A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure describes aspects of a system for broadband internet access using unmanned aerial vehicles (UAVs) to relay internet traffic among different types of terminals. The present disclosure describes systems and methods for optimally pointing the beams of a UAV toward the coverage area on the ground (including ground terminals) as well as pointing the ground terminal beam toward the UAV, and adjusting the ground terminal and UAV beams based on the UAV's altitude, movements, and motions (such as rolling and/or pitching).
As internet traffic has increased, new technologies are needed to deliver broadband access to homes and enterprises at Sower cost and to places that are not yet covered. Examples of current broadband delivery systems include terrestrial wired networks such as DSL (Digital Subscriber Line) on twisted pair, fiber delivery systems such as FiOS (Fiber Optic Service), and gee-stationary satellite systems. The current broadband, access systems have a number of short comings. One issue is that there is a lack of service provided to remote and/or lightly populated areas. Geo-stationary satellites do provide service in remote areas of the developed world such as the United States. However, poorer areas of the world lack adequate satellite capacity.
A notable reason satellite capacity has not teen adequately provided in poorer regions of the world is the relatively high cost of satellite systems. Due to adverse atmospheric effects in satellite orbits, satellite hardware must be space qualified and is costly. Launch vehicles to put the satellites in orbit are also costly. Moreover, due to the launch risk and the high cost of satellites, there may be significant insurance costs for the satellite and the launch. Therefore, broadband satellite systems and services are relatively costly and difficult to justify, particularly in poorer regions of the world. It is also costly to deploy terrestrial systems such as fiber or microwave links in lightly populated regions. The small density of subscribers does not justify the deployment cost.
Hence what are needed are improved methods and apparatus for providing broadband access to consumers. Ideally such methods and apparatus would rely on an inexpensive technology which avoids costs associated with launching and maintaining satellites.
The present disclosure describes, inter alia, systems and methods for optimally pointing the beams of the ground terminal and ground gateways toward the UAV, and adjusting the ground terminal and gateway beams toward the UAV based on the UAV's altitude, movements, and motions (such as roll/pitch). The disclosure also describes systems and methods for pointing the UAV antenna beam toward ground terminals.
A communications system for operating an unmanned aerial vehicle (UAV) apparatus is disclosed. In one embodiment, the UAV apparatus is configured to generate and steer one or more UAV beams toward a ground location; and aground terminal is configured to generate and steer one or more ground terminal beams. In one exemplary embodiment, the ground terminal apparatus further includes logic configured to: receive real-time position coordinates associated with the UAV apparatus; define a current bin and a plurality of search bins based on the real-time position coordinates; measure at least one signal quality corresponding to at least one bin of the plurality of search, bins and a current signal quality of the current bin; and when the at least one signal quality is higher than the current signal quality, redefine the at least one bin as the current bin.
In one variant, the ground terminal apparatus further includes logic configured to measure at least one signal quality is configured to measure a signal quality for each one of the plurality of search bins.
In another variant, the ground terminal apparatus further includes one or more encoder devices configured to track an actual antenna beam pointing position of the steered one or more ground terminal beams. In a sub-variant, the one or more encoder devices include logic configured to: compute an expected terminal antenna pointing position based on an accumulated plurality of motor movement commands; compute an error between the actual antenna beam pointing position and the expected terminal antenna pointing position; and adjust the steered one or more-ground terminal beams to correct for the error.
In another variant, the received real-time position coordinates are received via a communications radio link with the UAV apparatus when the communications radio link is present. In some sub-variants, the received real-time position coordinates are received via an out-of-band telemetry tracking radio link when the communications radio link is not present. In other sub-variants, the ground terminal apparatus further includes logic configured to receive a speed and a direction associated with the UAV apparatus via the communications radio link; estimate an position coordinate of the UAV apparatus based, on the speed, the direction, and the real-time position coordinates of the UAV apparatus; and adjust the steered one or more ground terminal beams to the estimated position coordinate.
In some variants, the measured current signal quality includes a received signal strength (RSS) associated with a reference signal of the UAV apparatus.
A communications system for operating an unmanned aerial, vehicle (UAV) apparatus is disclosed. In one embodiment, the communications system includes: a UAV apparatus configured to generate and steer one or more UAV beams toward a ground location; a ground terminal configured to generate and steer one or more ground terminal beams. In one exemplary embodiment, the UAV apparatus further includes; an on-board positioning and orientation sub-system configured to determine real-time position, coordinates and an orientation of the UAV apparatus; logic configured to acquire position coordinates of the ground terminal; and wherein the one or more UAV beams are steered toward the position coordinates of the ground terminal based on the determined real-time position coordinates and the orientation of the UAV apparatus.
In one variant, the UAV apparatus further includes logic configured to: divide a target area into a plurality of search bins; measure a plurality of signal quality metrics for each one of the plurality of search bins, the plurality of signal quality metrics associated with at least one ground terminal; and steer the one or more UAV beams to a bin having a highest signal quality metric associated with the at least one ground terminal.
