Particular embodiments generally relate to ground shield capacitors.
Unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
For a passive component, such as an inductor or transformer, the area under the passive component in an integrated circuit (IC) chip is often left unused. This avoids the impact of the passive component on circuits under the passive component and the impact of the circuit on the passive component. The impacts include electric coupling (capacitive) and magnetic coupling (eddy currents).
A ground shield may be placed under the passive component to terminate electric fields resulting from electric coupling. Additionally, the performance of the passive component may be improved by the use of the ground shield. For example, the ground shield may increase an inductor's quality factor (Q). Also, the electric coupling between the passive component and a substrate or another structure under the passive component may be reduced. However, it is possible that ground shields will not block eddy currents, and thus, even when a ground shield is used, circuits are often not placed under the passive component.
Not having anything under the passive component may cause problems in chip fabrication. For example, it is better for chip fabrication to maintain the density of each metal layer between an upper limit and a lower limit. A passive component made with a high-level metal and nothing under the high-level metal layer violates density rules for lower-level metal. Workarounds exist that place metal fill around the passive component. However, the fill takes up additional area. Using a ground shield on a metal layer under the passive component will meet metal density rules without a guard ring of metal fill.
Ground shield 104 is situated under transformer 102 and includes a plurality of fingers 106. Fingers 106 include gaps in between them that do not allow a circle of current to flow around ground shield 104, which avoids the adverse effects of eddy currents.
Each finger 106 is coupled to contacts 108. This couples the fingers to a ground 110. Also, fingers 106 are all coupled to the same layers of metal.
In addition to ground shield 104, the chip may include a de-coupling capacitor. In some radio frequency circuits, a high frequency current is pulled from the supply. Bond wire inductance acts as a large impedance at high frequencies. So, an alternating current (AC) low impedance path to ground is required on the chip. Typically, a large de-coupling capacitor between supply and ground is used. These de-coupling capacitors require significant area on the chip.
One example of a de-coupling capacitor that may be used is a metal-oxide-metal (MOM) capacitor.
Conventionally, ground shield 104 and MOM capacitor 200 are separate structures in different areas of the chip. Having separate structures may be an inefficient use of area on the chip.
In one embodiment, an apparatus includes a first reference voltage coupled to a first metal layer and a second reference voltage coupled to a second metal layer. A first finger type in the plurality of fingers is coupled to the first metal layer at a first area and coupled to the first metal layer and the second metal layer at a second area. A second finger type in the plurality of fingers is coupled to the second metal layer at the first area and coupled to the first metal layer and the second metal layer at the second area. Also, the first finger type and the second finger type alternately positioned next to each other.
In one embodiment, the first finger type is coupled to a third metal layer at the first area and coupled to the third metal layer and a fourth metal layer at the second area. The second finger type is coupled to the fourth metal layer at the first area and coupled to the third metal layer and the fourth metal layer at the second area.
In one embodiment, the first finger type is coupled to a third finger type at the first metal layer at the first area. The second finger type is coupled to the third finger type at the second metal layer at the first area.
In one embodiment, a system includes a passive device, where the apparatus is included under the passive device.
In one embodiment, a method includes coupling a first reference voltage to a first finger type in the plurality of fingers on a first metal layer at a first area and coupling the first reference voltage to the first metal layer and a second metal layer at a second area. The method also includes coupling a second reference voltage to a second finger type in the plurality of fingers on the second metal layer at the first area and coupling the second reference voltage to the first metal layer and the second metal layer at the second area. The first finger type and the second finger type are alternately positioned next to each other.
In one embodiment, the method includes coupling the first reference voltage through a third finger type on the first metal layer and coupling the second reference voltage through the third finger type on the second metal layer. The first finger type is coupled to the first metal layer at the third finger type and the second finger type is coupled to the second metal layer at the third finger type.
The following detailed description and accompanying drawings provide a more detailed understanding of the nature and advantages of the present invention.
Described herein are techniques for a ground shield capacitor. In the following description, for purposes of explanation, numerous examples and specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. Particular embodiments as defined by the claims may include some or all of the features in these examples alone or in combination with other features described below, and may further include modifications and equivalents of the features and concepts described herein.
Ground shield capacitor 300 includes a supply connection 302 that couples ground shield capacitor 300 to a first reference voltage, such as a supply voltage. A ground connection 304 couples ground shield capacitor 300 to a second reference voltage, such as ground. In one embodiment, supply connection 302 is on different metal layers from ground connection 304. For example, supply connection 302 is on metal layers 1 and 3 and ground connection 304 is on metal layers 2 and 4.
Ground shield capacitor 300 includes a plurality of fingers 306. Fingers 306 may be conductive metal lines in the chip. Fingers 306 are arranged in a radial structure around ground shield capacitor 300. For example, fingers 306 extend outwardly from a point and are arranged in a circular manner. Different radial structures may be used in which fingers 306 are arranged around ground shield capacitor 300. Although radial structures are described, other non-radial structures may be used.
