1. Field of the Invention
The present invention relates in general to regulating the level of groundwater in the fields of an agricultural operation and, more particularly, wherein the level of the groundwater in the field is regulated according to a predetermined water table profile or water purity level for improved crop yields and retention of resources and nutrients.
2. Description of the Prior Art
It is known in the art to use a variety of machines and apparatuses to increase or decrease moisture in the soil used for agrarian purposes. Some of these machines include the use of aquifers, irrigation ditches and canals, use of overhead sprinkler irrigation, terracing for directing the flow of water while maintaining top soil and some moisture in the soil on a hill, and the laying of underground tile lines into which water will drain and flow away from the field.
Tile lines, while effectively routing excess water from the soil have heretofore typically served that singular purpose. Unfortunately, when moisture levels in the season result in a need for more water in the soil, the tile lines typically continue to drain without means to control or adjust the flow. In this manner, efficient water removal by the lines can be detrimental to the crop either by depriving the plants of moisture or by allowing nitrates, phosphates and other nutrients used by plants to flow out of the soil before sufficient time has passed to allow them to break down naturally. This means that ponds and streams are often polluted by these nutrients.
As an improvement over uncontrolled tile lines, drainage systems have been developed that include the use of flow control regulators in the lines in such a way as to manage and regulate the moisture level in the soil. The management is typically based upon seasonal needs and is provided via automatic adjustments of the flow control regulators according to a twelve-month calendar through the use of electric motors that are adapted to open or close flow gates in the flow control regulators and timers that determine the operation of the motors. This type of groundwater control system is described in United States patent to Schafer et al., U.S. Pat. No. 6,715,508 B2 issued Apr. 6, 2004 and United States patent to Schafer et al., U.S. Pat. No. 6,786,234 B2 issued Sep. 7, 2004.
Although water drainage systems that include timer control regulators are a vast improvement over uncontrolled systems, they operate in essentially the same manner regardless as to the type of weather that has occurred and the amount of groundwater in the soil. Additionally, such systems do not provide an effective means for reducing the amount of nitrates, phosphates and other nutrients from getting into ponds and streams. The present invention is designed to provide a groundwater control system that is preferably actuated in response to a sensing of impurities in the groundwater in the soil.
The present invention provides a method and a system for controlling and regulating the level of groundwater in an agricultural field according to selected criteria that involves the use of a buried tile line in said field to drain water therefrom, a water flow regulator located in the tile line for controlling the flow of water therethrough, sensing means for determining information concerning the groundwater in the field, computer processing means for providing control signals to the water flow regulator in response to information from the sensing means and communication means between said computer and said sensing means and said flow regulator.
In a first preferred embodiment of the system of the present invention, the sensing means monitors the level of groundwater in the field on a periodic basis and provides output signals representative of said level information via said communication means to the computer processing means, which in turn provides control signals to the flow regulator in accordance with predetermined selected criteria programmed in the processing means.
In a second preferred embodiment of the present invention, the water flow regulator is controlled via programming of the computer processing means to respond to water purity level output signals from said sensing means according to selected criteria. In this way, the water flow regulator gate is positioned to reduce the flow of water from the field when the sensing means detects a water impurity level of a preselected amount.
The foregoing and other advantages of the present invention will appear from the following description. In the description, reference is made to the accompanying drawings, which form a part hereof, and in which there is shown by illustration and not of limitation a specific system and method in which the invention may be embodied. Such embodiments do not represent the full scope of the invention, but rather the invention may be employed in a variety of other embodiments and reference is made to the claims herein for interpreting the breadth of the invention.
The present invention is adapted to provide a system and method for regulating the level of groundwater in an agricultural field according to predetermined selected criteria. Consequently, the system and method of the present invention may be advantageously employed to reduce, maintain or accumulate the amount of groundwater according to seasonal needs for the planting and harvesting of crops in the field as well as regulating the flow of water from a field when it is contaminated with impurities. For example, during the winter months it is desirable to keep the water table high in the soil so that nutrients, phosphates and nitrates will not be lost, but can break down naturally in the soil or be maintained until needed in the spring. In contrast, the water table should be significantly lowered prior to harvest to allow access to the field and to minimize compaction of the soil by large harvesting equipment. This is also true for the time period prior to and during planting to allow the soil to warm and encourage root growth and, again, to allow access to the field.
During times of heavy rainfall, the present invention can also be employed to reduce the amount of drainage from the field to prevent nutrients, phosphates and nitrates from being carried away by the drainage of excess water in the field. Accordingly, the present invention is adapted to utilize available information concerning the water table level of the field or the amount of impurities in the water table and can take seasonal needs into account in doing so in order to automatically manage water drainage from the field. Also, it may be advantageous in certain instances to merely monitor the impurity level of the groundwater and the present invention can be utilized for that purpose as well.