In another variant, the UAV apparatus further includes one or more encoder devices configured to track an actual antenna beam pointing position of the steered one or more UAV beams. In some sub-variants, the UAV apparatus is further configured to: compute an expected UAV antenna pointing position based on an accumulated plurality of motor movement commands; compute an error between the actual antenna beam pointing position and the expected UAV antenna pointing position; and adjust the steered one or more UAV beams to correct for the error.
A method for operating an unmanned aerial vehicle (UAV) apparatus is disclosed. In one embodiment, the method includes: generating one or more terminal antenna beams; receiving real-time position coordinates associated, with the UAV apparatus; pointing the terminal antenna beam toward the UAV position; and continuously monitoring a signal qualify by: defining a plurality of search bins around a current position; measuring the signal quality for each of the plurality of search bins; and when the measured signal quality of a searched bin exceeds a current signal quality of the current position, set the searched bin to the current bin.
In one variant the method includes receiving the real-time position coordinates associated with the UAV apparatus via an out-of-band communication.
In a second variant, the method further includes receiving the real-time position coordinates associated with the UAV apparatus via a broadcast communication.
In a third variant, when the current signal quality of the current position fails below an acceptable threshold, the method further includes searching for another UAV apparatus.
A method of detecting a ground terminal with an unmanned aerial vehicle (UAV) apparatus is disclosed, in one embodiment, the method includes: determining a location and orientation of the UA V apparatus; identifying a coarse location bin of the ground terminal, the identifying including: pointing a UAV antenna toward an estimated location of the ground terminal based on the determined location and orientation of the UAV apparatus; defining a first plurality of search bins proximate to the estimated location; continuously measuring a signal quality metric at each of the first plurality of search bins; and thereafter continuously fine tracking the ground terminal by tracking the particular bin of the first plurality of search bins having the highest measured signal quality metric.
In one variant, the method further includes adjusting the pointed UAV antenna based on the continuously determined location and orientation of the UAV apparatus.
In a second variant, the measurement of the signal quality metric includes measuring a received signal strength (RSS) associated with a reference signal of the ground terminal.
In a third variant, the method further includes determining a number of bins for the first plurality of search, bins based at least in part on an operational consideration of the UAV apparatus.
A method for fine tracking of UAV position is also disclosed. In one embodiment the method includes pointing a terminal antenna beam toward the position coordinate of a UAV; defining the terminal antenna beam pointing position as the center of the current bin; pointing the terminal antenna beam to the center of each search bin surrounding the current bin; and continue a fine tracking process unless/until the RSS signal is lost.
A method for initial “coarse” ground terminal detection and subsequent “fine” UAV beam steering toward the ground terminal is also disclosed. In one embodiment, the method includes pointing an UAV antenna toward position coordinates of a ground terminal; setting UAV antenna beam pointing position to a center of a current bin; monitoring search bins for higher level signal levels; and when a bin with a stronger RSS than the current bin is found, setting the identified bin as the new current bin.
These and other aspects shall become apparent when considered in light of the disclosure provided herein.
In the following figures, where appropriate, similar components are identified using the same reference label.
All Figures® Copyright 2015-2016 Ubiqomm, LLC. All rights reserved.
The present disclosure describes aspects of a system designed to provide broadband access.
As used herein, the aerial platforms to which the embodiments of the present disclosure refer generally and without limitation to: drones, unmanned aerial vehicle (UAV), balloons, blimps, airships, etc. The aerial platforms may include propulsion systems, fuel systems, and onboard navigational and control systems. In one exemplary embodiment, the aerial platform includes a fixed wing fuselage in combination with a propeller, etc. In other embodiments, the aerial platform includes a robocopter, propelled by a rotor. The aerial platform may carry fuel onboard or function using electrical (e.g., battery powered) and/or solar energy. In the remainder of the present disclosure, the terms “aerial platform” and “UAV” refer to any of the abovementioned platforms such as drones, balloons, blimps, airships, etc. Conversely, reference to UAVs, drones, balloons, blimps, airships, etc, in the present disclosure can refer to aerial platforms in general or any other type of aerial platforms.
Depending on the altitude of the UAV, each UAV covers an area on the ground; in one embodiment the area covered has a radius of as low as a few tens of kilometers (km) to as much as 200 km or more. GTs 120 transmit and receive data from the Internet using the UAV 110 as intermediary to the GTW 130, The UAV's radio sub-system aggregates traffic received from the GTs within the coverage area of the UAV of a population of GTs (in some-implementations the UAV may aggregate traffic from as many as all GTs and as few as one GT) and sends the aggregated data to the internet via one or more of the GTWs. Since the GTWs handle aggregated data from multiple GTs, practical implementations of the present disclosure may support higher data rates between the UAV and the GTW, than between the UAV and the GT. Accordingly, in one embodiment the gain of the GTW antenna sub-system is much larger than that of the GT, and the GTW transmitter transmits at higher power than the GTs. Those of ordinary skill in the related arts will readily appreciate the wide variety of techniques which may be used to increase gain, including without limitation, increasing transmit and receive power, increasing bandwidth, increasing processing gain, increasing coding gain, etc.
