The embodiments herein relate generally to electrical connections and more specifically to grounding stud apparatus, electrical connections including a grounding stud apparatus and a nut, and to electrical connections including a grounding stud, a nut, and a female eyelet configured for electromechanical coupling the stud apparatus with an associated device to be grounded. The example embodiments herein will be described in connection with an electrical connection for an automotive vehicle employing the grounding stud apparatus, but it is to be appreciated that the embodiments are not limited to automotive vehicles and/or automotive applications, but also find use in many other applications including anywhere associated power consuming devices are to be coupled with a grounding member.
It is common to arc weld or otherwise attach an elongated circular end of a threaded metal stud onto a sheet metal body panel of an item of equipment such as an automotive vehicle for example for purposes of providing a ground return path through the body panel. Various electrical terminal connections or other parts are then inserted upon the single threaded stud and an internally threaded nut is rotationally inserted onto the stud thereby fastening the terminal ends with the equipment via the stud. Conventional threaded weld studs have also been employed as electrical grounding points for a vehicle wire harness to an engine compartment frame or body panel.
It is also known to employ a grounding weld stud that has a threaded portion, a circular flanged portion and a polygonal shoulder portion for receiving one or more wire harness eyelets having a matching polygonal shoulder portion. The polygonal shoulder portion of the weld stud is typically of an hexagonal or octagonal conformation for receiving the eyelet having a corresponding or equivalent matching hexagonal or octagonal conformation.
The polygonal shoulder configuration of weld studs of this type, however, are difficult to manufacture because they present undesirably large corner-to-corner and flat-to-flat dimensions across the shoulder, and therefore typically do not fit within standard stud welding machinery which can usually only handle a certain maximum outside diameter of stud. In addition, the large corner-to-corner and flat-to-flat dimensions also undesirably limits the number of positions available for mounting the eyelet relative to the stud and associated equipment coupled with the stud. This makes mounting the eyelet onto the stud at a desired relative orientation difficult in some applications.
It is therefore desirable to provide grounding studs and grounding connections without these limitations and, in particular, to provide studs usable with standard stud welding machinery and matable with wire harness eyelets in a much wider range of relative orientations than studs having only flat or polygonal shoulder portions.
In accordance with the embodiments herein, an example embodiment of an electrical connection comprises a grounding stud apparatus having a patterned segment, a shoulder, and a flange. In another aspect of the example embodiment, the shoulder of the stud apparatus has plural curved faces. In a further aspect of the example embodiment, the shoulder of the stud apparatus has an outer face that is void of any flat surfaces. Still another aspect of the example embodiments provides a nut which is threadably engaged with the patterned segment of the stud, and an eyelet which is selectively secured between the nut and the flange of the stud, wherein the eyelet is engagable with the shoulder of the stud apparatus in a wide range of relative positions. Yet another aspect of the example embodiments allows the stud to be welded onto an associated member such as an automotive body panel or the like for use as a grounding stud.
Overall, an embodiment of an electrical connection includes an elongate stud defining a central longitudinal axis, the elongate stud having a patterned segment, a shoulder and a flange. In another aspect of the example embodiment, the shoulder is generally circular in cross-section having one or more curved surfaces directed outwardly relative to the longitudinal axis of the elongate stud. In a further aspect of an embodiment of an electrical connection, the shoulder has an outer continuous curved surface. In a further aspect of the example embodiment, the shoulder has an outer continuous undulating curved surface. In a further aspect of the present invention, the shoulder has an outer continuous undulating curved surface comprising alternating sectors of concave and convex regions relative to the longitudinal axis of the elongate stud. In a further aspect of the example embodiment, the plurality of convex regions of the shoulder define a corresponding plurality of flutes whose cross sections each form a fraction of a first circle, and the plurality of concave regions define a corresponding plurality of lobes whose cross sections each form a fraction of a second circle. In a further aspect of the shoulder of the example embodiment, a diameter or radius of the first and second circles are the same. In a still further aspect of the shoulder of the example embodiment, the diameters or radii of the first and second circles are the different. In a still further aspect of the example embodiment, the shoulder is multilobular. In yet a still further aspect of the example embodiment, the shoulder is pentalobular, hexalobular or octalobular.