Referring now to the drawings and with reference first to
As illustrated by dotted lines in
Each of the water flow regulators 20 is associated with a sensing means preferably provided by a water pressure sensor 26 that is designed to periodically monitor the level of groundwater in that portion of the field 10 proximate thereto and to provide output signals representative of such groundwater levels. The sensors 26 preferably are in the form of transducers/transmitters that are buried in the ground in a close proximity to their associated flow regulator 20.
The sensors 26 are in communication with their respective regulator 20, preferably by means of buried cables 30 that also electrically connect the regulators 20 to a transceiver 28. The output signals indicative of the water levels in the proximity of the sensors 26 are first supplied to the regulators 20 and, then in turn, are relayed on to the transceiver 28, which is also designed to receive flow control signals for supply to the flow control regulators 20. The transceiver 28 and flow controllers 20 are in the form of remote terminal units having a repeater capability to allow them to communicate with similar type equipment. Preferably, the transceiver 28 and regulators 20 are powered by a battery supply 31, solar panels or power lines.
Referring now to
Associated with the aperture 56 is a slidable gate 58, the position of which is controlled by a variable linear actuator 60 to open or close the aperture 56 in varying degrees to regulate the flow of water through the housing 42. Preferably, a position transducer pulse generator such as a potentiometer, as is well-known in the art, will be associated with the actuator 60 so that electronic signals representative of the position of the gate 60 can be supplied to the transceiver 28 to verify that the gate 58 is in a proper position.
It is contemplated that the field 10 will require only one transceiver 28 that, as shown in
The representation of
The information signals received and transmitted by the transceiver 28 are communicated to a base computer server 64, as indicated in
If the system of the present invention is designed to be utilized by a company that provides water regulation services to a variety of clients, the base server 64 will also be in communication via the Internet with a plurality of personal computers of its various clients, only one of which is shown in
The base server 64 is preferably programmed with data base information concerning the characteristics of the field 10 as well as the operational program for controlling the positions of the regulator gates 58 to provide a desired water table profile on preferably an annual basis. Such a profile is exemplified by graph 72 shown in
It should be recognized by those skilled in the art that rather than utilizing the computer server 64 for controlling operation of the regulator gates 58, the regulators 20 themselves could include a computer processing unit 80 that would receive the water level signals from the sensors 26 and control the operation of the regulators 20 in response thereto. In such configuration, communication with the base server 64 would not be absolutely essential, but it would be highly preferably so that the operational programs for each CPU 80 could be readily modified as desired.
As indicated by the graph of
Once the plants in the field 10 have reached maturity, the water level is again reduced to a minimum level prior to harvest to allow access to the field and to minimize compaction of the soil by large harvesting equipment. Following harvesting, the water level is then returned to the maximum level to begin the cycle over again in January of the next year.
It should be kept in mind that the water table profile of
Referring now to
Thus, the present invention provides a novel and unique means for regulating the level of groundwater in an agricultural field according to selected criteria. Although the control system and method of the present invention has been described with respect to a preferred embodiment, it should be understood that such embodiment may be altered without avoiding the true spirit and scope of the present invention. For example, a wide variety of communication links can be substituted for the satellite link 66, and a variety of different types of regulators 20 can be employed so long as it is possible to bury them deep enough in the field 10 so that they do not disrupt crop related activities. Also, rather than basing system operation on the sensing of the groundwater level, such operation may involve other types of sensing that provides information concerning the amount of groundwater present, rather than the actual level itself. It should further be noted that in some instances, it may be desirable to use only the impurity sensors 70 and the water level sensors 26 would not be used.
It should also be recognized by those skilled in the art that although the present invention is particularly adapted for providing a preferred water table profile, in times of unusual weather activities, the system can be controlled to compensate for unusually dry or wet conditions or for periods when impurities in the water reach a high level. For example, during a period of heavy rainfall, the regulators 20 can be directed to a fully closed condition to temporarily block water flow through the tile line 12 to prevent excess water drainage from the field following the application of fertilizers or pesticides to the field to prevent the runoff thereof. Conversely, the regulators 20 can be directed to a fully opened condition to drain excess water from the field, if desired during heavy rainfall.
This is a Continuation-In-Part of application Ser. No. 10/881,082 filed Jun. 30, 2004.
Number | Name | Date | Kind |
---|---|---|---|
5166622 | Laing | Nov 1992 | A |
5323317 | Hampton et al. | Jun 1994 | A |
5342144 | McCarthy | Aug 1994 | A |
6715508 | Schafer | Apr 2004 | B2 |
6786234 | Schafer | Sep 2004 | B2 |
Number | Date | Country |
---|---|---|
WO 0055611 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060013652 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10881082 | Jun 2004 | US |
Child | 11128561 | US |