This disclosure generally relates to integrated grounding for solar modules and electrical wire management, and more specifically, to grounding clips, and tabs that are integrated into solar module racking systems.
Solar modules convert solar energy into other forms of useful energy (e.g., electricity or thermal energy). Such modules typically include a laminate mounted in a frame and are positioned above an underlying support surface by a rack. The underlying support surface may be, for example, the roof of a building or the surface of the Earth.
The rack may be configured to rotate and position the solar modules at an angle relative to the support surface to minimize the angle of incidence between the solar module and the sun's rays. Minimizing this angle of incidence increases the amount of solar energy intercepted by the solar module. Racks are typically formed from a plurality of structural members including rails. These members may be assembled into a rack at a factory or other remote site and then transported to an installation location in this assembled state.
The rack-mounted solar modules are wired together to form photovoltaic (PV) arrays. Typically, the wiring requires module-to-module DC connections into for strings of modules in a series. The wiring also typically requires grounding the metallic frames of each solar module to the support structure. Accordingly, considerable labor may be involved when installing solar modules and forming arrays. For example, the electrical grounding of the solar modules may require considerable time, as electrical codes (e.g., UL Code 467) require a grounding wire to be mechanically attached to each solar module frame within an array, as well as to the overall rack assembly.
Although solutions currently exist to connect and ground the solar module frame to the rack, many solutions include multiple parts that are difficult and time consuming to assemble during installations. For instance, one method of grounding a solar module frame to a supporting rack includes placing conventional bolt stacks through holes in the solar module frame and supporting rail, locking the stacks in place with a nut, and using a special grounding washer. This grounding washer is used particularly for grounding, and does not serve a significant structural purpose. Currently, mounting hardware and grounding hardware are two separate assemblies, and are not integrated together. Installation of these additional grounding parts may require additional time, effort, and expense.
In addition, wire management solutions currently exist to secure electrical wires extending from the solar module, rack and related structures. However, many of these solutions include relatively expensive parts such as clips, cable ties, and fasteners that require time to install. Also, electrical wires running from the solar module, and between solar modules, are attached to supporting rails or other components of the array by relatively expensive, discrete parts that require considerable time and effort to install.
This Background section is intended to introduce the reader to various aspects of the art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
A first aspect of the present disclosure is a solar module assembly. The assembly includes a solar panel, a frame, a grounding clip, and a rail. The frame is coupled to the solar panel and the rail is coupled to the frame. The grounding clip includes a u-shaped body, a nut, and a washer. The u-shaped body is attached to the frame and includes a first segment and a second segment spaced apart from the first segment, the first and second segment connected by a third segment. The nut is coupled to the first segment such that the nut is not rotatable with respect to the first segment. The washer is also coupled to the first segment. The rail includes a tab integrally formed thereon defined by a cutout formed in the rail. The tab is sized and shaped to support and position at least one electrical wire.
Another aspect of the present disclosure is a grounding clip assembly. The assembly includes a u-shaped body, a nut, and a washer. The u-shaped body is attached to a frame of a solar module. The u-shaped body includes a first segment and a second segment spaced apart from the first segment, the first and second segment connected by a third segment. The third segment is oriented substantially orthogonal to the first and second segments. The nut is coupled to the first segment such that the nut is not rotatable with respect to the first segment. The washer is also coupled to the first segment. The nut and washer are located on opposite sides of the first segment and the washer is positioned between the first segment and the second segment.
Another aspect of the present disclosure is a rail configured to attach a solar module in an array of solar modules to a rack assembly. The rail includes a tab integrally formed thereon. The tab is formed by a cutout formed in the rail. The tab is sized and shaped to support and position at least one electrical wire. The tab is adjustable between a first position and a second position. An elongated slot in the rail is substantially covered by the tab in the first position. The elongated slot is exposed when the tab is in the second position.
Various refinements exist of the features noted in relation to the above-mentioned aspects. Further features may also be incorporated in the above-mentioned aspects as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments may be incorporated into any of the above-described aspects, alone or in any combination.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
The embodiments described herein generally relate to a racking system that integrates mounting and grounding features for solar modules. More specifically, embodiments described herein relate to clips that electrically ground solar modules in an array, and bend out tabs that manage and retain electrical cabling.
