The present invention relates to a grounding device for automated guided vehicles adapted to traverse a path on a floor surface coated with a non-conductive material to thereby deliver items in an automated fashion to a set location and a method therefore. More specifically, the invention is concerned with electrically grounding an automated vehicle to a ground in order to prevent an electric charge from building up in said automated guided vehicle including, for example, static electricity, thereby damaging electronic devices or persons associated with said guided vehicle. The invention involves the use of a grounding strap extending from said guided vehicle and adapted for contacting a ground device electrically grounded to the earth.
Automated guided vehicles have become common in many industrial applications. These vehicles are used to transport material along a predetermined guide path established at an industrial facility. These automated guided vehicles utilize various methods to guide the vehicle in an automated manner. Most all of these various guidance methods include the use of electronics positioned on the guided vehicle. In addition, in some cases, the guided vehicles also include electric motors to both power the vehicle and perform functions at various locations in the facility.
Electrostatic build-up of an electrical charge is well known in the facility management and material handling industries. If not managed appropriately, electrostatic build-up can harm electronics used in a facility as well as personnel working in such facility. Prior art grounding devices including metal chains, flexible conductive strips and conductive surface coatings. Metal chains are known to be mounted to the frame of vehicles for contact with the surface having no coatings such as a cement surface with no coatings. Such chains are known to be subject to breaking, bouncing and creating hazardous sparks. U.S. Pat. No. 4,321,653 shows a flexible conductive strip mounted to a frame of an automobile for contacting the ground. These prior art devices were designed for use with a conductive surface, most commonly the ground, and not for use on a surface coated with a non-conductive material.
Conductive coatings are relatively newer in the industry and are known to assist in grounding facility equipment to protect workers and equipment. In applications where the use a guided vehicle is planned, most facility floor surfaces are coated with such conductive coatings thereby permitting the guided vehicle to be electrically grounded through the vehicle tires to the conductive coating. However, due to the increasing use of automated guided vehicles, many facilities are installing such guided vehicles without having a conductive coating on the facility floor surface, and in most cases, a non-conductive coating remains. Under such circumstances where the facility floor does not have a conductive coating, this can affect the ability to ground facility machinery and equipment thereby causing a serious electrostatic build-up hazard.
A device for electrically grounding an automated guided vehicle includes a grounding strap suspended from the automated guided vehicle and adapted for contacting at least one ground device to thereby electrically ground the guided vehicle. The guided vehicle includes a power source for providing power to on-board electronics on the guided vehicle and the power source is grounded with a ground wire to the grounding strap.
The present invention also includes a method for electrically grounding an automated guided vehicle for use on a non-conductive surface. The steps of the method include mounting an electrically conductive grounding strap to the automated guided vehicle, connecting a negative wire of a power source of the automated guided vehicle to the ground strap, mounting an electrically conductive ground device to a surface to be traversed by the automated guided vehicle; and positioning the grounding strap to be in contact with the ground device when the automated guided vehicle traverses the surface.
Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
The present invention is provided for use with non-conductive floors 12 including, for example, in cases where flooring surfaces have a non-conductive coating applied thereto. Since the coating is a non-conductive coating, the coating inhibits the ability of the vehicle, through the tires 32, to electrically ground to the earth. If the vehicle is not ground to the earth, electrical build up may occur and cause a significant accident either to persons or the electronics used with the vehicle. In use with non-conductive coated floors, the grounding strap 16 is mounted to the automated guided vehicle 10 and the ground devices 20 are mounted to the floor 12. The power source 18 on the vehicle 10 provides a current to the electronics on the guided vehicle 10 permitting the guided vehicle, among other functions, to drive along the path 14 on the floor 12. In order to ground the negative terminal of the power source 18, a ground wire 28 is connected either to the frame of the vehicle 10 or directly to the grounding strap 16. The grounding strap 16 is suspended from the vehicle 10 a sufficient amount to permit the strap 16 to be in contact with the ground device 20.
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2184811 | McDonald et al. | Dec 1939 | A |
2327029 | Donelson et al. | Aug 1943 | A |
2378623 | Donelson et al. | Jun 1945 | A |
2413610 | Donelson | Dec 1946 | A |
2753491 | Legge | Jul 1956 | A |
2786161 | Lunden | Mar 1957 | A |
2851639 | Ford et al. | Sep 1958 | A |
3750833 | Kahl | Aug 1973 | A |
4321653 | Takahashi | Mar 1982 | A |
5367243 | Wells et al. | Nov 1994 | A |
5812267 | Everett, Jr. et al. | Sep 1998 | A |
6327131 | Thomas et al. | Dec 2001 | B1 |
6543591 | Kuzuya | Apr 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20080112104 A1 | May 2008 | US |