This application is a National Stage of International Application No. PCT/EP2016/081867, filed Dec. 20, 2016, and entitled GROSS LEAK MEASUREMENT IN AN INCOMPRESSIBLE TEST ITEM IN A FILM CHAMBER, which claims the benefit of DE 10 2015 226 360.6, filed Dec. 21, 2015. This application claims priority to and incorporates herein by reference the above-referenced applications in their entirety.
The invention relates to a method for detecting a gross leak on an at least partially incompressible test object in a film chamber.
A film chamber is a special form of test chamber for receiving a test object to be leak-tested. The film chamber is characterized in that at least one wall region is made of a flexible material (film, foil). A test object to be leak-tested is placed inside the film chamber, and the film chamber is subsequently evacuated. During the evacuation of the film chamber, air is drawn out of the film chamber in the region outside the test object, whereby the flexible film chamber wall nestles against the test object. A particularly suitable film chamber is composed of two film layers that are placed against one another and enclose the test object and that are joined to one another in a gas-tight manner in the edge regions thereof. During the evacuation of the film chamber, the film is drawn toward the test object except for remaining dead volumes. The pressure curve inside the film chamber, in the region outside the test object, is then measured by way of a pressure sensor. When gas escapes from the test object through a leak in the test object, the correspondingly measured increase in pressure serves as an indication of a leak. The leakage rate can be measured based on the increase in pressure. For this purpose, the film chamber volume, which is to say the interior volume enclosed by the film chamber, must be known. The film chamber volume that is present after evacuation depends on the size and the shape of the test object. Dead volumes arise when the film does not nestle perfectly against the test object.
The film chamber itself gives off gas into the film chamber volume, for example through components outgassing from the film chamber wall. This results in an increase in pressure (offset pressure increase) inside the film chamber. This offset pressure increase and the dead volumes of the film chamber influence the measured leakage rate. This results in an error in the determination of the leakage rate. So as to avoid this error, conventionally a prior measurement is carried out using a tight test object to record the offset pressure increase and the dead volumes. At the most, the dead volumes can only be determined by way of a product-dependent calibration prior to the actual measurement. As soon as the test object is changed, for example in the case of a random sampling test, or as soon as the number of test objects changes, a prior product-dependent calibration is imprecise.
The German patent application number 10 2014 219 481.4, the content of which is hereby included in the present application by reference, describes joining the inner space of the film chamber, which is to say the film chamber volume enclosed by the film chamber, to a calibration volume enclosed by a calibration chamber in a gas-conducting manner. A calibration valve, which is used to close the gas conduction path between the film chamber and the calibration chamber during the evacuation of the film chamber, is provided between the film chamber and the calibration chamber. After the film chamber has been evacuated, and while the pressure change inside the film is being measured by way of the pressure sensor, the calibration valve is opened, wherein, upon opening of the calibration valve, the pressure inside the calibration chamber is higher or lower than inside the evacuated film chamber.
After the calibration valve has been opened, gas flows from the calibration chamber into the film chamber (or vice versa), resulting in a sudden pressure increase or drop inside the film chamber. This change in pressure may be referred to as an abrupt pressure stroke. The pressure stroke is dependent on the film chamber volume. In case of an empty film chamber, which is to say without a test object, this is the entire inner volume of the film chamber. When a test object is present in the film chamber, this is the remaining volume inside the film chamber in the region outside the substantially tight test object. Based on the pressure stroke it is possible, during each measurement, to exactly ascertain the respective current film chamber volume, and thus the leakage rate, from the pressure increase. A prior separate calibration measurement is then no longer required.
It is described that the film chamber volume is determined from the difference between the pressure in the calibration volume before the calibration valve is opened (known, preferably atmospheric, pressure) and the pressure inside the film chamber after the calibration valve has been opened.
An at least partially incompressible test object shall be understood to mean a test object that may be, for example, an at least partially rigid test object or a test object containing stable items, such as packaging comprising foodstuffs contained therein. The special feature of such test objects is that a major leak does not cause these to change the outer appearance thereof to the same extent as is the case with a compressible, which is to say dimensionally non-stable, fully or substantially compressible test object. Incompressible test objects may also be referred to as dimensionally stable. Especially in the case of a rigid test object, this does not change the outer shape thereof, even after complete evacuation. Gross leaks in particular are not identified with sufficient accuracy in such at least partially incompressible test objects, since during the evacuation phase all the gas present in the test object is drawn out, and consequently no gas remains during the measurement to generate any measurable increase in pressure.
It is the object of the invention to create an improved gross leak measurement on an at least partially incompressible test object in a film chamber.
The method according to the invention is defined by the features of claim 1.
The gross leak measurement takes place by comparing the change in pressure between the film chamber inside pressure prior to the same being connected to the calibration chamber in a gas-conducting manner and the film chamber inside pressure after the gas-conducting connection has been established between the film chamber and the calibration chamber in the case of an empty film chamber, which does not contain a test object, to the corresponding pressure difference in the case where an at least partially incompressible test object is present in the film chamber. In the case of a grossly leaking test object, which is to say a test object having a gross leak, the pressure difference is less than in the case of an empty film chamber or in the case of a tight test object or a test object having only a low leakage rate.
Typical values for the inner volume of the calibration chamber can range between 1 cm3 and 10 cm3 with a pressure inside the test chamber of approximately 1000 bar (atmospheric pressure) before the calibration valve is opened. Since the calibration chamber can be filled with ambient air, it may be necessary to determine the current air pressure using a suitable pressure gauge, and to accordingly correct the pressure difference that is present after the connection between the film chamber and the calibration chamber has been established.
