Ground fault circuit breaker

Information

  • Patent Grant
  • 6442006
  • Patent Number
    6,442,006
  • Date Filed
    Tuesday, December 7, 1999
    25 years ago
  • Date Issued
    Tuesday, August 27, 2002
    22 years ago
Abstract
A ground fault circuit breaker for use on a circuit having at least one line conductor and a neutral conductor includes a first transformer having a first toroidal core and a second transformer having a second toroidal core. The first and second cores are arranged concentrically with one another on a printed circuit board, which is disposed with a compact circuit breaker housing. The line and neutral conductors pass through both transformer cores.
Description




BACKGROUND OF THE INVENTION




This invention relates generally to ground fault current sensing and interrupting devices and more particularly to compact ground fault circuit breakers for residential applications.




Ground fault circuit breakers for alternating current distribution circuits are commonly used to protect people against dangerous shocks due to line-to-ground current flow through someone's body. Ground fault circuit breakers must be able to detect current flow between line conductors and ground at current levels as little as 5 milliamperes, which is much below the overload current levels required to trip conventional circuit breakers. Upon detection of such a ground fault current, the contacts of the circuit breaker are opened to deenergize the circuit.




A differential current transformer, referred to as the ground fault or sense transformer, is normally used to sense these ground fault currents. The sense transformer has as its primary windings the conductors of the distribution circuit being protected, which are encircled by the core, and a multi-turn winding wound on the core. (In the case of a one pole breaker, the line and neutral conductors both go through the sense transformer core, and in the case of a two pole breaker, the two line conductors and the neutral conductor all go through this core. For the sake of example, the following discussion relates to a one pole breaker.) During normal conditions, the current flowing in one direction through the line conductor will return in the opposite direction through the neutral conductor. This produces a net current flow of zero through the transformer, and the multi-turn winding provides no output. However, if a fault (that is, a leakage path) is established between the line conductor and ground, return current will bypass the transformer and flow through the ground back to the grounded side of the source supplying the circuit. Thus, more current will be flowing in one direction through the transformer than in the other, producing a current imbalance. Such a current imbalance produces uncancelled flux in the sense transformer's core, resulting in an output from the multi-turn winding that trips the circuit breaker mechanism.




A ground fault circuit breaker must also trip upon occurrence of an inadvertent short between the neutral conductor and ground that may occur due to a fault such as a wiring error by the electrician installing the circuit breaker. Such a leakage path on the load side of the sense transformer does not in itself produce a shock hazard; however, the occurrence of a grounded neutral at the same time as a ground fault on a line conductor will cause the ground fault circuit breaker to be less sensitive in detecting ground fault currents, thereby creating a hazardous situation. A neutral-to-ground fault reduces the sensitivity of the sense transformer as a ground fault sensing device because such a fault tends to provide a return current path via the neutral conductor for a large portion of the line-to-ground leakage current. To the extent that line-to-ground leakage current returns to the source via the neutral conductor, it escapes detection by the sense transformer. Consequently, the sense transformer may not respond to a hazardous ground fault.




An additional current transformer, referred to as the ground neutral transformer, is commonly used to detect neutral-to-ground faults. In one known application, the ground neutral transformer comprises a core that encircles the neutral conductor (the ground neutral core can, but need not, encircle the line conductor too) and has a multi-turn winding wound thereon. When a neutral-to-ground short or fault occurs, an inductively coupled path between the sense transformer and the ground neutral transformer is closed. The resultant coupling produces an output in the ground fault sense transformer that trips the circuit breaker mechanism.




Such circuit breakers provide generally satisfactory operation. However, because of the requirement for two current transformers, it can be difficult to package both transformers, together with the large #12 or #14 conductors and a printed circuit board (which contains standard circuit breaker circuitry), into the small allotted volume provided in existing circuit breaker housings. This is particularly the case in residential applications for which compact, half-inch circuit breakers are now available. In addition, because of the compactness of these circuit breakers, portions of the conductors are located very close to the transformer cores. It has been noted that when this occurs, the core material may saturate near the point of closest approach. If a region of the sense transformer core becomes saturated, a large asymmetry in its magnetic properties is introduced and this will degrade the sense transformer's ability to detect ground fault currents. This problem is particularly acute when the transformer core is made from materials, such as ferrite, which have relatively low saturation magnetizations. Use of materials such as ferrite is preferred because they are less expensive than high saturation core materials such as those available under the trademark Permalloy.