The stud and electrical connection of the example embodiments are advantageous over traditional devices in many ways including that the embodiments herein maximize the electrical contact area between the stud and the eyelet while also providing a wide range of set or otherwise predetermined angular orientations to the eyelet and wire once the nut has been fastened onto the stud. The embodiments herein also improve the electrical cross sectional area through the stud while also allowing for the manufacture of the stud in conventionally sized equipment. The preferred multilobular cross sectional shape of the shoulder advantageously increases automatic alignment of the eyelet, especially when the eyelet has a matching octagonal internal aperture shape, as compared to polygonal stud shoulders having six or less flat faces. The stud apparatus of the example embodiments advantageously accepts both a circularly apertured eyelet or a polygonally apertured eyelet such as an octagonally apertured eyelet for example, for use as a grounding stud or for use in other electrical stud connections such as to a junction box, battery or the like.
Additional advantages and features of the embodiments herein will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.
The foregoing and other features of the embodiments herein will become apparent to those skilled in the art to which the present grounding stud apparatus and electrical connections relate, upon reading the following description with reference to the accompanying drawings, in which:
With reference now to the drawing Figures, wherein the showings are for purposes of describing the embodiments only and not for purposes of limiting same, example embodiments herein relate to grounding stud apparatus and to electrical connections including the grounding studs wherein portions of the grounding studs define regions having plural curved surfaces configured to extend into an opening of an eyelet and selectively engage corresponding regions of the eyelet having for attachment therewith in a wide range of relative positions. The embodiments herein are applicable to different fastener constructions having various non-flat surfaces as may be necessary or desired. As representative of the embodiments and with reference in particular first to
Referring to
The grounding stud apparatus 10 includes a securing segment 20, a flange 22, a shoulder 24, a patterned segment 26, an inwardly tapered segment 28 and an anti-cross-threading lead-in end segment 30. The securing segment 20, flange 22, shoulder 24, patterned segment 26, inwardly tapered segment 28, and anti-cross threading lead-in end segment 30 are disposed at selected positions along a longitudinal centerline 32 of the generally cylindrical body 12. In the embodiment illustrated, the securing segment 20 has a hexagonal cross-sectional shape with a centrally raised button. This portion forms the weld pool of material when the grounding stud 10 apparatus is drawn arc welded to panel A. Flange 22 has a circular peripheral shape and transversely extends beyond the rest of stud 10.
In accordance with the example embodiment, the shoulder 24 is defined by a set of alternating generally convex 40 and concave 42 regions that are connected together and surround the longitudinal centerline 32 of the grounding stud 10 apparatus. However, it is to be appreciated that the shoulder may be generally characterized as being circular in overall cross-section and having one or more curved surfaces directed outwardly relative to the longitudinal axis 32 of the elongate stud. In a further aspect of an embodiment of the electrical connection, the shoulder 24 has an outer continuous curved surface. In a further aspect of the example embodiment, the shoulder 24 has an outer continuous undulating curved surface. In yet a further aspect of the present invention, the shoulder has an outer continuous undulating curved surface comprising alternating sectors of concave and convex regions relative to the longitudinal axis of the elongate stud. That is, working the way around the circumference of the shoulder 24, a concave section 42 is encountered, then a convex section 40 is encountered, then a concave section 42 is encountered, then a convex section 40 is encountered, and so on around the circumference of the shoulder 24. In general, in the embodiment illustrated, the each concave region defines a lobe and, correspondingly, each convex region defines a flute.
In the example illustrated, the first series of convex sections 40 and the second series of concave sections 42 extend in the axial direction along the length of the shoulder 24. Each convex section 40, as shown in the drawings, takes the form of an unthreaded flute 41 formed from a curved surface which is directed radially outwardly away from the centerline 32 of the stud 10 and which is generated by an ellipse, preferably a circle. Similarly, each concave section 40, as shown in the drawings, takes the form of an unthreaded lobe 43 formed from a curved surface which is directed radially inwardly toward the centerline 32 of the stud 10 and which is generated by an ellipse, preferably a circle. As shown and preferably, the alternating concaved and convexed elliptically, preferably circular, curved surfaces merge smoothly and tangentially thereby defining the series of alternating flutes 41 and lobes 43. Both the lobes and flutes are, in general, elliptically curved in section. Preferably, the lobes and flutes are circularly curved in section and, also preferably, the centers of the circularly curved lobes and correspondingly the centers of the circularly curved flutes are disposed at the apexes of regular octagons, although not the same octagon, due to the alternating nature of these components.