Fingers 306 may include primary fingers 306a and secondary fingers 306b. Although primary fingers 306a and secondary fingers 306b are described, other arrangements may be used. Primary fingers 306a may provide connection points for secondary fingers 306b. In one embodiment, a first secondary finger 306b may be considered a first finger type, a second secondary finger 306b may be considered a second finger type, and primary finger 306a may be considered a third finger type. Primary fingers 306a may carry supply and ground on alternating metal layers, i.e., the metal layers 1 and 3 of primary fingers 306a are coupled to supply connection 302 and the metal layers 2 and 4 of primary fingers 306a are coupled to ground connection 304.
Certain secondary fingers 306b are connected together by vias (not shown) to metal layers, such as metal layers 1, 2, 3, and 4, except at an inner edge that connects to primary fingers 306a. Although metal layers 1-4 are mentioned, other metal layers may be used. As will be described in more detail below, alternating secondary fingers 306b connect with either supply connection 302 or ground connection 304. For example, a first secondary finder 306b is coupled to metal layers 1 and 3 and a second secondary finger 306b is coupled to metal layers 2 and 4.
Capacitors are formed between secondary fingers 306b because the connections on alternating secondary fingers 306b are to supply and then ground, which creates a potential difference across secondary fingers 306b. The capacitors do not create paths for eddy currents (e.g., circular current paths) because the eddy currents see every capacitor that is formed by secondary fingers 306b in series. The capacitors in series create a high impedance for eddy currents, which minimizes the eddy currents that can flow. Additionally, gaps 308 provide additional protection by adding high impedance for eddy currents by breaking the capacitors at certain points. However, the capacitors are in parallel from supply to ground creating a low impedance path from supply to ground, which is desirable.
At a second area, vias 404 may be used to couple fingers 306b to all four metal layers 1, 2, 3, and 4. This couples all four metal layers to ground or supply in an alternating manner. This structure creates capacitance between even fingers 306b and odd fingers 306b.
A side view shows the connections of even fingers 306b and odd fingers 306b at the first area and second area.
Odd finger 306b is connected to metal layers 2 (M2) and 4 (M4). Metal layers 2 and 4 are coupled to ground at a first area 402a at primary finger 306a. Even finger 306b is coupled to metal layers 1(M1) and 3(M3) at first area 402a at primary finger 306a. Metal layers 1 and 3 are coupled to the supply at primary finger 306a.
Vias 404 couple the metal layers together at a second area 402b. For example, via 404 couples metal layers 1, 2, 3, and 4 together. For odd secondary finger 306a, this couples all four metal layers to ground. For even secondary finger 306b, via 404 couples all four metal layers to the supply. Although only one set of vias 404 are shown, vias 404 may be located at multiple points on secondary fingers 306b.
Because odd secondary finger 306b and even secondary finger 306b are next to each other and either coupled to ground or supply, capacitance is formed between them. However, because within a secondary finger 306b metal layers are coupled to either ground or supply, vertical capacitance does not occur.
Ground shield capacitor 300 terminates electric fields like a conventional ground shield. Also, ground shield capacitor 300 minimizes eddy currents because every capacitor is seen in series. However, parallel capacitance creates a low impedance from supply to ground. This couples the supply to AC ground. In some radio frequency (RF) circuits, high frequency current is pulled from the supply. The path from supply to ground sees a parallel capacitance that creates a low impedance from supply to ground. This provides the desired low impedance AC coupling from the supply to ground.
Other uses may also be possible for ground shield capacitor 300.
In this example, AC coupling ground shield 600 may be placed under an inductor 604; however, other passive components may be used. The same structure as described above with ground shield capacitor 600 may be used for AC coupling ground shield 600. However, the difference is that two separate capacitors are being formed by AC coupling ground shield 600. For example, first AC coupling capacitor 602a has an input P 606a and an output P 608a and second AC coupling capacitor 602b has an input N 606b and an output N 608b.
Another use for ground shield capacitor 300 is to provide differential tuning capacitance. Inductors and transformers may need some additional capacitance in parallel to be tuned to a desired frequency. In this case, ground shield capacitor 300 may be placed under the inductor or transformer. The inductor or transformer may then be tuned to resonate at the desired frequency using the capacitance of ground shield capacitor.
Tuning ground shield capacitor 700 is coupled in between first inductor 702a and second inductor 702b. If ground shield capacitor 300 is used, the supply connection may be coupled instead to a node N3 and the ground connection may be coupled instead to node N1. Thus, connections to supply and ground are substituted for coupling a tuning capacitor across inductors 702a and 702b together.
Accordingly, various implementations of a ground shield capacitor are provided. For example, ground shield capacitor 300 as described in
Accordingly, capacitors may be placed under passive components. This may allow the modeling of the capacitor and passive component separately. For AC coupling ground shield capacitors, separate modeling is allowed because small errors in the capacitance of the AC coupling ground shield capacitor do not impact the circuit as long as the capacitance is large enough. However, for a tuning ground shield capacitor, the passive component and capacitor may be modeled as a single unit to achieve the exact tuning of the desired frequency.