Accordingly, there is a need for a compact ground fault circuit breaker arrangement that is resistant to saturation problems.




SUMMARY OF THE INVENTION




The above-mentioned need is met by the present invention which provides a circuit breaker for use with a circuit having one or more line conductors and a neutral conductor. The circuit breaker includes a first transformer having a first toroidal core and a second transformer having a second toroidal core. The first and second cores are arranged concentrically with one another on a printed circuit board, which is disposed with a compact circuit breaker housing. The line and neutral conductors pass through both transformer cores.




The present invention and its advantages over the prior art will become apparent upon reading the following detailed description and the appended claims with reference to the accompanying drawings.











DESCRIPTION OF THE DRAWINGS




The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the concluding part of the specification. The invention, however, may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:





FIG. 1

is a schematic view of an exemplary one pole ground fault circuit breaker of the present invention.





FIG. 2

is a top view in partial cut-away of an exemplary ground fault circuit breaker of the present invention.





FIG. 3

is a cross-sectional view of a portion of the ground fault circuit breaker taken along line


3





3


of FIG.


2


.











DETAILED DESCRIPTION OF THE INVENTION




Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views, an exemplary embodiment of a one pole ground fault circuit breaker


10


of the present invention is shown schematically in FIG.


1


. The circuit breaker


10


is connected in a two-way alternating current circuit line that delivers electrical energy from a power source (not shown) to a load


12


. The circuit line has a line conductor


14


and a neutral conductor


16


connected to earth and a ground wire GND at the power source as is known in the art. A sense transformer


18


is provided for detecting the presence of a ground fault. The sense transformer


18


is a differential current transformer and includes a toroidal magnetic core


20


that encircles both the line conductor


14


and the neutral conductor


16


, so that the conductors


14


and


16


function as the single turn winding of the sense transformer


18


. The transformer


18


also includes a multi-turn winding


22


wound on the core


20


.




The load current flows in opposite directions in conductors


14


and


16


so that, under normal conditions, the magnetic effects of those currents are mutually canceling in relation to the magnetic core


20


. Consequently, there is no output from the multi-turn winding


22


under normal conditions. However, in the event of even a slight leakage current path developing between the line conductor


14


and ground, that leakage current does not return to the source via the neutral conductor


16


. The resulting current imbalance due to the leakage produces magnetic flux in the core


20


that is not cancelled so that the multi-turn winding


22


produces an output that is fed to conventional electronic circuitry


24


. In response to the multi-turn winding output, the electronic circuitry


24


provides an output signal to a trip device


26


, and the trip device


26


opens the contact


28


of a circuit interrupter for deenergizing the conductors


14


and


16


supplying the load


12


. The trip device


26


may be a solenoid for operating a contact-releasing mechanism, or it may be a relay or a contactor for controlling the opening of the contact


28


. The electronic circuitry


24


can be any type of such circuitry known in the art.




As mentioned above, it is possible that a short circuit or a low resistance connection may develop between the neutral conductor


16


and ground. While such a neutral-to-ground fault would not of itself represent a hazardous condition, it would tend to reduce the sense transformer's sensitivity in detecting ground fault currents. Accordingly, a ground neutral transformer


30


is provided to detect neutral-to-ground faults. The ground neutral transformer


30


includes a toroidal magnetic core


32


that encircles both the line conductor


14


and the neutral conductor


16


. When a low resistance connection exists between the neutral and ground lines on the load side of the breaker


10


, the neutral and ground conductors comprise a single turn loop between the two cores


20


and


32


, thereby linking the multi-turn winding


34


on core


32


and the multi-turn winding


22


on core


20


.




There is no output from the multi-turn winding


34


under normal conditions. However, when a neutral-to-ground short or fault occurs, an inductively coupled positive feedback path between the sense transformer


18


and the ground neutral transformer


30


is closed. This causes the multi-turn winding


34


to produce an oscillatory output in the electronic circuitry


24


. In response, the electronic circuitry


24


provides an output signal to the trip device


26


, and the trip device


26


opens the contact


28


for deenergizing the conductors


14


and


16


.