In addition to the above, while the example embodiment of the grounding stud apparatus 10 includes eight (8) convex sections 40 and eight (8) concave sections 42, it is to be appreciated that any number of convex and concave sections 40, 42 may be provided on or defined by the shoulder 24 as may be necessary or desired. For example, sets of five (5), six (6), seven (7), nine (9), etc. convex and concave 40, 42 regions may be provided for cooperative coupling with the eyelet 19 of the terminal connector 16 having a corresponding or equivalent conformation.
The center of each ellipse which is used to form the respective flutes 41 is radially equidistant from the centerline 32 of the body 12 of the stud apparatus 10. Each section 42, as shown in the drawings, takes the form of an unthreaded lobe 43 formed from a curved surface which is directed radially outwardly from the centerline 32 of the body 12 of the stud 10 and which is generated by an ellipse, preferably a circle. The center of each ellipse (preferably a circle) which is used to form the respective lobes 43 is radially equidistant from the centerline 32 of the body 12 of the stud 10. As such, the flutes 41 are recessed toward the centerline 32 of the stud 10 relative to the lobes 43. Adjacent curved surfaces which forms the respective flutes 41 and lobes 43 merge generally tangentially and smoothly with each other. The configuration of alternating flutes 41 and lobes 43 defines the external configuration of the shoulder 24 of the grounding stud apparatus 10. The flutes 41 and lobes 43 are equally spaced around the circumference of the drive head 24 and, in the illustrated embodiment, eight (8) flutes 41 are provided in the first series, and eight (8) lobes 43 are provided in the second series. The centers of the ellipses used to form the flutes 41 define a circle with respect to the centerline 32 of the body 12 of the stud 10 and the centers of the ellipses used to form the lobes 43 define a circle with respect to the centerline 32 of the body 12 of the stud 10. These circles may overlap each other or may be offset from each other.
Preferably, the lobes 43 and flutes 41 in the example embodiment are circularly curved in cross section.
The eyelet 19 in accordance with the electrical connection of an example embodiment has an internal aperture 50 defined by a radially inwardly facing edge, preferably an octagonally shaped edge. Aperture 50 of eyelet 19 closely matches the size of shoulder 24, and close dimensional tolerances of aperture 50 and of the flutes 41 and lobes 43 comprising the shoulder 24 are important.
Nut 14 has a circular-cylindrical, enlarged section 60 and a reduced section 62 mutually coaxially arranged with the enlarged section 60. A hexagonal cross sectional shape is externally provided on reduced section 62 for selective engagement with an associated socket or wrench tool, while a spiral thread is internally disposed within reduced section 62 for engaging the threads of stud 12. Enlarged section 60 has, on an end thereof, a radially outwardly directed flange member 64 which selectively abuts against and compresses eyelet 19 against flange 22 of stud 10, when nut 14 is rotatably tightened by a torque wrench or the like upon stud 10. In the fully fastened position, enlarged section 60 of nut 14 externally surrounds and covers at least part of shoulder 24. Alternately, nut 14 is of a progressive torque, crown lock variety.
In the electrical grounding stud application, stud 10, with nut 14 preassembled to prevent e-coat and paint incursion, is first welded to panel A. Subsequently, nut 14 is removed. Next, eyelet 19 is manually placed around threaded segment 26 of stud 10. Nut 14 is thereafter rotatably driven onto stud. The rotation of nut 14 will cause the octagonal aperture 50 of eyelet 19 to become automatically aligned with the matching flutes 41 and lobes 43 of the octagonal shoulder 24, thereby allowing a fixed orientation of eyelet 19 and wire 18 relative to stud 10. Nut 14 is then fully torqued onto stud. It is believed that the shape maximizes the face-to-face dimension and also the corner-to-corner dimension of shoulder 24. Notwithstanding, the cross sectional dimensions of shoulder 24 still allow for manufacturing of stud 10 in conventionally sized processing equipment. Additionally, the multilobular cross sectional shape of shoulder 24 allows for reduced circumferential rotation or angular displacement of the corresponding eyelet before alignment is achieved, especially compared to hexagonal or square cross sectional shapes.