Referring back to the embodiment of
Referring now to
In addition,
Aerial platforms such as UAVs cruise/patrol in a three dimensional space (e.g., latitude, longitude, and altitude). The position of the aerial platform/UAV with respect to the terminals on the ground changes as the aerial platform/UAV moves horizontally and vertically within its cruising orbit.
Two types of terminals are further illustrated in
In one embodiment, the GT beams are static in the sense that as the UAV moves in its cruising orbit formed by a cylinder between circular orbits 610 and 612 in
In the case of beam 140, referred to as the UAV Gateway beam, the UAV radio sub-systems points the UAV Gateway beam 140 to the gateway 130 using knowledge of position coordinates of the gateway 130 as well as real-time position coordinates and orientation of the UAV. In one embodiment, the real-time position coordinates and orientation of the UAV are computed by the gyroscope accelerometer GPS sub-system 310 of the UAV radio sub-system 112 shown in
In one embodiment of the present disclosure, the UAV gateway antenna sub-system 118 shown in
Next, systems and methods are described for pointing the ground terminal 120 antenna 124 beam and ground gateway antenna 134 beam toward, the UAV at the initial ground terminal, and ground gateway installation, as well as continuous optimal steering of the ground terminal and gateway antennas toward the UAV to track the UAV movements. Since the processes of pointing the ground antennas toward the UAV at initial installation and continuous optimal steering of the antennas toward, the UAV are the same for the ground terminals 120 and ground gateways 130, both types of terminals simplify may be referred to as a “terminal.” In particular, the embodiments described below apply to both ground terminals 120 and ground gateways 130.
Since terminal 120 antenna beam may have a narrow beamwidth, as the UAV moves in its cruising orbit the terminal's antenna beam may not cover the UAV unless the terminal's antenna beam is either mechanically or electronically steered to track the position of the UAV. In particular, when the terminal is initially installed, the terminal's antenna must be pointed toward the UAV in such a way that the terminal's beam covers the UAV. One embodiment of the present disclosure describes systems and methods to point the terminal antenna beam toward the UAV at the time of terminal installation. One approach to pointing the terminal antenna is to use information on the position (e.g., coordinates) or location (e.g., relative or absolute) of the UAV. If the real-time position coordinates of the terminal and the UAV are known, then an installer may manually point the antenna toward the UAV.
In another embodiment schemes fully or at least partially automate the process of pointing the terminal beam toward the UAV at terminal installation time. One variant assumes that real-time position coordinates of the UAV are known to the installer at installation time. Referring again to
In another embodiment of the initial calibration to point the terminal antenna beam toward the UAV, the terminal does not have access to accurate information regarding the real-time position or location of the UAV at the time of terminal installation. Once the UAV terminal antenna is pointed in the general direction of the UAV, then the terminal antenna sub-system follows the two phases of (1) UAV signal detection and (2) UAV position tracking to accurately point the terminal antenna beam toward the UAV, During the UAV detection phase, the terminal antenna beam is iteratively steered toward the UAV in relatively large incremental azimuthal and/or elevation angles in order to detect a reference signal sent by the UAV. As a brief aside, those of ordinary skill in the related arts will readily appreciate that the ground terminal (and/or the UAV) is not perfectly aligned for reception where the antennas are only proximately aligned (e.g., to within a few degrees of accuracy, etc.); for example, alignment may be performed to a tolerable percentage of reception strength, etc. Thereafter, the ground terminal (and/or UAV) must further fine tune the alignment to maximize reception strength. Consequently, once the terminal detects a reference signal sent by the UAV, then the terminal antenna sub-system moves to the fine UAV position tracking phase where the terminals antenna beam is iteratively steered in smaller incremental azimuthal and/or elevation angles toward the UAV to find the terminal antenna beam position toward the UAV with highest performance signal quality measure such as the received signal strength (RSS). The coarse UAV detection phase and the fine UAV position tracking phase are described in further detail herein.
In one exemplary embodiment, the ground terminal includes a two axis mechanical antenna beam steering mechanism. In one such variant, the two axis are configured for manipulating the azimuthal and/or elevation angle of the boresight. In another embodiment of the present disclosure, the ground terminal includes at least one axis of mechanical beam, steering capability and at least one axis of electronic beam forming capability, for use in steering the antenna beam toward the UAV.