As illustrated in

FIGS. 2 and 3

, circuit breaker


10


includes a housing


36


that contains all of the components of the circuit breaker


10


. The housing


36


can be any size that fits into standard circuit breaker panels, and preferably is the compact, half-inch housing now being used to conserve panel space. In addition, the housing


36


has sufficient rigidity and strength to withstand the current interruption process and provides for insulation and isolation of the current path. Suitable housing materials include molded insulated materials such as glass-polyester or thermoset composite resins. Other housing materials can also be used. The housing


36


has external connectors


15


and


17


provided thereon for making electrical connection with the line conductor


14


and the neutral conductor


16


, respectively.




A printed circuit board


38


, which contains the electronic circuitry


24


(not shown in

FIGS. 2 and 3

for clarity of illustration), is disposed in the housing


36


. Both the sense transformer


18


and the ground neutral transformer


30


are mounted directly on the printed circuit board


38


. As mentioned above, the sense transformer


18


has a toroidal core


20


with the multi-turn winding


22


wound thereon, and the ground neutral transformer


30


has a toroidal core


32


with the multi-turn winding


34


wound thereon. Both cores


20


and


32


are fabricated using a magnetic material, preferably a relatively inexpensive core material such as iron or ferrite. The multi-turn windings


22


and


34


(not shown in

FIG. 3

for clarity of illustration) are electrically connected to the electronic circuitry


24


on the printed circuit board


38


in a conventional manner.




The respective toroidal cores


20


and


32


of the two transformers


18


and


30


are arranged concentrically with one another so as to consume less total space in the interior of the housing


36


. The line conductor


14


and the neutral conductor


16


both extend through the centers of the cores


20


and


32


in order to function as one winding of the two transformers


18


and


30


. The two conductors


14


and


16


also pass through an aperture


40


(

FIG. 3

) that is formed in the printed circuit board


38


and aligned with the cores


20


and


32


. Thus, within the housing


36


, the conductors


14


and


16


extend from the respective connectors


15


and


17


, through the cores


20


and


32


and the aperture


40


, and to a second set of respective connectors


15


and


17


. This means that the conductors


14


and


16


not only pass through the centers of the cores


20


and


32


, but also cross over and under the cores


20


and


32


as well. The contact


28


is also connected in series in the line conductor


14


so as to make or break the circuit as conditions require. The contact


28


and trip device


26


, which are conventional components and not shown in

FIGS. 2 and 3

, are located in the end of the housing


36


opposite the transformers


18


and


30


. Shown in

FIG. 2

is a conventional toggle switch


42


for resetting, or manually opening, the circuit breaker


10


.




The transformers


18


and


30


can be arranged either with the ground neutral core


32


being disposed radially inside of the sense core


20


, as shown in the Figures, or with the sense core


20


being disposed radially inside of the ground neutral core


32


. In one embodiment of the present invention, however, it is preferred that the ground neutral core


32


is the smaller, inner core, and the sense core


20


is the larger, outer core. With this arrangement, the sense core


20


is physically located farther away from the portion of the conductors


14


and


16


passing through the transformers


18


and


30


; the ground neutral core


32


prevents the conductors


14


and


16


from approaching the inner surface of the sense core


20


. This spacing is advantageous in that it greatly reduces the possibility that the near-field magnetic field produced by the conductors


14


and


16


will couple to the sense core


20


and thereby degrade the sense transformer's capability to detect ground faults. Furthermore, by being located between the conductors


14


and


16


and the sense core


20


, the ground neutral core


32


provides some shielding of the sense core


20


so that the near-field magnetic field is attenuated even more than it would be by spacing alone.




Although the ground neutral core


32


is close to the conductors


14


and


16


and unshielded, saturation does not adversely affect its operation to the extent that it would the sense core


20


. The sense transformer


18


must be able to detect a current imbalance as little as 5 milliamperes in the presence of hundreds of amperes of current. Thus, the sense transformer


18


must be very sensitive and is thus very susceptible to core saturation. On the other hand, the ground neutral transformer


30


does not require a high sensitivity and is accordingly not very susceptible to saturation.




