This invention relates in general to safety and protection circuits, and in particular to relay configurations in such protection circuits and electrical devices utilizing the same.
A ground fault circuit interrupter (GFCI) device typically includes a monitoring circuit and a switching device, such as a solenoid or a relay. A GFCI device may be implemented in power outlets, extension cords, and other power distribution devices. Accordingly, the dimensions of the GFCI device are often considered as a design factor. The configuration of the GFCI monitoring circuitry and the switching device contributes to the overall size of the GFCI device. A novel relay configuration in response to such design factors is thus disclosed.
The GFCI device 10 is operable to de-energize a circuit in response to the detection of a ground fault condition at an AC load. Control circuitry 30 is operable to monitor a current imbalance in the load side phase and neutral terminals 18 and 20. The control circuitry 30 may comprise a microprocessor, or alternatively may comprise an analog or digital logic circuit. An exemplary control circuit 30 is the Fairchild Semiconductor RV4145 Ground Fault Interrupter Controller and associated application circuitry.
The control circuitry 30 typically utilizes a sensing device 32, such as a differential current transformer, to measure the current imbalance between the load side phase and neutral terminals 18 and 20. When the current imbalance exceeds a threshold, the control circuitry 30 opens the contact 34 and 36 to enter a de-energized state that isolates a load connected to the load side phase and neutral terminals 18 and 20 from the power source on the line side phase and neutral terminals 12 and 14. The current imbalance threshold typically depends on the rating, or class, of the GFCI device 10. A Class A GFCI device, for example, trips when the ground fault current exceeds 6 mA, and a Class B GFCI device trips when the ground fault current exceeds 20 mA.
A pair of first and second stationary contacts 112 and 114 may be mounted on the second side 110 of the circuit board 100. The stationary contacts 112 and 114 are connected to the load side phase and neutral terminals 18 and 20, respectively, via electrical connections 116 and 118. In the example shown in
A magnetic relay device 200 is mounted on the first side 108 of the circuit board 100. A relay surface 202 is aligned with the opening 104 in the circuit board 100. In the example shown, the relay surface 202 is cylindrical about an axis 208 and extends through the opening 104 so that it is located below the second side 110 of the circuit board 100. The magnetic relay device 200 may comprise a coil wrapped around a metal core encased in a bobbin 204. Selective energization of the magnetic relay device 200 by the control circuitry 30 causes the magnetic relay device 202 to generate a magnetic field that draws an armature assembly 300 toward the relay surface 202.
A frame 400 may be used to secure the magnetic relay device 200 on the first side 108 of the circuit board 100. The frame 400 may comprise an extension 404 that penetrates through the circuit board 100 and upon which the armature assembly 300 is pivotally mounted.
The armature assembly 300 comprises a metal member 302 that defines first and second recesses 304 and 306 and an armature surface region 308. The first and second recesses 304 and 306 receive first and second projections 406 and 408 of the extension 404 so that the metal member 302 is pivotally mounted on a pivot surface 410 of the extension 404.
An insulating bridge 332 is mounted on the lower side of the metal member 302. Mounted on the bridge 332 are a pair of first and second reeds 334 and 336. In the example shown, the first reed 334 included reed sections 316, 318, 320 and 322, and the second reed comprises reed sections 324, 326, 328, and 330. Each reed 334 and 336 comprises a conductive material, such as copper alloy, and the reed sections are defined by bends between each reed section.
The reed sections 320 and 328 have mounted thereon armature contacts 312 and 314, respectively. When the armature assembly 300 is pivotally mounted on the extension 404, the armature contacts 312 and 314 are aligned with the stationary contacts 112 and 114. The armature contacts 312 and 314 may thus pivotally engage the stationary contacts 112 and 114 as the armature assembly 300 pivots on the extension 404. Accordingly, the armature assembly 300 may pivotally move into an engaged position when the armature contacts 312 and 314 contact the stationary contacts 112 and 114, as shown in
An insulator 338 may also interpose the bridge 332 and the metal member 302. The insulator 338 may comprise an insulative plastic member that covers the cross-sectional area of the metal member 302. The insulator 338 prevents shorting between the metal member 302 and the reeds 334 and 336.
The frame 400 may also comprise a frame extension 402 that is aligned with an armature extension 310 and the opening 106 in the circuit board 100. A biasing device, such as a spring 500, may be connected to the armature extension 310 and the frame extension 402. The spring 500 imparts an upward force on the armature extension 310 so that the armature assembly 300 is pivotally biased out of the engaged position.