UAV Detection and Coarse Tracking Using Signals Received from the UAV
In one exemplary embodiment of the present disclosure, the ground terminal performs UAV detection and so-called “coarse” tracking phase of the UAV using signals received from the UAV. Referring now to
Next is an example of how the number of terminal antenna beam angular search bins is determined during UAV detection phase. Suppose the 10 dB beamwidth of the terminal antenna beam is +/−10 degrees from the beam boresight. If as an example, the approximate knowledge of the UAV position is within 100 (+/−50) degrees of elevation angle and 100 degrees of azimuth angle from the UAV terminal's current beam pointing angle, then the 100 degree elevation and azimuth search space may be divided into at least 5 angular search bins of 20 degrees each, resulting in 5×5=25 two-dimensional “circular angular” search bins. However, since the search bins are circular angular bins, some overlapping between different search bins occurs.
In another embodiment of the ground terminal antenna, the initial coarse UAV detection may be achieved by directly using the UAV position coordinates for pointing. While such embodiments greatly reduce search times, they require that the ground terminal receives the UAV's position coordinates in order to locate the UAV. For example, in one such variant, the UAV position coordinates are received via a broadcasted radio link from the UAV, such as a so-called “TT&C” (Telemetry Tracking & Command) link, between the UAV and the ground terminal site. During the coarse UAV detection phase, the ground terminal receives the UAV position coordinates from the TT&C link and responsively points its ground terminal antenna toward the UAV. More generally, any messaging protocol may be used for providing one or more of telemetry information, tracking information, and/or commands between the UAV and the ground systems. For example, in other variants, the UAV position coordinates may be received via an out-of-hand communication link from an over-arching network management entity or other networked device. In another example, the UAV position coordinates may be provided by a peer ground terminal or another UAV terminal (such as where one UAV terminal is congested and must handoff ground terminals to a nearby UAV terminal).
Fine Tracking of UAV Position Coordinates with UAV Fine Beam Steering
Once the ground terminal has identified a reference signal in the coarse UAV detection phase, then the terminal antenna beam pointing moves into a fine UAV position tracking phase (as shown in
Next, the terminal antenna beam is moved to the center of each of the surrounding bins 2 through 7 and the RSS (or an alternative signal quality metric) is measured in each of these bins, Each move is adjusted to compensate for change in GPS location of the UAV. In one embodiment, the bin with the highest RSS or signal quality from among the seven (7) bins is chosen as the next current angular bin and is marked as bin 1. Since the UAV and the ground terminal may move with respect to one another and channel conditions may constantly change, one or both of the UAV and ground terminal may constantly monitor the link quality to optimize performance. For example, if the UAVs movement results in a higher RSS or signal quality in a different bin from the previous bin position, then the new bin is chosen as the next angular bin and is marked as bin 1. Then, another six (6) bins are specified surrounding the new current bin. This process of measuring signal quality of the seven (7) search bins and choosing a bin with a higher or highest signal, quality as the position where the terminal antenna beam points, while also adjusting for each movement to compensate for GPS position changes of the UAV, may be used to continuously track the position of the UAV. The aforementioned search scheme based on seven (7) search bins is one exemplary illustration of the fine UAV position tracking phase. In other embodiments, fewer or greater number of bins may be defined and used in the fine UAV position tracking phase. Stated differently, during the fine UAV tracking phase, the terminal antenna beam is dithered around the terminal's initial angular pointing position (referred to as current angular bin above), wherein among the current bin and bins adjacent thereto, the bin having the highest received signal quality is chosen as the next current terminal angular search bin.
More generally, once the initial coarse UAV detection, is achieved (e.g., using the schemes described supra), then the fine beam steering scheme corrects for the changes to signal quality as the UAV travels in its cruising orbit. The fine UAV tracking phase corrects for, inter alia, the UAV position information, based on focused measurements of the RSS of the UAV.
At step 554 of the method 440, the ground terminal defines the terminal antenna beam pointing position as the center of the current bin, and specifies a number of search bins surrounding the current bin which can be searched for a higher signal RSS level. A search pattern may also be prescribed, which may be symmetrical or asymmetric (or combinations thereof).
At step 556 of the method 550, the ground terminal points the terminal antenna beam to the center of each search bin surrounding the current bin (or implements an alternate search pattern) and measures the RSS of the UAV in each bin until/unless a bin with a stronger RSS is found. In one such variant, the terminal further adjusts the bin center position to account for the change in the position coordinates of the UAV (due to the UAV's movement and/or other atmospheric effects) when pointing from one bin to the next. When a bin with a stronger RSS is found, then the stronger bin replaces the current bin as the new current bin. In order to reduce inefficient “churn” effects, in one implementation, the terminal may only replace the current bin when the stronger bin has a sufficiently stronger signal (e.g., when the stronger RSS comprises a certain percentage over die next stronger signal), and/or based on one or more persistence criteria (e.g., where the stronger bin has remained stronger for a sufficient measurement interval).
