This invention relates generally to ground freezing which involves the application of refrigerant to subterranean pipes. More specifically, the invention is directed to a ground freezing pipe system which is specially arranged to accommodate thermal contraction of a feed pipe that delivers refrigerant to the base area of the bore in which the pipes are installed.
Artificial ground freezing is a technique that has been used for a variety of purposes. Most commonly, ground freezing is used to provide support or containment for excavations or to provide subterranean barriers against water seepage or the spreading of contaminants. Frozen underground barriers have also been formed to create impermeable zones for use in the extraction or processing of minerals.
A typical ground freezing system involves drilling a bore in the earth and lining it with a steel freeze pipe. Refrigerant is pumped to the base area of the freeze pipe through a smaller feed pipe that extends within the freeze pipe. As the refrigerant flows upwardly within the freeze pipe, it extracts heat from the earth around the bore and eventually freezes the interstitial water to create an area of frozen soil that can exhibit compressive strength as great as some types of concrete. a number of bores are strategically situated such that the frozen zones from adjacent bores merge to form a continuous barrier.
In some ground freezing applications, it is necessary to create frozen barriers that extend to considerable depths. For example, ground freezing to depths of 1000 feet or more has been achieved. However, the need to freeze the ground to substantial depths leads to complications. One example is that thermal contraction effects become increasingly pronounced as the pipes increase in length. The feed pipes are typically constructed of high density polyethylene (HDPE). HDPE has a relatively large coefficient of thermal expansion, so long pipes contract significantly when cooled by the refrigerant. As a result, the bottom discharge end of the pipe can rise so much that the lower end portion of the freeze pipe fails to receive refrigerant. Then, the lower part of the bore remains unfrozen.
Although metals such as steel contract much less than HDPE due to thermal effects, such metals are also much heavier and must be supported from the bottom. However, when long metal feed pipes are cooled, they contract enough to rise above conventional bottom support systems such that the pipe weight is then borne by a fitting at the top end of the feed pipe. This can exert undue stress on the top fitting and cause the feed pipe to detach from it, resulting in a structural failure.
The present invention provides a novel solution to the problem of feed pipe thermal contraction in a ground freezing system. In accordance with the invention, the feed pipe is constructed of metal, preferably steel, so that its thermal contraction is much reduced compared to HDPE pipes. To accommodate the thermal contraction that does occur, a resilient mounting element such as a compression spring supports the feed pipe at the bottom of the bore. The spring or other resilient mounting structure is able to expand as the lower end of the feed pipe is drawn upwardly due to thermal contraction. The mounting system is thus able to maintain support of the feed pipe as thermal contraction occurs so that undue stresses are not exerted at the top fitting of the pipe system.
Other and further objects of the invention, together with the features of novelty appurtenant thereto, will appear in the course of the following description.
In the accompanying drawing which forms a part of the specification and is to be read in conjunction therewith:
The feed pipe 18 is supported at its lower end by a resilient element which may take the form of a compression spring 22 interposed between the base 16 of the bore 10 and the lower end 20 of the feed pipe. The spring 22 may be a conventional coiled compression spring. The spring 22 is constructed such that it is in a state of compression when the feed pipe 18 is not subjected to the cooling effects of refrigerant. The spring 22 is compressed between the base 16 of bore 10 and the feed pipe 18 in order to support the weight of the feed pipe. The spring 22 is able to expand in order to maintain support of the weight of the feed pipe 18 if the feed pipe contracts such that its lower end 20 rises due to thermal contraction.
The upper end of the feed pipe 18 extends through a fitting 23 on the top end of the freeze pipe 14. The upper end of pipe 18 is connected through a valve 24 with a supply hose 26. The supply hose 26 extends from a suitable source of refrigerant (not shown) and is able to direct the refrigerant from the hose 26 through valve 24 to the feed pipe 18.
At a location above the level of the ground surface 12, the freeze pipe 14 is provided with a horizontal discharge pipe 28 on one side. The discharge pipe 28 connects through a valve 30 with a discharge hose 32 which directs refrigerant from the freeze pipe to a refrigeration plant or other apparatus that may cool the refrigerant for use in another bore.
In operation of the ground freezing system, a suitable refrigerant is pumped through hose 26 and valve 24 into the upper end of the feed pipe 18. The refrigerant is pumped downwardly through the freeze pipe 18 as indicated by the directional arrows 34. The refrigerant is discharged from freeze pipe 18 through its open lower ends 20 and into the bottom end portion of the freeze pipe 14. The refrigerant then flows upwardly within the freeze pipe 14 as indicated by the directional arrows 36, thereby extracting heat from the ground 11 that surrounds the well bore 10. Eventually, the ground 11 freezes. The refrigerant that passes through the freeze pipe 14 is discharged through pipe 28, valve 30 and the discharge hose 32.
As the refrigerant is pumped through the feed pipe 18, the feed pipe is cooled to a low temperature and contracts as a result of thermal contraction. Consequently, the discharge end 20 of the feed pipe moves upwardly. The presence of the spring 22 and its ability to expand due to its resiliency allows the lower end 20 of the feed pipe to rise while the spring 22 is able to maintain its support of the weight of the feed pipe 18. Therefore, undue stress on the top fitting 23 or other part of pipe system is avoided.
In this manner, the effects of thermal contraction are accommodated while maintaining support of the feed pipe weight from beneath the feed pipe. By constructing the feed pipe 18 of a metal such as steel, its thermal contraction is minimized so that the lower end 20 does not rise sufficiently to exceed the capacity of the spring 22 to maintain support of the feed pipe. Thus, adequate structural support of the feed pipe 18 is maintained while the bottom end portion of the freeze pipe 14 down to the bore base 16 is supplied with refrigerant to effect freezing around the entire depth of the bore 10.
From the foregoing it will be seen that this invention is one well adapted to attain all ends and objects hereinabove set forth together with the other advantages which are obvious and which are inherent to the structure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative, and not in a limiting sense
| Number | Name | Date | Kind |
|---|---|---|---|
| 3609980 | Bowers | Oct 1971 | A |
| 3720065 | Sherard | Mar 1973 | A |
| 3943722 | Ross | Mar 1976 | A |
| 4286651 | Steiger et al. | Sep 1981 | A |
| 4325228 | Wolf | Apr 1982 | A |
| 4448237 | Riley | May 1984 | A |
| 4574875 | Rawlings et al. | Mar 1986 | A |
| 4912941 | Buchi | Apr 1990 | A |
| 5533356 | DeMasters | Jul 1996 | A |
| 6796139 | Briley et al. | Sep 2004 | B2 |
| 7128153 | Vinegar et al. | Oct 2006 | B2 |
| Number | Date | Country | |
|---|---|---|---|
| 20070267190 A1 | Nov 2007 | US |