Referring initially to
Solar panel 102 includes a top surface 106 and a bottom surface 108 (shown in
As shown in
As shown in
Exemplary frame 104 includes an outer surface 130 spaced apart from solar panel 102 and an inner surface 132 adjacent solar panel 102. Outer surface 130 is spaced apart from and substantially parallel with inner surface 132. In the exemplary embodiment, frame 104 is made of aluminum. More particularly, in some embodiments frame 104 is made of 6000 series anodized aluminum. In other embodiments, frame 104 may be made of any other suitable material providing sufficient rigidity including, for example, rolled or stamped stainless steel, plastic or carbon fiber.
Frame 104 includes a channel 134 extending from outer surface 130 of frame 104 toward inner surface 132. In the exemplary embodiment, channel 134 is a single channel that extends substantially continuously around the entire perimeter of frame 104. In other embodiments, channel 134 may be discontinuous and/or may comprise a plurality of channels. Channel 134 is located adjacent both sides of each corner 122, 124, 126, and 128. In other embodiments, channel 134 may be located adjacent a single side of each corner 122, 124, 126, and 128.
In addition to the exemplary frame 104 in
The structure of segments 601, 602, 603 forms a receiving slot 607 with a volume that a connecting portion (e.g., frame 104) of solar module 302 occupies substantially when grounding clip 600 is attached to solar module 302. The width of the space between segments 601 and 602 is approximately the same as a thickness of the connecting portion of solar module 302. The connecting portion of solar module 302 includes a hole defined therethrough that receives fastener 650. Accordingly, a length of segments 601 and 602 can vary and is determined, in part, by the position of the hole on the connecting portion of solar module 302. In other suitable embodiments, segments 601 and 602 extend such that the space between segments 601 and 602 (i.e., receiving slot 607) is increased to enable a user to more easily slide grounding clip 600 onto the connecting portion of solar module 302. The connecting portion of the solar module 302 may be any portion of solar module 302, but is suitably on a lower portion of frame 104 as illustrated in
Segments 601 and 602 both include apertures 610 and 611, respectively, for receiving fastener 650 therethrough. In the illustrated embodiment, the apertures 610 and 611 through segments 601 and 602 are substantially aligned. Aperture 611 in segment 602 is bounded by one or a plurality of locking finger(s) 605. Aperture 610 in segment 601 is sized to receive a nut 606 coupled to a washer 604. In the illustrated embodiment, nut 606 is positioned on a periphery of segment 601 and washer 604 is positioned within receiving slot 607. In the illustrated embodiment, nut 606 and washer 604 are integrally formed or otherwise connected to segment 601 to prohibit rotation of nut 606 when threadably connecting fastener 650 to nut 606.
Segments 601, 602, 603 are formed such that segments 601 and 602 engage edges of solar module 302. In the example embodiment, the connecting portion of frame 104 substantially fills the volume of receiving slot 607 and is in contact with segment 603. As shown in
Locking finger 605 is integrally formed with segment 602. As shown in
Washer 604 is connected to segment 601 and is positioned, at least partially, within receiving slot 607. In the illustrated embodiment, washer 604 contacts frame 104 when grounding clip 600 is placed thereon. Accordingly, when the clip is mounted on the connecting portion of solar module 302, locking finger 605 and washer 604 cooperate to hold grounding clip 600 in place. This feature allows a solar module installer to direct fastener 650 through rail 620, frame 104, and grounding clip 600 to engage nut 606 without supporting or holding grounding clip 600 or nut 606.
In the example embodiment, locking finger 605 and washer 604 have surface penetrating features (e.g., an abrasive external surface) that contact the connecting portion of solar module 302. The surface penetrating features of finger 605 and washer 604 penetrate non-conductive coatings on the surface of the solar module 302 and contact underlying conductive material as grounding clip 600 is attached thereto. This is relevant when clip 66 is utilized as an electrical grounding attachment. In the example embodiment, the surface penetrating features of finger 605 and washer 604 are suitable to create electrical contact between the solar module 302 and grounding clip 600 (and any electrical ground wire attached thereto). This serves to ensure grounding clip 600 creates an electrical connection with solar module 302 that is compliant with applicable electrical codes. Examples of non-conductive coatings on the on the solar module surface include anodization, paint, clear coats, oxidation, and any other non-electrical conductive material.