At step 558, the fine tracking process is continued until/unless the RSS signal is lost. If the signal is lost, then the process will fall back to the coarse UAV detection phase (see also UAV Detection and Coarse Tracking Using Signals Received from the UAV). In some cases, loss may be determined according to a pre-determined minimum RSS threshold; e.g., if the RSS falls below die minimum threshold (e.g. for a prescribed period of time), then the UAV is deemed “lost.” In other cases, loss may be based on a steering limitation; for example, where the antenna nears the limit of its steering capability, the ground terminal may pre-emptively drop the UAV in favor of finding a replacement UAV. Still other schemes for identifying a loss condition may be based on quality of service or available bandwidth (e.g., where a UAV has sufficient signal strength but is too congested for use, etc.). Various other loss conditions will be readily appreciated by those of ordinary skill in the related arts, given the contents of the present disclosure.
The foregoing beam steering algorithm may additionally use an encoder device to compensate for pointing error due to e.g., motor backlash (errors caused by gaps between the components of the motor and/or other calibration related errors), wind effects, encoder tolerance, etc. In one such implementation, the encoder is a motion tracking device that is attached to the motors that point the ground terminal antenna, and that keeps track of the difference between the amount the antenna should have moved based on the movement commands issued to the motors by the motor controller, and how much the antenna actually moved, the difference being due to artifacts (such as the motor backlash). Accurate encoders are expensive and may not be as effective as the RSS based correction scheme; however, some use scenarios may use an encoder to compensate for the motor backlash where the RSS based correction scheme is undesirable (due to e.g., limited search capabilities, processing burden, network overhead, and/or other operational restrictions.)
In still other variants, non-mechanical steering mechanisms may be used where there are other design considerations (e.g., space, cost, performance, and/or power) that preclude or otherwise render mechanical implementations undesirable. Common examples of non-mechanical steering mechanisms include without limitation electronic beam forming techniques, and phased array configurations.
UAV Antenna Pointing toward Ground Terminal
Referring now to the UAV, in some embodiments the UAV may also perform antenna pointing toward the ground terminal. As previously described (see e.g.,
In one exemplary embodiment, the UAV radio sub-system receives or is pre-programmed with (or otherwise acquires) the position coordinates of a target terminal (i.e., the ground terminal or gateway that is the target of the UAV antenna beam). In one variant, the UAV radio sub-system uses its onboard real-time UAV position location and orientation sub-system (such as the gyroscope/accelerometer/global positioning system (GPS) sub-system 319 of
Various systems and methods for gateway terminal detection may he used by the UAV radio sub-system.
At step 572 of the method 50, during the ground terminal detection phase, the UAV points the UAV antenna toward position coordinates of the ground terminal using the position coordinates and orientation of the UAV obtained from the UAV on-board GPS/gyroscope; sensor sub-system and the ground terminal position coordinates. As previously noted, the ground terminal position coordinates may be acquired in a variety of ways, including without limitation, direct messaging (as received from the ground terminal), indirect messaging (as received from e.g., a peer UAV, network management entity, or other out-of-band link), and/or pre-stored location information.
At step 574, the UAV sets the UAV antenna beam pointing position to the center of the current bin of the ground terminal, and specifies a number of search bins surrounding the current bin. In some cases, the bins are regularly shaped. In other cases, the bins are irregularly shaped so as to e.g., compensate for UAV movements, improve coverage, or accommodate other network considerations.
At step 576 of the method 570, the UAV monitors the search bins for higher signal levels (e.g., due to changes in positions, weather, etc.) In one embodiment, the UAV points the UAV antenna beam to the center of each of the bins surrounding the current bin and measures a ground terminal RSS in each bin.
At step 578, when a bin with a stronger RSS than the current bin is found, then the identified bin is set as the new current bin. Additionally, the UAV may need to adjust the bin center position to account, for the change in the new position coordinates and orientation of the UAV when pointing from one bin to the next. The search bins are monitored (e.g., continually, or periodically, and/or based on detection of an event) during operation; however if the ground terminal signal is lost, then the UAV will repeat the coarse ground terminal detection (returning back to e.g., step 572). Artisans of ordinary skill in the related arts will readily appreciate, given this disclosure that various other implementations may use the RSS of the signals received by the UAV radio sub-system (or any other signal quality metric) from the gateway terminal to detect the gateway terminal with equivalent success.
Various implementations of the foregoing beam steering algorithms may use an encoder device to compensate for pointing error due to e.g., motor backlash, wind effects, angular tolerance of the encoder, etc. In one such implementation, the encoder is a motion tracking device that is attached to the motors that point the UAV antenna, and that keeps track of the difference between the amount the antenna should have moved (based on e.g., the movement commands issued to the motors by the motor controller), and how much the antenna actually moved, the latter diverging from the former due to artifacts (such as the aforementioned motor backlash or other influences).