The calibration chamber may be provided with a test leak having a known leakage rate. The inner volume of a grossly leaking rigid test object can be inferred from the increase in pressure resulting from the leakage rate of the test leak.
For faster leakage rate measurement, the pressure curve present in the film chamber after the calibration valve has been opened can be mathematically extrapolated based on an exponential function. This is in particular advantageous for detecting the pressure difference between the film chamber inner pressure before the calibration valve is opened and with full pressure equalization when the calibration valve is open. This is in particular advantageous when large test objects impede the gas flow inside the film chamber, causing the pressure equalization to take longer than when the film chamber is empty.
After the calibration valve has been opened, pressure equalization develops between the calibration volume (inner volume of the calibration chamber), which is initially subjected to the ambient pressure, and the film chamber volume, which has a considerably lower pressure. Depending on the nature and size of the test object, this pressure equalization takes place faster or more slowly. The final pressure to be expected once pressure equalization has taken place can be mathematically extrapolated based on an exponential function from at least two, and preferably three, consecutive measurement values of the film chamber pressure.
An exemplary embodiment of the invention will be described in greater detail hereafter based on the figures. In the drawings:
The film chamber 12 is composed of two film layers 14, 16, which enclose a test object 18 and are joined to one another in a gas-tight manner in the edge region of the test object 18. The film layers 14, 16 enclose a film chamber volume 20 in the interior of the film chamber 12. In
Via a gas line 22, the interior of the film chamber 12 is connected in a gas-conducting manner via an evacuation valve 24 to a vacuum pump 26, via a measuring valve 28 to a pressure sensor 30, via a vent valve 32 to the atmosphere surrounding the film chamber 12, and via a calibration valve 34 to a calibration chamber 36.
The calibration chamber 36 encloses a calibration volume, which initially is filled with air under atmospheric pressure. The calibration valve 34 is initially closed. The figures show the open state of a valve by way of a solid valve, and the closed state of a valve by a non-solid valve. In the first operating state according to
After the film chamber 12 has been evacuated (first operating state) and the measuring valve 28 has been opened (second operating state), the calibration valve 34 is now also opened. This third operating state is shown in
This pressure stroke Δp is shown in
Δp=(pG−pF).
Since the total gas volume in the film chamber 12 and in the calibration chamber 36 remains the same before and after the calibration valve has been opened, the following applies:
pG(VF+VV)=pFVF+pVVV,
where
Based on the pressure stroke Δp=pG−pF, it is possible to calculate the film chamber volume 20 as follows:
The pressure pG considered in the consideration of the pressure stroke Δp is preferably the final pressure pEnd that develops. The final pressure pEnd is the pressure that is present after the pressure equalization has taken place between the film chamber 12 and the calibration chamber 36, which is to say at the end of the settling process of the film chamber pressure after the calibration valve 34 has been opened.
The inner volume VInnen of the film chamber 12 when a test object 18 is present in the film chamber, such as an at least partially incompressible or even rigid and/or dimensionally stable test object, can be calculated as follows:
and if the developing final pressures PG1 and PG2 after pressure equalization are small compared to the pressure in the calibration volume pV, it can be calculated as follows:
where
The inner volume Vleer is determined by way of a one-time calibration using a known inner volume. For this purpose, a measurement is conducted with an empty chamber, and a measurement is conducted with a known inner volume VKal. The inner volume of the chamber is then determined as follows:
or when pG1, pG2<<pv
where
p(t)=(pEnd−pKam)×(1−e−t/Tau)+pKam,
where
Based on at least two consecutive pressure measurement values p2, p3, and preferably at least three consecutive pressure measurement values p1, p2, p3, the pressure curve p(t) can be extrapolated using the above formula. It is then not necessary to measure the pressure curve and wait until the final pressure pEnd has developed once the pressure equalization has taken place. Rather, it is possible to extrapolate the film chamber inner pressure even before the pressure equalization has taken place.
For identical intervals between the points in time t1, t2, and t2, t3, where t1 is the point in time at which the calibration valve 34 is opened, and t2 is between t1 and t3, it is then possible to calculate the final pressure pEnd as follows:
pEnd=(p2×p2−pKam×p2)/(2×p2−pKam−p3).
In this way, it is possible to calculate the final pressure pEnd that develops inside the film chamber before this final pressure develops with pressure equalization. Based on the final pressure thus calculated, the above-described pressure differences can be ascertained and compared to one another so as to identify a gross leak on an at least partially incompressible test object.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 226 360 | Dec 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/081867 | 12/20/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/108754 | 6/29/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3504528 | Weinberg et al. | Apr 1970 | A |
6082184 | Lehmann | Jul 2000 | A |
8201438 | Thornberg | Jun 2012 | B1 |
20010003917 | Sagi et al. | Jun 2001 | A1 |
20060277975 | Barcan | Dec 2006 | A1 |
20140311222 | Decker | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1519549 | Aug 2004 | CN |
101424581 | May 2009 | CN |
104040317 | Sep 2014 | CN |
104718442 | Jun 2015 | CN |
2458137 | Jun 1976 | DE |
19513199 | Oct 1995 | DE |
102011086486 | May 2013 | DE |
102014219481 | Mar 2016 | DE |
Number | Date | Country | |
---|---|---|---|
20180372579 A1 | Dec 2018 | US |