At 804, the first signal through odd secondary fingers 306b is coupled to the first, second, third, and fourth metal layers at a second area. At 806, a second signal through even secondary fingers 306b is coupled to second and fourth metal layers at the first area. At 808, the second signal is coupled to the first, second, third, and fourth metal layers at the second area. Accordingly, at the second area, odd secondary fingers 306b are coupled to the first reference voltage and even secondary fingers 306b are coupled to the second reference voltage.
As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The above description illustrates various embodiments of the present invention along with examples of how aspects of the present invention may be implemented. The above examples and embodiments should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the present invention as defined by the following claims. Based on the above disclosure and the following claims, other arrangements, embodiments, implementations and equivalents may be employed without departing from the scope of the invention as defined by the claims.
The present disclosure claims priority to U.S. Provisional App. No. 61/262,059 for “Ground Shield Capacitor” filed Nov. 17, 2009, which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5208725 | Akcasu | May 1993 | A |
5414588 | Barbee et al. | May 1995 | A |
5760456 | Grzegorek et al. | Jun 1998 | A |
5831331 | Lee | Nov 1998 | A |
5854625 | Frisch et al. | Dec 1998 | A |
6383858 | Gupta et al. | May 2002 | B1 |
6385033 | Javanifard et al. | May 2002 | B1 |
6407647 | Apel et al. | Jun 2002 | B1 |
6452249 | Maeda et al. | Sep 2002 | B1 |
6743671 | Hu et al. | Jun 2004 | B2 |
6833603 | Park et al. | Dec 2004 | B1 |
6905889 | Lowther | Jun 2005 | B2 |
7154161 | Blaschke et al. | Dec 2006 | B1 |
7154734 | Schultz et al. | Dec 2006 | B2 |
7382219 | Lee | Jun 2008 | B1 |
7485912 | Wang | Feb 2009 | B2 |
7787233 | Chen et al. | Aug 2010 | B1 |
7956438 | Quinn | Jun 2011 | B2 |
7978456 | Fong et al. | Jul 2011 | B2 |
7994609 | Quinn | Aug 2011 | B2 |
7994610 | Quinn | Aug 2011 | B1 |
8000083 | Fong et al. | Aug 2011 | B2 |
8014124 | Lin | Sep 2011 | B2 |
8027144 | Chiu et al. | Sep 2011 | B2 |
8106479 | Nathawad | Jan 2012 | B1 |
8207592 | Quinn | Jun 2012 | B2 |
8559186 | Jin | Oct 2013 | B2 |
8610247 | Yen et al. | Dec 2013 | B2 |
8675368 | Cho | Mar 2014 | B2 |
20010004314 | Copetti et al. | Jun 2001 | A1 |
20020158305 | Dalmia et al. | Oct 2002 | A1 |
20040195692 | Adan | Oct 2004 | A1 |
20050018380 | Yeo et al. | Jan 2005 | A1 |
20050051869 | Watanabe | Mar 2005 | A1 |
20050135042 | Fong et al. | Jun 2005 | A1 |
20060049481 | Tiemeijer et al. | Mar 2006 | A1 |
20060061935 | Schultz et al. | Mar 2006 | A1 |
20060157798 | Hayashi et al. | Jul 2006 | A1 |
20060163692 | Detecheverry et al. | Jul 2006 | A1 |
20060202776 | Lee et al. | Sep 2006 | A1 |
20070052062 | Ding et al. | Mar 2007 | A1 |
20070159286 | Huang et al. | Jul 2007 | A1 |
20070235838 | Wang | Oct 2007 | A1 |
20080020488 | Clevenger et al. | Jan 2008 | A1 |
20080237789 | He et al. | Oct 2008 | A1 |
20080290454 | Fujii | Nov 2008 | A1 |
20090051466 | Nishijima | Feb 2009 | A1 |
20090085133 | Doan | Apr 2009 | A1 |
20090090995 | Yang et al. | Apr 2009 | A1 |
20090109597 | Anthony | Apr 2009 | A1 |
20090183358 | Jow et al. | Jul 2009 | A1 |
20090322447 | Daley et al. | Dec 2009 | A1 |
20100026368 | Tang et al. | Feb 2010 | A1 |
20100127347 | Quinn | May 2010 | A1 |
20100141354 | Cho | Jun 2010 | A1 |
20100193904 | Watt et al. | Aug 2010 | A1 |
20100214041 | Cho | Aug 2010 | A1 |
20100232085 | Wang | Sep 2010 | A1 |
20100301987 | Belot et al. | Dec 2010 | A1 |
20100309605 | Lin | Dec 2010 | A1 |
20110001504 | Cho et al. | Jan 2011 | A1 |
20110090024 | Chen et al. | Apr 2011 | A1 |
20110199715 | Herberholz | Aug 2011 | A1 |
20110254132 | Cho | Oct 2011 | A1 |
20110278699 | Lin | Nov 2011 | A1 |
Entry |
---|
International Searching Authority, “International Search Report”, Application No. PCT/US2010/056153, Jan. 10, 2011. |
Number | Date | Country | |
---|---|---|---|
20110116208 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61262059 | Nov 2009 | US |