Methods
Referring now to
In step 606, a target angular region around the current angular search bin is divided into a number of angular search bins. The target region covers the possible location(s) of the UAV and is where the UAV may reside. The size of each of the divided angular search bins is defined to be ideally the same as that of the current bin to, e.g., enable consistent signal quality measurement. In the exemplary embodiment as discussed above for
Proceeding to
In step 706, the terminal antenna beam is sequentially pointed toward the center of each angular search bin, UAV signal quality such as RSS or other metrics to measure signal quality is measured in each bin, and the bin with the largest signal quality is again chosen as the new current bin. In step 706, a time counter is initialized to track the time elapsed since choosing the new current bin or remaining until the current angular search bin is updated. In step 708, the terminal antenna beam remains fixed on the current bin angular position (previously determined in step 704) for data communication, and the time counter is adjusted (e.g., incremented or decremented). In step 710, if the time counter is above or below a certain threshold, the process moves again to step 706 to update the current angular search bin by, inter alia, evaluating the bin with the largest; signal quality. Otherwise, the process moves to step 708, i.e., the terminal antenna beam remains fixed on the current bin angular position without an update.
In another embodiment of the fine tracking process of the UAV position, once the terminal antenna beam is pointed toward the UAV accurately enough to be able to detect data packets sent by the UAV, then the UAV radio sub-system may periodically send the UAV real-time position coordinates of the UAV to the terminals. The terminal radio sub-system may then steer the terminal's antenna beam toward the UAV's position using the real-time position coordinates of the UAV. In other words, the coarse UAV defection is carried out using the RSS measurements made on the signals received by the ground terminal from, the UAV radio sub-system, and the fine ground terminal beam steering toward the UAV is carried out using UAV position coordinates that are periodically updated by the UAV and conveyed direct communications (or indirectly via out-of-band communications) with the ground terminals. When tracking tire UAV solely based on the real time UAV position coordinates, artifacts (such as the ground terminal motor backlash and wind loading) may result in cumulative antenna pointing errors that can result in a deviation of the ground terminal antenna pointing from the true (or expected) position coordinates of the UAV. Such errors mas be further improved by adding an RSS based antenna pointing correction (such as was previously described).
In some implementations, there may be a substantial propagation delay from the time the UAV measures its own GPS position and transmits the measurements to the ground terminal, and the time when the ground terminal actually receives the updated UAV GPS measurements and makes adjustments to the terminal antenna beam pointing. Since the UAV is moving during the delay, the updated measurements will lag the UAV's actual location, resulting in a pointing error (due to the difference between the UAV position when GPS was last measured and the actual position of the UAV when the antenna beam adjustment is made). The pointing error can be inferred from the speed and the heading (direction) of the UAV (which may either be directly provided by the UAV or otherwise tracked by the ground terminal). Based on the speed and direction of the UAV, the position of the UAV may be estimated, and a correction can be made to the terminal beam pointing to account for distance the UAV has traveled since the UAV GPS position was last measured.
It will be appreciated that while certain aspects of the invention are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the invention, and may be modified as required by the particular application. Certain, steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the invention disclosed and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.