Example embodiments of nut 606 include a hex-nut, an acorn nut, a wing nut, or any other nut type and/or component including formed threads that is capable of engaging fastener 650. Example embodiments of washer 604 include an internal or external tooth lock washer, a conventional washer, or any other annular washer with a surface penetrating feature. In the example embodiment, nut 606 and washer 604 are welded or integrally formed with segment 601. In yet another embodiment, nut 606 and washer 604 are selectively detachable from segment 601.
Grounding clip 600 and its constituent parts described above are suitably constructed of a material capable of electrical conductance (e.g., metal). In another embodiment, the material of construction of grounding clip 600 and solar module 302 (or frame 104) are similar in electropotential and galvanic index to minimize galvanic corrosion there between when directly connected. This embodiment is relevant when grounding clip 600 acts as a grounding mechanism for solar module 302.
Grounding clip 600 may be manufactured using conventional metal pressing, stamping, and forming methods. As an example of manufacturing the example embodiment of grounding clip 600, a blank 900 as shown in
Subsequently, in the example embodiment, blank 900 is rolled, formed, or molded along lines 910 and 911 thereby creating segments 601 and 602, spaced apart, and connected by segment 603. One having ordinary skill in the art will appreciate that segments 601, 602, and 603 may alternatively be individually formed and connected (e.g., welded) to form body 609.
As shown in
Rail 620 is a structural element of the solar module array 300 and may be designed to withstand twenty or more years of exposure to environmental elements. Rail 620 is formed from zinc coated sheet steel in the example embodiment. In other embodiments, rail 620 may be made of any other suitable material providing sufficient rigidity including, for example, rolled or stamped stainless steel, plastic or carbon fiber.
Rail 620 of the present disclosure includes a wire retention tab 1001. Wire retention tab 1001 is formed by laser cutting, stamping, or thermally removing material across the entire thickness of rail 620, for a portion of the length and width of rail 620. That is, wire retention tab 1001 is formed integrally with rail 620 by removing material therefrom to create a portion (i.e., tab 1001) that may be manipulated to protrude from rail 620. Accordingly, at least a portion of the wire retention tab is attached to rail 620 at a deformation location 1002.
In the illustrated embodiment shown in
With tab 1001 bent away from rail 620, a slot (not shown in the Figures) is exposed in rail 620. A user may then position a bundle of electrical wires and cords (e.g., from the overhead attached solar module) under the exposed slot. With the wires and cords positioned against rail 620, a user maneuvers tab 1001 over and around the wires and cords to hold them in position. The plasticity, flexural strength, and resilience of tab 1001 enable the user to harness and affix the bundle of wires and cords in place against rail 620.
Depending on the fabrication of tab 1001, edges of tab 1001 and/or portions of rail 620 surrounding tab 1001 may have a relatively rough and/or sharp profile that could potentially damage the wires and cords. Accordingly, in some embodiments, tab 1001 and/or rail 620 includes a protective feature that facilitates preventing abrasion of the wires and cords. The protective feature may include, for example, a protective sleeve that fits over tab 1001, a coating (e.g., a rubber or vinyl coating) applied by spraying and/or dipping tab 1001 and/or rail 620, or a cover piece that couples to tab 1001 and/or rail 620 to reduce the abrasive impact of tab 1001 and/or rail 620. Further, in some embodiments, to form tab 1001, rail 620 is punched using a machining process that forms dull surfaces on the side of tab 1001 that faces the wires, and forms sharp ends (or “lances”) on the opposite side of tab 1001 such that the sharp ends face outward away from the wires.
The length and width of tab 1001 (formed by cutout 1000) may vary depending upon a number of factors including the plasticity, resilience, and strength of the material of construction of rail 620, the number of wires and cords (and the overall diameter thereof) to be held in place against rail 620, the thickness of rail 620, and whether human hands or tools are to be used to bend tab 1001 at deformation location 1002. Taking each of these factors into consideration provides an iterative process of determining the thickness of rail 620 and the length and width of tab 1001. In the example embodiment, a user is able to quickly bend tab 1001 away from rail 620 with a first hand, grab and position electrical wires and cords appropriately for harnessing with a second hand, and quickly wrap and deform tab 1001 around the electrical wires and cords with the first hand.
