embodiments in many different forms, there are shown in the drawings and will herein be described in detail exemplary embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspects of the disclosure to the embodiments illustrated. It is to be understood that other embodiments may be utilized, and structural and functional modifications may be made, without departing from the scope and spirit of the present disclosure.
In the following description of the various embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration, various embodiments of the disclosure that may be practiced. It is to be understood that other embodiments may be utilized.
In the following description of various example structures according to the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example devices, systems, and environments in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, example devices, systems, and environments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “front,” “back,” “side,” “rear,” “upward,” “downward,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures or the orientation during typical use. Additionally, the term “plurality,” as used herein, indicates any number greater than one, either disjunctively or conjunctively, as necessary, up to an infinite number. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention. Also, the reader is advised that the attached drawings are not necessarily drawn to scale. Further, when the same reference number appears in more than one drawing, that reference number is used consistently in this specification and the drawings to refer to the same or similar parts throughout.
The following, in accordance with various aspects of the disclosure, provides apparatuses, systems, and methods for transforming standard round wire into grooved wire.
Cassette 100 may also include a plurality of sets of rollers (e.g., 112 & 114, 122 & 124). The sets of rollers may include upstream rollers (112, 114) positioned towards upstream entry point 102 and downstream rollers (122, 124) positioned towards downstream exit point 104. In some instances, the upstream and downstream rollers may be interchangeable and not dependent on location relative to upstream entry point 102 or downstream exit point 104. In other embodiments, cassette 100 may be operable with only one set of rollers (i.e., upstream rollers or downstream rollers). In such embodiments, the upstream or downstream rollers may be a single set of grooving rollers described in further detail below, and may function to transform the round wire into grooved wire in the manner as discussed herein. However, the upstream rollers and downstream rollers may also be operable in tandem to transform the round wire into grooved wire. When operated in tandem, the upstream rollers and downstream rollers may be grooving rollers and finishing rollers, respectively. In some embodiments the rollers 112, 114 may force wire through the cassette while in other embodiments the wire may be forced through the cassette by another mechanism.
The upstream set of rollers (112, 114) may be a set of grooving rollers and may include a first grooving roller 112 and a second grooving roller 114. The first grooving roller 112 and the second grooving roller 114 may be radially spaced 180 degrees apart and may be separated by a first distance corresponding to a length of a groove formed on the round wire. In other embodiments, the first grooving roller 112 and the second grooving roller 114 may not be separated by a first distance, and may instead be positioned relatively flush with each other.
The first grooving roller 112 may be configured to rotate in a first direction (e.g. clockwise, counterclockwise), and the second grooving roller 114 may be configured to rotate in a second direction opposite the first direction (e.g., counterclockwise, clockwise). The respective rotation of the first and second grooving rollers may draw, pull, and/or otherwise force the round wire into cassette 100 via upstream entry point 102.
The downstream set of rollers (122, 124) may be a finishing set of rollers and may include a first finishing roller 122 and a second finishing roller 124. Like the first grooving roller 112 and the second grooving roller 114, the first finishing roller 122 and the second finishing roller 124 may be radially spaced 180 degrees apart. Additionally, the first finishing roller 122 and the second finishing roller 124 may be offset by 90 degrees from the radial positioning of the first grooving roller 112 and the second grooving roller 114. For example, if the first grooving roller 112 and the second grooving roller 114 occupy the 0 and 180 degree marks, the first finishing roller 122 and the second finishing roller 124 may occupy the 90 and 270 degree marks. In some embodiments, the radial offset between the set of grooving rollers and the set of finishing rollers may be greater or less than 90 degrees. Like the first grooving roller 112 and the second grooving roller 114, the first finishing roller 122 and the second finishing roller 124 may be spaced apart by the first distance, or may be positioned relatively flush with each other.
Furthermore, the first finishing roller 122 may be configured to rotate in a first direction (e.g. clockwise, counterclockwise), and the second finishing roller 124 may be configured to rotate in a second direction opposite the first direction (e.g., counterclockwise, clockwise). The rotation of the first and second finishing rollers may push, expel, and/or otherwise force the round wire out of cassette 100 via downstream exit point 104. The first finishing roller 122 and the second finishing roller 124 may be configured to rotate in a direction corresponding to the direction of rotation of the first grooving roller 112 and second grooving roller 114, respectively. For example, if the first grooving roller 112 is rotating counterclockwise, the first finishing roller 122 may also rotate counterclockwise.