It will be further appreciated that while certain steps and aspects of the various methods and apparatus described herein may be performed by a human being, the disclosed aspects and individual methods and apparatus are generally computerized/computer-implemented. Computerized apparatus and methods are necessary to fully implement these aspects for any number of reasons including, without limitation, commercial viability, practicality, and even feasibility (i.e., certain steps/processes simply cannot be performed by a human being in any viable fashion).
This application is a continuation of and claims the benefit of priority to, co-owned and co-pending U.S. patent application Ser. No. 15/260,049 of the same title filed on Sep. 8, 2016, which is a continuation-in-part of, and claims the benefit of priority to, co-owned U.S. patent application Ser. No. 14/711,427, entitled “GROUND TERMINAL AND GATEWAY BEAM POINTING TOWARD AN UNMANNED AERIAL VEHICLE (UAV) FOR NETWORK ACCESS”, filed on May 13, 2015, now U.S. Pat. No. 9,590,720, each of the foregoing incorporated herein by reference in its entirety. This application is related to co-owned, co-pending U.S. patent application Ser. No. 14/626,698, entitled “BEAM FORMING AND POINTING IN A NETWORK OF UNMANNED AERIAL VEHICLES (UAVS) FOR BROADBAND ACCESS”, filed on Feb. 19, 2015, co-owned, co-pending U.S. patent application Ser. No. 14/516,491, entitled “UNMANNED AERIAL VEHICLE (UAV) BEAM FORMING AND POINTING TOWARD GROUND COVERAGE AREA CELLS FOR BROADBAND ACCESS”, filed on Oct. 16, 2014, co-owned, co-pending U.S. patent application Ser. No. 14/486,916, entitled “ANTENNA BEAM MANAGEMENT AND GATEWAY DESIGN FOR BROADBAND ACCESS USING UNMANNED AERIAL VEHICLE (UAV) PLATFORMS”, filed on Sep. 15, 2014, co-owned, co-pending U.S. patent application Ser. No. 14/295,160, entitled “METHODS AND APPARATUS FOR MITIGATING FADING IN A BROADBAND ACCESS SYSTEM USING DRONE/UAV PLATFORMS”, filed on Jun. 3, 2014, co-owned, co-pending U.S. patent application Ser. No. 14/222,497, entitled “BROADBAND ACCESS TO MOBILE PLATFORMS USING DRONE/UAV”, filed on Mar. 21, 2014, and co-owned, co-pending U.S. patent application Ser. No. 14/223,705, entitled “BROADBAND ACCESS SYSTEM VIA DRONE/UAV”, filed on Mar. 24, 2014, each of the foregoing incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3568197 | Harold | Mar 1971 | A |
3780303 | Smith et al. | Dec 1973 | A |
3891985 | Oigarden et al. | Jun 1975 | A |
4209695 | Arnold et al. | Jun 1980 | A |
4278885 | Von Alfthan et al. | Jul 1981 | A |
4317993 | Hertzog, Jr. et al. | Mar 1982 | A |
4365154 | Arnold et al. | Dec 1982 | A |
4387302 | Givens | Jun 1983 | A |
4499380 | Aggour et al. | Feb 1985 | A |
4851687 | Ettinger et al. | Jul 1989 | A |
5021664 | Hinshaw | Jun 1991 | A |
5068532 | Wormald et al. | Nov 1991 | A |
5076993 | Sawa et al. | Dec 1991 | A |
5098640 | Gozani et al. | Mar 1992 | A |
5239568 | Grenier | Aug 1993 | A |
5241544 | Jasper et al. | Aug 1993 | A |
5521817 | Burdoin et al. | May 1996 | A |
5561434 | Yamazaki | Oct 1996 | A |
5712885 | Sowerby et al. | Jan 1998 | A |
5832379 | Mallinckrodt | Nov 1998 | A |
5995494 | Horikawa | Nov 1999 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6034634 | Karlsson et al. | Mar 2000 | A |
6044323 | Yee et al. | Mar 2000 | A |
6061562 | Martin et al. | May 2000 | A |
6108538 | Blasiak et al. | Aug 2000 | A |
6144032 | Gazdzinski | Nov 2000 | A |
6256476 | Beamish et al. | Jul 2001 | B1 |
6281838 | Hong | Aug 2001 | B1 |
6513758 | Lloyd | Feb 2003 | B1 |
6594509 | Takakusaki et al. | Jul 2003 | B1 |
6628941 | Knoblach et al. | Sep 2003 | B2 |
6718161 | Westall et al. | Apr 2004 | B1 |
6756937 | Chang et al. | Jun 2004 | B1 |
6856803 | Gross et al. | Feb 2005 | B1 |
6873301 | Lopez | Mar 2005 | B1 |
7095376 | Timothy et al. | Aug 2006 | B1 |
7212170 | Dean et al. | May 2007 | B1 |
7777674 | Haddadin et al. | Aug 2010 | B1 |
8078162 | Deaton et al. | Dec 2011 | B2 |
8116763 | Olsen | Feb 2012 | B1 |
8183999 | Giallorenzi et al. | May 2012 | B1 |
8190147 | Kauffman et al. | May 2012 | B2 |
8558734 | Piesinger | Oct 2013 | B1 |
8897770 | Frolov et al. | Nov 2014 | B1 |
9100086 | Olsen | Aug 2015 | B1 |
9119179 | Firoiu et al. | Aug 2015 | B1 |
9488981 | Pillai et al. | Nov 2016 | B2 |
9590720 | Jalali | Mar 2017 | B2 |
9614608 | Jalali et al. | Apr 2017 | B2 |
