The present invention is in the field of electrical supplies and in particular, it is in the field of providing a grounded Christmas tree water reservoir.
It is common practice during the Christmas holiday to decorate a Christmas tree with lights. The Christmas tree commonly sits in a water reservoir to keep the Christmas tree fresh during the holiday season and avoid the excessive dropping of needles. In some circumstances, the water reservoir becomes electrically charged. When an individual or an animal comes into contact with the water reservoir, the individual receives an electric shock. This can create a dangerous, or at least an unpleasant, situation for the individual, for example a crawling infant, or for a pet.
Disclosed herein are cords comprising two live wires and a ground wire, wherein the ground wire terminates in a probe configured to be placed in a water basin at the base of a Christmas tree. Also disclosed herein are cords comprising two live wires and a ground wire, wherein the ground wire terminates in a probe configured to be placed in a trunk of a Christmas tree. Also disclosed herein are bases for a Christmas tree, the base comprising a GFI socket, wherein the GFI socket is in electrical communication with a ground wire, wherein the ground wire terminates in a probe; wherein the GFI socket is in electrical communication with a three-wire cord, configured to be plugged into a wall socket.
The present inventor has discovered that under some circumstances the water reservoir in the base of a Christmas tree becomes electrically charged. This is especially true when the tree stand is made of plastic or other insulating material, which does not conduct electricity. This problem does not exist with metallic tree stands, because the metal base acts to ground the water reservoir as it conducts the electricity to the ground. This automatic grounding does not exists with the plastic tree stands, or with stands that have an insulating base.
Without being bound to any particular theory, the present inventor postulates that the Christmas tree lights cause the accumulation of electric potential. AC Christmas lights are typically wrapped around the tree and plugged into an electrical outlet. As the current flows through the wire, it creates an electric field. This electric field has the potential to conduct to the trunk of the tree and create an electric potential between the tree and the ground. The problem exists because the wires wrapped around the tree act like windings of a transformer. As current flows through the wire it creates a magnetic field, which causes an electric potential, resulting in the ions within the tree trunk to move. That is, the current in the wire causes an electrical current in the tree trunk. This phenomenon occurs in both freshly cut trees, where the sap acts as the conductor, and artificial trees, where the tree trunk is metal, which is conductive. If the tree base is not electrically grounded, the potential for the accumulation of electric potential exits. In a freshly cut tree, which is placed in a water reservoir, the water acts as an exposed conductor. In an artificial tree, the metallic trunk and limbs act as an exposed conductor.
Disclosed herein are devices and methods that provide an earth ground for the tree and/or its accompanying base. The disclosed devices and methods are further explained in reference to the drawings.
In some embodiments, provided is an indicator light 210, which is a safety feature and illuminates when the three-wire cord 202 is properly grounded.
In some embodiments, the electrode 208 is simply placed in the water reservoir 108. In other embodiments, the electrode 208 is embedded into the wall of the reservoir 108, while maintaining the electrical communication with both the three-wire cord and the water in the reservoir 108.
As discussed above, provided is an indicator light 210, which indicates the proper grounding of the three-wire cord 202.
As shown in FIG, 4, similar to an artificial tree of
In another aspect, disclosed herein is an extension cord for use with Christmas tree lights, where the extension cord comprises a ground wire connection, and an outlet for the Christmas tree lights to be plugged in. In these embodiments, the user, who may already have Christmas lights from the years past, is not required to acquire new lights. The user can only acquire the extension cord and use it with an existing tree and/or existing lights.
As discussed above, provided is an indicator Light 210, which indicates the proper grounding of the cord.
As discussed above, provided is an indicator light 210, which indicates the proper grounding of the three-wire cord 502.
In other embodiments, for example the one shown in
The two live wires 506 terminate at a female plug; 514, into which the existing Christmas light cord is plugged.
As discussed above, provided is an indicator light 210, which indicates the proper grounding of the three-wire cord 502.
In another aspect, disclosed herein is a tree base having a grounded plug for Christmas tree lights. An embodiment of the disclosed base is shown in
As discussed above, provided is an indicator light 210, which indicates the proper grounding of the three-wire cord 604.
As discussed above, provided is an indicator light 210, which indicates the proper grounding of the three-wire cord 604.
Additional embodiments are disclosed in the following non-limiting examples.
A fresh cut tree (Tree #1) approximately 7′ tall with five strands of lights, was mounted in a plastic stand on a tile floor. A 46 year old female received an electric shock when she stuck her hand in the basin to check the water level. The tree lights were plugged in and turned on. At the time, 47 V AC to ground was measured on Tree #1. When checked 9 days later, Tree #1 measured 50.6 V AC to ground.
The subject also had a second tree (Tree #2). This tree was approximately 5′ tall with three strands of lights. It measured 30 V AC to ground. When checked 9 days later, Tree #2 measured 39.6 V AC to ground.
A fresh cut tree (Tree #3) approximately 8′ tall with four strands of lights, was mounted in a plastic stand on a tile floor. A 44 year old male received an electric shock when he stuck his hand in the water basin. As with the subject in Example A, he was making contact with the uninsulated floor. At the time, 68 V AC to ground was measured on Tree #3. When checked 9 days later, Tree #3 measured 31 V AC to ground.
A fresh cut tree (Tree #4) approximately tall with four strands of lights, is mounted in a metal stand, on a carpeted floor. Tree #4 measured 40.3 V AC to ground.
A three wire extension cord with an attached grounding probe was utilized with the tree lights of Tree #3. When the probe was placed in the water, the measured voltage was eliminated. When the probe was removed, the voltage was restored. This same application was used on Trees #1, and #4. This produced the same results.
A fresh cut tree approximately 5′ tall was mounted in a plastic stand. Four strands of lights produced 23.3 V AC measured to ground, from the water basin. Five strands of lights produced 30.4 V AC. Six strands of lights produced 36.5 V AC. Seven strands of lights produced 40.6 V AC. (Note: The tree had been on a tree lot for one week and seemed dry.)
When a grounded probe was placed in the water, the voltage was eliminated. When the probe was removed, the voltage was restored. Upon placing the grounded probe back in the water, the voltage was eliminated.
A fresh cut tree approximately 8′ tall was mounted in a plastic stand, with four strands of lights measured 52.8 V AC to ground, from the water. Also, 0.05 A of current was measured to ground. As tested before, when a grounded probe was placed in the water, the voltage was eliminated.
A grounded probe was placed in the water. This eliminated the voltage. When the probe was removed, the voltage returned.
A fresh cut tree approximately 7′ tall was mounted in a plastic stand, with twelve strands of lights measured 53 V AC to ground from the water. Also, 0.06 A of current was measured to ground.
A fresh cut tree approximately 5′ tall was mounted in a plastic stand, with five strands of lights measured 49 V AC to ground and 0.05 A of current was measured. As tested before, when a grounded probe was placed in the water, the voltage was eliminated. When the probe was removed, the voltage returned.
An artificial tree approximately 5′ tall with rubber pads on the legs of the stand was tested. The tree only had three strands of lights, but still produced 19.8 V AC measured voltage from the frame of the tree to ground. A grounded conductor was attached to the frame of the tree. This eliminated the voltage readings. When the conductor was removed, the voltage returned.
The present invention is a continuation of U.S. patent application Ser. No. 14/170,303, filed Jan. 31, 2014, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14170303 | Jan 2014 | US |
Child | 15439230 | US |