Accordingly, tabs consistent with the present disclosure may provide several advantages over prior methods of harnessing wires under solar module arrays 300. First, the tab allows a solar module array installer to quickly and efficiently harness electrical wires and cords to the structure of the solar module array 300. In addition to time savings, material costs are reduced as expensive additional parts including clips, cable ties, and fasteners are no longer required to harness electrical wires. As the harness is built into the supporting rails of the solar module array 300, the harness (i.e., tab 1001) of the present disclosure is also more resilient (e.g., to ultraviolet radiation exposure) than previous solutions. Further, tab 1001 may also be formed as part of other members of the rack assembly to guide electrical wires to electrical supply hub(s).
When introducing elements of the present invention or the embodiments thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. The use of terms indicating a particular orientation (e.g., “top”, “bottom”, “side”, etc.) is for convenience of description and does not require any particular orientation of the item described.
As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying figures shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
2258342 | Tinnerman | Oct 1941 | A |
2378257 | Tinnerman | Jun 1945 | A |
2394729 | Tinnerman | Feb 1946 | A |
2716434 | Crowther | Aug 1955 | A |
2861618 | Tinnerman | Nov 1958 | A |
3009499 | Weihe | Nov 1961 | A |
3217773 | Munse | Nov 1965 | A |
3229743 | Derby | Jan 1966 | A |
3426818 | Derby | Feb 1969 | A |
3669170 | Schuster | Jun 1972 | A |
4074491 | Bell et al. | Feb 1978 | A |
RE29752 | Jaconette | Sep 1978 | E |
4325598 | Leonardo | Apr 1982 | A |
4684305 | Dubost | Aug 1987 | A |
4729706 | Peterson et al. | Mar 1988 | A |
4778321 | Okawa | Oct 1988 | A |
4793753 | Muller et al. | Dec 1988 | A |
4897005 | Peterson et al. | Jan 1990 | A |
5026235 | Muller et al. | Jun 1991 | A |
5039264 | Benn | Aug 1991 | A |
5176482 | Reinl | Jan 1993 | A |
5339500 | Muller et al. | Aug 1994 | A |
5423646 | Gagnon | Jun 1995 | A |
5713707 | Gagnon | Feb 1998 | A |
5746609 | Franks, Jr. | May 1998 | A |
5890858 | Leroux | Apr 1999 | A |
5893694 | Wilusz et al. | Apr 1999 | A |
5961264 | Postadan | Oct 1999 | A |
5971686 | Stewart et al. | Oct 1999 | A |
6287064 | Jhumra et al. | Sep 2001 | B1 |
6357980 | Lansinger | Mar 2002 | B1 |
6374999 | Winkelman et al. | Apr 2002 | B1 |
6398596 | Malin | Jun 2002 | B1 |
6450747 | Fischer | Sep 2002 | B1 |
6474917 | Gauron | Nov 2002 | B2 |
6688825 | Stewart et al. | Feb 2004 | B1 |
6854941 | Csik | Feb 2005 | B2 |
6971830 | Hulin et al. | Dec 2005 | B2 |
7182563 | Wimmer et al. | Feb 2007 | B2 |
7648319 | Ochoa et al. | Jan 2010 | B1 |
7896596 | Rausch et al. | Mar 2011 | B2 |
7959392 | Cooley | Jun 2011 | B2 |
8231317 | De Gelis | Jul 2012 | B2 |
8590223 | Kilgore et al. | Nov 2013 | B2 |
8845257 | Kato | Sep 2014 | B2 |
20050036851 | Dang et al. | Feb 2005 | A1 |
20070248434 | Wiley et al. | Oct 2007 | A1 |
20110265860 | Ciasulli et al. | Nov 2011 | A1 |
20120211252 | Turziano et al. | Aug 2012 | A1 |
20140053891 | West | Feb 2014 | A1 |
20140220834 | Rizzo | Aug 2014 | A1 |
20140242853 | Martin et al. | Aug 2014 | A1 |
20140329420 | Magno | Nov 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20150349166 A1 | Dec 2015 | US |