20020061730 | Hart et al. | May 2002 | A1 |
20020168974 | Rosen et al. | Nov 2002 | A1 |
20030040274 | Dai et al. | Feb 2003 | A1 |
20030095067 | Howell | May 2003 | A1 |
20030223354 | Olszewski | Dec 2003 | A1 |
20040038658 | Gurelli et al. | Feb 2004 | A1 |
20040152480 | Willars et al. | Aug 2004 | A1 |
20050035897 | Perl et al. | Feb 2005 | A1 |
20050107077 | Hintermeier et al. | May 2005 | A1 |
20050108374 | Pierzga et al. | May 2005 | A1 |
20050143005 | Moore, III | Jun 2005 | A1 |
20050243005 | Rafi et al. | Nov 2005 | A1 |
20050264438 | Fullerton et al. | Dec 2005 | A1 |
20060009262 | Hamm | Jan 2006 | A1 |
20060063566 | Maruta | Mar 2006 | A1 |
20060238411 | Fullerton et al. | Oct 2006 | A1 |
20070032246 | Feher | Feb 2007 | A1 |
20070090990 | Nelson | Apr 2007 | A1 |
20070184849 | Zheng | Aug 2007 | A1 |
20070224931 | Fitton et al. | Sep 2007 | A1 |
20070230419 | Raman et al. | Oct 2007 | A1 |
20070281705 | Bosenbecker | Dec 2007 | A1 |
20080090606 | Hwang et al. | Apr 2008 | A1 |
20080117858 | Kauffman | May 2008 | A1 |
20080233865 | Malarky et al. | Sep 2008 | A1 |
20090092072 | Imamura et al. | Apr 2009 | A1 |
20090209277 | Pinchas et al. | Aug 2009 | A1 |
20090219912 | Wengerter et al. | Sep 2009 | A1 |
20090295485 | Mitchell | Dec 2009 | A1 |
20090296663 | Wild | Dec 2009 | A1 |
20100085236 | Franceschini | Apr 2010 | A1 |
20100172299 | Fischer et al. | Jul 2010 | A1 |
20100224732 | Olson et al. | Sep 2010 | A1 |
20100273504 | Bull et al. | Oct 2010 | A1 |
20100284377 | Wei et al. | Nov 2010 | A1 |
20100290412 | Ahn et al. | Nov 2010 | A1 |
20110032149 | Leabman | Feb 2011 | A1 |
20110103293 | Gale et al. | May 2011 | A1 |
20110122024 | Eidloth et al. | May 2011 | A1 |
20110142150 | Anigstein et al. | Jun 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110286325 | Jalali et al. | Nov 2011 | A1 |
20110286372 | Taghavi et al. | Nov 2011 | A1 |
20120052828 | Kamel et al. | Mar 2012 | A1 |
20120119953 | Hosoya et al. | May 2012 | A1 |
20120150364 | Tillotson et al. | Jun 2012 | A1 |
20120202430 | Jalali et al. | Aug 2012 | A1 |
20120235863 | Erdos et al. | Sep 2012 | A1 |
20130040655 | Keidar | Feb 2013 | A1 |
20130070677 | Chang | Mar 2013 | A1 |
20130109299 | Roos et al. | May 2013 | A1 |
20130148570 | Miller et al. | Jun 2013 | A1 |
20130155847 | Li et al. | Jun 2013 | A1 |
20130156021 | Ashikhmin et al. | Jun 2013 | A1 |
20130303080 | Moreno | Nov 2013 | A1 |
20130321204 | Zahavi | Dec 2013 | A1 |
20130331026 | O'Neill et al. | Dec 2013 | A1 |
20140003302 | Han et al. | Jan 2014 | A1 |
20140003394 | Rubin et al. | Jan 2014 | A1 |
20140049643 | Segerstrom et al. | Feb 2014 | A1 |
20140073337 | Hong et al. | Mar 2014 | A1 |
20140105054 | Sägrov et al. | Apr 2014 | A1 |
20140139372 | Seol et al. | May 2014 | A1 |
20140241239 | Chang | Aug 2014 | A1 |
20140335817 | Hyde et al. | Nov 2014 | A1 |
20140347223 | Hyde et al. | Nov 2014 | A1 |
20140348140 | Atkinson | Nov 2014 | A1 |
20150142966 | Baran et al. | May 2015 | A1 |
20150236778 | Jalali | Aug 2015 | A1 |
20150236779 | Jalali | Aug 2015 | A1 |
20150236780 | Jalali | Aug 2015 | A1 |
20150236781 | Jalali | Aug 2015 | A1 |
20150237569 | Jalali | Aug 2015 | A1 |
20150280812 | Jalali | Oct 2015 | A1 |
20150301529 | Pillai et al. | Oct 2015 | A1 |
20150304885 | Jalali et al. | Oct 2015 | A1 |
20150362917 | Wang et al. | Dec 2015 | A1 |
20160013858 | Jalali et al. | Jan 2016 | A1 |
20160088498 | Sharawi | Mar 2016 | A1 |
20160112116 | Jalali et al. | Apr 2016 | A1 |
20160134358 | Jalali et al. | May 2016 | A1 |
20160337027 | Jalali | Nov 2016 | A1 |
20170156097 | Weber et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2316440 | Feb 2001 | CA |
2369361 | Sep 2011 | EP |
2801838 | Nov 2014 | EP |
S6141979 | Feb 1986 | JP |
WO-2014007873 | Jan 2014 | WO |
Entry |
---|
Abbott H., et al., “Land-Vehicle Navigation Using GPS” Proceedings of the IEEE, 1999, vol. 87(1), pp. 145-162. |
Goldsmith AJ., et al., “Design Challenges for Energy-Constrained Ad Hoc Wireless Networks,” Wireless Communications, IEEE, 2002, vol. 9 (4), pp. 8-27. |
Number | Date | Country | |
---|---|---|---|
20180034534 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15260049 | Sep 2016 | US |
Child | 15601749 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14711427 | May 2015 | US |
Child | 15260049 | US |