An alternate embodiment eyelet has a circular internal aperture which fits around the lobes. This eyelet configuration (not shown) is more suitable for electrical connections, such as for junction boxes or batteries, where locked in wire orientation is not as important.
While the example embodiment grounding stud and electrical connection have been disclosed, it should be appreciated that other aspects can be employed within the scope of the embodiments. For example, the securing segment of the stud can alternately have a screw thread, be suitable for spot welding or have an interference fit type push in configuration to the adjacent panel or member. Additionally, the internal nut threads can be replaced by inwardly projecting formations that are in a non-spiral configuration. Furthermore, nut 14 can be replaced by a crimped on collar. The stud electrical connection can also be used for non-automotive apparatuses such as household appliance, power tools or industrial machines. While various materials have been disclosed, other materials may be employed.
Described above are example embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies, but one of ordinary skill in the art will recognize that many further combinations and permutations of the example embodiments are possible. Accordingly, this application is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
This application claims the benefit of U.S. Provisional Application No. 61/983,270 filed on Apr. 23, 2014, the contents of which are incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3584667 | Reiland et al. | Jun 1971 | A |
4002390 | Perry | Jan 1977 | A |
4192215 | Hymans | Mar 1980 | A |
4267870 | Warner | May 1981 | A |
4808050 | Landt | Feb 1989 | A |
5207132 | Goss et al. | May 1993 | A |
5207588 | Ladouceur | May 1993 | A |
5292264 | Blank | Mar 1994 | A |
5356253 | Whitesell | Oct 1994 | A |
5413500 | Tanaka | May 1995 | A |
5442133 | Arnold | Aug 1995 | A |
5489176 | Fultz | Feb 1996 | A |
5622464 | Dill | Apr 1997 | A |
5655936 | Meredith | Aug 1997 | A |
5868535 | Ladouceur | Feb 1999 | A |
5879119 | Robinson | Mar 1999 | A |
6077096 | Moring et al. | Jun 2000 | A |
6158310 | Goss et al. | Dec 2000 | A |
6206737 | Bonilla | Mar 2001 | B1 |
6244517 | Courtois et al. | Jun 2001 | B1 |
6357110 | Shipp et al. | Mar 2002 | B1 |
6491487 | Wojciechowski | Dec 2002 | B1 |
6607339 | Mangapora | Aug 2003 | B1 |
6746285 | Delcourt et al. | Jun 2004 | B2 |
6864015 | Peterson | Mar 2005 | B2 |
6991478 | Girinon | Jan 2006 | B2 |
7001125 | Wojciechowski | Feb 2006 | B2 |
7014406 | Robertson | Mar 2006 | B2 |
7047617 | Ladouceur | May 2006 | B2 |
7056161 | Delcourt et al. | Jun 2006 | B2 |
7083479 | Muller et al. | Aug 2006 | B2 |
7241151 | Bradshaw | Jul 2007 | B1 |
7425111 | Ladouceur | Sep 2008 | B2 |
7568871 | Chopp, Jr. et al. | Aug 2009 | B2 |
7597516 | Bucciferro | Oct 2009 | B2 |
7683254 | Shimizu | Mar 2010 | B2 |
7713071 | Pearce | May 2010 | B2 |
7892049 | Andler et al. | Feb 2011 | B1 |
8167262 | DeDona et al. | May 2012 | B2 |
8202134 | Moon et al. | Jun 2012 | B2 |
8241071 | Hayama | Aug 2012 | B1 |
8272883 | Smith | Sep 2012 | B1 |
8287219 | Opper et al. | Oct 2012 | B2 |
8328486 | Cox | Dec 2012 | B2 |
8523505 | Opper et al. | Sep 2013 | B2 |
8647159 | Steeves | Feb 2014 | B2 |
8974254 | Esmacher et al. | Mar 2015 | B2 |
8998549 | Pimper et al. | Apr 2015 | B2 |
Number | Date | Country |
---|---|---|
62-5569 | Jan 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20150311601 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61983270 | Apr 2014 | US |