As stated above, in certain embodiments, the set of upstream rollers (e.g., the set of grooving rollers) and the set of downstream rollers (e.g., the set of finishing rollers) may be implemented in cassette 100 in tandem, or independently. In such an embodiment where only a single set of rollers is used, the set of rollers may be configured as grooving rollers and function to form grooves on the round wire.
As described in further detail below, each of the rollers comprised within cassette 100 (e.g., first grooving roller 112, second grooving roller 114, first finishing roller 122, second finishing roller 124) may include a groove-fabricating and/or wire-finishing portion depending on the function of the roller. For example, first grooving roller 112 and second grooving roller 114 may include a first groove-fabricating portion and a second groove-fabricating portion, respectively, for forming grooves on an outermost surface of the round wire as it is drawn, pulled, and/or otherwise forced into cassette 100. Similarly, first finishing roller 122 and second finishing roller 124 may include a first wire-finishing portion and a second wire-finishing portion, respectively, for smoothing and/or finishing the grooves made by the first and second grooving rollers on the outermost surface of the round wire as it is pushed, expelled, and/or otherwise forced out of cassette 100.
Roller 200 may be fabricated in a variety of materials and dimensions. For example, roller 200 may be made out of steel, tungsten carbide, or any material of the like, and may come in a variety of dimensions in order to accommodate the transformation of the round wire into grooved wire.
As shown in
The groove-fabricating or wire-finishing portion 230 may be oriented so as to engage the round wire W perpendicular to the axial direction of the wire. In such a configuration, the groove-fabricating portion 230 may be able to form grooves 302 and ridges 304 on an outermost surface of the wire along the axial or longitudinal direction of the wire. Furthermore, groove-fabricating portion 230 may elongate the round wire as grooves are formed.
Similarly, wire-finishing portion 230 may be able to finish, smooth, make symmetric, or change the shape of the grooves 302 and ridges 304 formed on the outermost surface of the wire along the axial or longitudinal direction of the wire. Such finishing as caused by wire-finishing portion 230 may also elongate the grooved wire.
As shown in greater detail in
In other embodiments, there may be greater or fewer groove-forming projections 232 and groove-forming depressions 234. The groove-forming projections 232 and groove-forming depressions 234 may be in a rounded, square, or triangular shape and may serve to form grooves of a similar shape on the round wire.
In the embodiment shown in
After engaging the set of upstream/grooving rollers 112, 114, wire W may subsequently engage the set of downstream/finishing rollers 122, 124 as shown in
As stated above, in other embodiments, wire W may be transformed into grooved wire through engagement with only one set of rollers. In such an instance, the set of rollers may be considered to be a set of upstream/grooving rollers (e.g., first grooving roller 112 and second grooving roller 114).
Wires W formed as described above may have certain advantages. For example, wires manufactured as described above may be about 8.6% lighter than a wire having the same outer diameter, or about 7% to about 10% lighter than a wire having the same outer diameter. This may reduce shipping costs and material costs and also may put a lower load on equipment using the wire. Additionally, arrangements discussed above may aid in reducing the complexity of wire grooving apparatuses by utilizing fewer rotational components arranged in serviceable orientations. The arrangements described herein include various mechanical components such as cassettes and rollers for forming grooves on an outermost surface of a round wire along an axial direction of the wire. The components may be added, omitted, rearranged, and/or modified without departing from the invention. Grooved wire as discussed above may have many uses including for example in shopping carts, baskets, shelving, hanging hooks, dishwasher racks, refrigerator racks, cooking racks, grills racks, coat hangers, rebar, and many other uses.
The foregoing descriptions of the disclosure have been presented for purposes of illustration and description. They are not exhaustive and do not limit the disclosure to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practicing of the disclosure.
The present application claims priority to U.S. Provisional Patent Application No. 62/299,690, filed Feb. 25, 2016, entitled “Grooved Wire and System and Method for Manufacturing Grooved Wire,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1940573 | Austin | Dec 1933 | A |
4087898 | Linne | May 1978 | A |
Number | Date | Country |
---|---|---|
509511 | Oct 1930 | DE |
0342403 | Nov 1989 | EP |
0342403 | Nov 1989 | EP |
0903186 | Mar 1999 | EP |
0903186 | Mar 1999 | EP |
Entry |
---|
May 11, 2017—(WO) International Search Report and Written Opinion—App. PCT/US2017/019364. |
Number | Date | Country | |
---|---|---|---|
20170246669 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62299690 | Feb 2016 | US |