The conductors


14


and


16


do make a close approach to the sense core


20


where they cross over and under the cores


20


and


32


. Although in the ideal case, the near-field magnetic fields of the conductors


14


and


16


where they pass the radius of the outer sense core


20


would cancel, it is likely that in practice these fields will not cancel precisely. To alleviate any effects from these fields, magnetic shielding is disposed between the sense core


22


and the conductors


14


and


16


. Specifically, two rings


44


and


46


are placed above and below the sense core


20


. The rings


44


and


46


are positioned adjacent to the opposing sides of the sense core


20


so as to be disposed between the sense core


22


and the portion of the conductors


14


and


16


passing over and under the sense core


22


. As can be seen in

FIG. 3

, the height of the sense core


20


is slightly less than the height of the ground neutral core


32


to accommodate the rings


44


and


46


. The rings


44


and


46


have substantially the same radius as the sense core


20


so as to be coextensive therewith (a portion of the upper ring


44


is shown cut-away in

FIG. 2

to reveal the sense core


20


underneath). The rings


44


and


46


are preferably made of a high permeability magnetic material such as steel or iron.




Although the present invention has been described in terms of a one pole circuit breaker, the present invention is also applicable to other breakers such as two pole and three phase breakers. For instance, in the case of a two pole breaker, both line conductors and the neutral conductor would pass through the concentric transformer cores.




The foregoing has described a ground fault circuit breaker having concentric transformer cores and which is resistant to stray field coupling problems. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention as defined in the appended claims.



Claims
  • 1. A circuit breaker for use with a circuit having at least one line conductor and a neutral conductor, said circuit breaker comprising:a first transformer having a first toroidal magnetic core wherein said first transformer comprises a sense transformer; a second transformer having a second toroidal magnetic core wherein said second transformer comprises a ground neutral transformer, said first and second toroidal magnetic cores are arranged concentrically with one another wherein said ground neutral transformer is disposed radially inside of said sense transformer; and magnetic shielding disposed between said first toroidal magnetic core and said line and neutral conductors.
  • 2. The circuit breaker of claim 1 wherein said magnetic shielding includes a first ring of magnetic material located adjacent to one side of said first toroidal magnetic core and a second ring of magnetic material located adjacent to an opposite side of said first toroidal magnetic core.
  • 3. The circuit breaker of claim 2 wherein said second toroidal magnetic core has a greater cross-sectional area than said first toroidal magnetic core.
  • 4. A ground fault circuit breaker for use with a electrical circuit having at least one line conductor and a neutral conductor, said ground fault circuit breaker comprising:a housing; a printed circuit board disposed in said housing, said printed circuit board having an aperture formed therein; a sense transformer disposed in said housing and mounted on said printed circuit board, said sense transformer having a first toroidal magnetic core; and a ground neutral transformer disposed in said housing and mounted on said printed circuit board, said ground neutral transformer having a second toroidal magnetic core which is arranged concentrically with said first toroidal magnetic core, wherein said line and neutral conductors extend through said aperture, said first toroidal magnetic core, and said second toroidal magnetic core.
  • 5. The ground fault circuit breaker of claim 4 wherein said ground neutral transformer is disposed radially inside of said sense transformer.
  • 6. The ground fault circuit breaker of claim 5 further comprising magnetic shielding disposed between said first toroidal magnetic core and said line and neutral conductors.
  • 7. The ground fault circuit breaker of claim 6 wherein said magnetic shielding includes a first ring of magnetic material located adjacent to one side of said first toroidal magnetic core and a second ring of magnetic material located adjacent to an opposite side of said first toroidal magnetic core.
  • 8. The ground fault circuit breaker of claim 7 wherein said second toroidal magnetic core has a greater cross-sectional area than said first toroidal magnetic core.
US Referenced Citations (11)
Number Name Date Kind
4000445 Wilson Dec 1976 A
4053815 Sircom Oct 1977 A
4180841 Engel Dec 1979 A
4623865 Kiesel et al. Nov 1986 A
5075663 Lim Dec 1991 A
5400006 Cardozo Mar 1995 A
5774320 Seymour et al. Jun 1998 A
5828282 Tiemann Oct 1998 A
5889450 Kim et al. Mar 1999 A
5917686 Chan et al. Jun 1999 A
6111489 Tiemann Aug 2000 A