An arc shield 600 may be mounted on the second side 110 of the circuit board 100 to provide arc shielding of the stationary contacts 112 and 114 and the armature contacts 312 and 314. The arc shield 600 may also comprise a shield extension 602 positioned relative to the armature contacts 312 and 314 to limit the displacement of the armature contacts 312 and 314 from the stationary contacts 112 and 114 when the armature assembly 300 is biased out of the engaged position. In the example shown, the shield extension 602 engages reed sections 320 and 328 to limit the displacement of the armature contacts 312 and 314 from the stationary contacts 112 and 114.
The reed sections 322 and 330 are electrically connected to the line side phase and neutral terminals 12 and 14, respectively. In one embodiment, the reed sections 322 and 330 are connected to line side phase and neutral terminals 12 and 14 by a pair of flexible copper rope wires.
In operation, the control circuitry 30 on the printed circuit board 100 monitors for a current imbalance between the phase and neutral lines. The current imbalance may be monitored relative to the line side phase and neutral terminals 12 and 14 or the load side phase and neutral terminals 18 and 20. As long as the current imbalance is below a threshold, the control circuitry 30 will energize the magnetic relay device 200.
The energization of the magnetic relay device 200 generates a magnetic field that overcomes the biasing force imparted by the spring 500 and draws the armature surface 308 of the armature assembly 300 toward the relay surface 202. The movement of the armature surface 308 towards the relay surface 202 causes the armature assembly 300 to pivotally move into the engaged position.
In one embodiment, the armature contacts 312 and 314 engage the stationary contacts 112 and 114 before the armature surface 308 contacts the relay surface 202. After the armature contacts 312 and 314 engage the stationary contacts 112 and 114, the armature surface 308 continues to move toward the relay surface 202 until the two surfaces contact. The additional pivotal movement of the armature surface 308 is accommodated by a slight flexing of the first and second reeds 334 and 336.
If the current imbalance is above the threshold, the control circuitry 30 will de-energize the magnetic relay device 200. The magnetic field is thus eliminated and the biasing force imparted by the spring 500 pivotally moves the armature assembly 300 out of the engaged position, which isolates the AC load on the load side phase and neutral terminals 18 and 20 from the line side phase and neutral terminals 12 and 14.
The GFCI device 10 disclosed herein may be implemented in a variety of electrical devices for ground fault protection. For example, the GFCI device of
This written description sets forth the best mode of the claimed invention, and describes the claimed invention to enable a person of ordinary skill in the art to make and use it, by presenting examples of the elements recited in the claims. The patentable scope of the invention is defined by the claims themselves, and may include other examples that occur to those skilled in the art. Such other examples, which may be available either before or after the application filing date, are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2539547 | Mossman et al. | Jan 1951 | A |
3878489 | Rothweiler | Apr 1975 | A |
4149131 | Kawamura et al. | Apr 1979 | A |
4151496 | Imai et al. | Apr 1979 | A |
4254392 | Prohaska et al. | Mar 1981 | A |
4350856 | Shiratori et al. | Sep 1982 | A |
4400761 | Hayden et al. | Aug 1983 | A |
4495480 | Martin et al. | Jan 1985 | A |
4507709 | Morris et al. | Mar 1985 | A |
4533889 | Knight | Aug 1985 | A |
4893101 | Robitaille | Jan 1990 | A |
4978935 | Hoffman et al. | Dec 1990 | A |
5173673 | Weigand et al. | Dec 1992 | A |
5563756 | Ignasiak | Oct 1996 | A |
5568344 | Gernhardt et al. | Oct 1996 | A |
5661623 | McDonald et al. | Aug 1997 | A |
5680287 | Gernhardt et al. | Oct 1997 | A |
5864455 | Gernhardt et al. | Jan 1999 | A |
5933063 | Keung et al. | Aug 1999 | A |
5943199 | Aromin | Aug 1999 | A |
6081176 | Dittmann et al. | Jun 2000 | A |
6515564 | Leopold et al. | Feb 2003 | B2 |
6580344 | Li | Jun 2003 | B2 |
6738250 | Joseph et al. | May 2004 | B2 |
6788176 | Schmelz | Sep 2004 | B2 |
20030102944 | Leopold et al. | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060044090 A1 | Mar 2006 | US |